Schulte G. International Union of Basic and Clinical Pharmacology CXV: The Class F of G Protein-Coupled Receptors.
Pharmacol Rev 2024;
76:1009-1037. [PMID:
38955509 DOI:
10.1124/pharmrev.124.001062]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 07/04/2024] Open
Abstract
The class F of G protein-coupled receptors (GPCRs) consists of 10 Frizzleds (FZD1-10) and Smoothened (SMO). FZDs bind and are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, and SMO is indirectly activated by the Hedgehog (Hh) family of morphogens acting on the transmembrane protein Patched. The advance of our understanding of FZDs and SMO as dynamic transmembrane receptors and molecular machines, which emerged during the past 14 years since the first-class F GPCR IUPHAR nomenclature report, justifies an update. This article focuses on the advances in molecular pharmacology and structural biology providing new mechanistic insight into ligand recognition, receptor activation mechanisms, signal initiation, and signal specification. Furthermore, class F GPCRs continue to develop as drug targets, and novel technologies and tools such as genetically encoded biosensors and CRISP/Cas9 edited cell systems have contributed to refined functional analysis of these receptors. Also, advances in crystal structure analysis and cryogenic electron microscopy contribute to the rapid development of our knowledge about structure-function relationships, providing a great starting point for drug development. Despite the progress, questions and challenges remain to fully understand the complexity of the WNT/FZD and Hh/SMO signaling systems. SIGNIFICANCE STATEMENT: The recent years of research have brought about substantial functional and structural insight into mechanisms of activation of Frizzleds and Smoothened. While the advance furthers our mechanistic understanding of ligand recognition, receptor activation, signal specification, and initiation, broader opportunities emerge that allow targeting class F GPCRs for therapy and regenerative medicine employing both biologics and small molecule compounds.
Collapse