1
|
Gräve C, Lindner J, Flesch S, Domenianni LI, Vöhringer P. Linear and Two-Dimensional Infrared Spectroscopy of the Multifunctional Vibrational Probe, 3-(4-Azidophenyl) Propiolonitrile. Deperturbing a Fermi Triad by Isotopic Substitution. Chemphyschem 2024:e202400818. [PMID: 39636750 DOI: 10.1002/cphc.202400818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Infrared probes are chemical moieties whose vibrational modes are used to obtain spectroscopic information about structural dynamics of complex systems; in particular, of biomacromolecules. Here, we explore the vibrational spectroscopy and dynamics of a reagent, 3-(4-azidophenyl)propiolonitrile (AzPPN), for selectively tagging thiols in protein environments with a multifunctional infrared probe containing both, an azide and a nitrile chromophore. The linear infrared spectrum of AzPPN is heavily perturbed in the antisymmetric azide stretching region as a result of accidental Fermi resonances. Isotopically labeling the azide group at the β-position deperturbs the spectrum considerably and reveals two combination tones that mix with the antisymmetric stretching fundamental into a Fermi triad of hybrid vibrational excitations. Moreover, two-dimensional infrared (2DIR) spectra were recorded for 15Nβ-labeled AzPPN, which reveal waiting-time-dependent spectral shifts of diagonal peaks and dynamic buildups of cross peaks. The 2DIR-spectral evolution is indicative of intramolecular distribution of the pump-induced excess vibrational energy into low-frequency modes of the molecule that are coupled to either the azide or the nitrile stretching transition dipoles. Finally, IR-pump/IR-probe spectra with selective narrowband excitation reveal a time constant of 2.3 ps for intramolecular vibrational redistribution (IVR) and 18 ps for the final energy dissipation into the solvent. The cross-peak dynamics corroborate a notion in which IVR within the AzPPN-molecule is an irreversible process.
Collapse
Affiliation(s)
- Claudia Gräve
- Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstrasse 12, 53115, Bonn
| | - Jörg Lindner
- Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstrasse 12, 53115, Bonn
| | - Stefan Flesch
- Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstrasse 12, 53115, Bonn
| | - Luis I Domenianni
- Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstrasse 12, 53115, Bonn
| | - Peter Vöhringer
- Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstrasse 12, 53115, Bonn
| |
Collapse
|
2
|
Feng RR, Wang M, Zhang W, Gai F. Unnatural Amino Acids for Biological Spectroscopy and Microscopy. Chem Rev 2024; 124:6501-6542. [PMID: 38722769 DOI: 10.1021/acs.chemrev.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.
Collapse
Affiliation(s)
- Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Manxi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Singh S, Gyawali YP, Jiang T, Bukowski GS, Zheng H, Zhang H, Owopetu R, Thielges MC, Feng C. Probing calmodulin-NO synthase interactions via site-specific infrared spectroscopy: an introductory investigation. J Biol Inorg Chem 2024; 29:243-250. [PMID: 38580821 PMCID: PMC11181464 DOI: 10.1007/s00775-024-02046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 04/07/2024]
Abstract
Calmodulin (CaM) binds to a linker between the oxygenase and reductase domains of nitric oxide synthase (NOS) to regulate the functional conformational dynamics. Specific residues on the interdomain interface guide the domain-domain docking to facilitate the electron transfer in NOS. Notably, the docking interface between CaM and the heme-containing oxygenase domain of NOS is isoform specific, which is only beginning to be investigated. Toward advancing understanding of the distinct CaM-NOS docking interactions by infrared spectroscopy, we introduced a cyano-group as frequency-resolved vibrational probe into CaM individually and when associated with full-length and a bi-domain oxygenase/FMN construct of the inducible NOS isoform (iNOS). Site-specific, selective labeling with p-cyano-L-phenylalanine (CNF) by amber suppression of CaM bound to the iNOS has been accomplished by protein coexpression due to the instability of recombinant iNOS protein alone. We introduced CNF at residue 108, which is at the putative CaM-heme (NOS) docking interface. CNF was also introduced at residue 29, which is distant from the docking interface. FT IR data show that the 108 site is sensitive to CaM-NOS complex formation, while insensitivity to its association with the iNOS protein or peptide was observed for the 29 site. Moreover, narrowing of the IR bands at residue 108 suggests the C≡N probe experiences a more limited distribution of environments, indicating side chain restriction apparent for the complex with iNOS. This initial work sets the stage for residue-specific characterizations of structural dynamics of the docked states of NOS proteins.
Collapse
Affiliation(s)
- Swapnil Singh
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Yadav Prasad Gyawali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ting Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Gregory S Bukowski
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Huayu Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Haikun Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Rebecca Owopetu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Megan C Thielges
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.
| | - Changjian Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA.
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
4
|
Zhou L, Feng RR, Zhang W, Gai F. Triple-Bond Vibrations: Emerging Applications in Energy and Biological Sciences. J Phys Chem Lett 2024; 15:187-200. [PMID: 38156972 DOI: 10.1021/acs.jpclett.3c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Triple bonds, such as that formed between two carbon atoms (i.e., C≡C) or that formed between one carbon atom and one nitrogen atom (i.e., C≡N), afford unique chemical bonding and hence vibrational characteristics. As such, they are not only frequently used to construct molecules with tailored chemical and/or physical properties but also employed as vibrational probes to provide site-specific chemical and/or physical information at the molecular level. Herein, we offer our perspective on the emerging applications of various triple-bond vibrations in energy and biological sciences with a focus on C≡C and C≡N triple bonds.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Harmon W, Robben K, Cheatum CM. Adding a second AgGaS 2 stage to Ti:sapphire/BBO/AgGaS 2 setups increases mid-infrared power twofold. OPTICS LETTERS 2023; 48:4797-4800. [PMID: 37707905 DOI: 10.1364/ol.496376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
We present a method for increasing the power of mid-infrared laser pulses generated by a conventional beta-barium borate (BBO) optical parametric amplifier (OPA) and AgGaS2 difference frequency generation (DFG) pumped by a Ti:sapphire amplifier. The method involves an additional stage of parametric amplification with a second AgGaS2 crystal pumped by selected outputs of the conventional DFG stage. This method does not require additional pump power from the Ti:sapphire laser source and improves the overall photon conversion efficiency for generating mid-infrared light. It merely requires an additional AgGaS2 crystal and dichroic mirrors. Following difference frequency generation, the method reuses near-infrared light (∼1.9 µm), typically discarded, to pump the additional AgGaS2 stage and amplifies the mid-infrared light twofold. We demonstrate and characterize the power, spectrum, duration, and noise of the mid-IR pulses before and after the second AgGaS2 stage. We observe small changes in center frequencies, bandwidth, and pulse duration for ∼150-fs pulses between 4 and 5 µm.
Collapse
|
6
|
Abstract
Optimization of pump-probe signal requires a complete understanding of how signal scales with experimental factors. In simple systems, signal scales quadratically with molar absorptivity, and linearly with fluence, concentration, and path length. In practice, scaling factors weaken beyond certain thresholds (e.g., OD > 0.1) due to asymptotic limits related to optical density, fluence and path length. While computational models can accurately account for subdued scaling, quantitative explanations often appear quite technical in the literature. This Perspective aims to present a simpler understanding of the subject with concise formulas for estimating absolute magnitudes of signal under both ordinary and asymptotic scaling conditions. This formulation may be more appealing for spectroscopists seeking rough estimates of signal or relative comparisons. We identify scaling dependencies of signal with respect to experimental parameters and discuss applications for improving signal under broad conditions. We also review other signal enhancement methods, such as local-oscillator attenuation and plasmonic enhancement, and discuss respective benefits and challenges regarding asymptotic limits that signal cannot exceed.
Collapse
Affiliation(s)
- Kevin C Robben
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
7
|
Rutherford SH, Baker MJ, Hunt NT. 2D-IR spectroscopy of proteins in H 2O-A Perspective. J Chem Phys 2023; 158:030901. [PMID: 36681646 DOI: 10.1063/5.0129480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The form of the amide I infrared absorption band provides a sensitive probe of the secondary structure and dynamics of proteins in the solution phase. However, the frequency coincidence of the amide I band with the bending vibrational mode of H2O has necessitated the widespread use of deuterated solvents. Recently, it has been demonstrated that ultrafast 2D-IR spectroscopy allows the detection of the protein amide I band in H2O-based fluids, meaning that IR methods can now be applied to study proteins in physiologically relevant solvents. In this perspective, we describe the basis of the 2D-IR method for observing the protein amide I band in H2O and show how this development has the potential to impact areas ranging from our fundamental appreciation of protein structural dynamics to new applications for 2D-IR spectroscopy in the analytical and biomedical sciences. In addition, we discuss how the spectral response of water, rather than being a hindrance, now provides a basis for new approaches to data pre-processing, standardization of 2D-IR data collection, and signal quantification. Ultimately, we visualize a direction of travel toward the creation of 2D-IR spectral libraries that can be linked to advanced computational methods for use in high-throughput protein screening and disease diagnosis.
Collapse
Affiliation(s)
- Samantha H Rutherford
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Matthew J Baker
- School of Medicine, Faculty of Clinical Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
8
|
Bolik-Coulon N, Languin-Cattoën O, Carnevale D, Zachrdla M, Laage D, Sterpone F, Stirnemann G, Ferrage F. Explicit Models of Motion to Understand Protein Side-Chain Dynamics. PHYSICAL REVIEW LETTERS 2022; 129:203001. [PMID: 36462011 DOI: 10.1103/physrevlett.129.203001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/04/2022] [Indexed: 06/17/2023]
Abstract
Nuclear magnetic relaxation is widely used to probe protein dynamics. For decades, most analyses of relaxation in proteins have relied successfully on the model-free approach, forgoing mechanistic descriptions of motion. Model-free types of correlation functions cannot describe a large carbon-13 relaxation dataset in protein side chains. Here, we use molecular dynamics simulations to design explicit models of motion and solve Fokker-Planck diffusion equations. These models of motion provide better agreement with relaxation data, mechanistic insight, and a direct link to configuration entropy.
Collapse
Affiliation(s)
- Nicolas Bolik-Coulon
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Olivier Languin-Cattoën
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologique Physico-Chimique, Université Paris Cité, PSL University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Diego Carnevale
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Milan Zachrdla
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologique Physico-Chimique, Université Paris Cité, PSL University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Damien Laage
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Fabio Sterpone
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologique Physico-Chimique, Université Paris Cité, PSL University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologique Physico-Chimique, Université Paris Cité, PSL University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabien Ferrage
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
9
|
Jian Y, Han Y, Fu Z, Xia M, Jiang G, Lu D, Wu J, Liu Z. The role of conformational dynamics on the activity of polymer-conjugated CalB in organic solvents. Phys Chem Chem Phys 2022; 24:22028-22037. [DOI: 10.1039/d2cp02208g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A perennial interest in enzyme catalysis has been expanding its applicability from aqueous phase where enzymes are naturally evolved to organic solvents in which the majority of industrial chemical synthesis...
Collapse
|