1
|
Smith KT, Khosla K, Han G, Humphrey T, Phelps N, Bischof J. Revival of cryopreserved larvae from the important aquaculture species Pacific White Shrimp (Litopenaeus vannamei) using vitrification and ultra-rapid laser warming. Cryobiology 2024; 117:105160. [PMID: 39486606 DOI: 10.1016/j.cryobiol.2024.105160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Cryopreservation of aquatic embryos or larvae is needed to help safeguard genetics from important wild and captive species, increase aquaculture output, and meet the global demand for protein. To this end, the development of a cryopreservation protocol for nauplius larvae of the commercially important aquaculture species Litopenaeus vannamei, or Pacific White Shrimp, was pursued. Toxicity screening was performed using multiple cryoprotective agents (CPA), and a multi-constituent CPA cocktail was developed to achieve reliable vitrification of shrimp larvae encapsulated in 1.0-μL droplets containing gold nanoparticles. Vitrification and ultra-rapid laser warming were used to cryopreserve and revive nauplius-V stage larvae. Laser warming parameters were optimized to protect the pigmented eye spot from laser-induced ablation, and ice recrystallization inhibitors (IRIs) were tested to induce long-term survival. Approximately 54 % of revived larvae resumed active swimming, but all failed to molt to the zoea-I stage of development or live beyond 15 h post warming.
Collapse
Affiliation(s)
- Kieran T Smith
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA; Center for Advanced Technologies for the Preservation of Biological Systems (ATP-Bio), University of Minnesota, Minneapolis, MN, 55455, USA; ECTO Inc, Atlanta, GA, 30361, USA.
| | - Kanav Khosla
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA; Center for Advanced Technologies for the Preservation of Biological Systems (ATP-Bio), University of Minnesota, Minneapolis, MN, 55455, USA
| | - Guebum Han
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA; Center for Advanced Technologies for the Preservation of Biological Systems (ATP-Bio), University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Nicholas Phelps
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - John Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA; Center for Advanced Technologies for the Preservation of Biological Systems (ATP-Bio), University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
2
|
Yuan L, Chen B, Zhu K, Ren L, Yuan X. Development of Macromolecular Cryoprotectants for Cryopreservation of Cells. Macromol Rapid Commun 2024; 45:e2400309. [PMID: 39012218 DOI: 10.1002/marc.202400309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Cryopreservation is a common way for long-term storage of therapeutical proteins, erythrocytes, and mammalian cells. For cryoprotection of these biosamples to keep their structural integrity and biological activities, it is essential to incorporate highly efficient cryoprotectants. Currently, permeable small molecular cryoprotectants such as glycerol and dimethyl sulfoxide dominate in cryostorage applications, but they are harmful to cells and human health. As acting in the extracellular space, membrane-impermeable macromolecular cryoprotectants, which exert remarkable membrane stabilization against cryo-injury and are easily removed post-thaw, are promising candidates with biocompatibility and feasibility. Water-soluble hydroxyl-containing polymers such as poly(vinyl alcohol) and polyol-based polymers are potent ice recrystallization inhibitors, while polyampholytes, polyzwitterions, and bio-inspired (glyco)polypeptides can significantly increase post-thaw recovery with reduced membrane damages. In this review, the synthetic macromolecular cryoprotectants are systematically summarized based on their synthesis routes, practical utilities, and cryoprotective mechanisms. It provides a valuable insight in development of highly efficient macromolecular cryoprotectants with valid ice recrystallization inhibition activity for highly efficient and safe cryopreservation of cells.
Collapse
Affiliation(s)
- Liang Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Binlin Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin, 300072, China
| | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
3
|
Ariff PNAM, Sedgwick DM, Iwasawa K, Kiyono T, Sumii Y, Ikuta R, Uranagase M, Kawahara H, Fustero S, Ogata S, Shibata N. Design and Mechanistic Insights into α-Helical p-Terphenyl Guanidines as Potent Small-Molecule Antifreeze Agents. J Am Chem Soc 2024; 146:26435-26441. [PMID: 39233468 DOI: 10.1021/jacs.4c09389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Ice formation is a critical challenge across multiple fields, from industrial applications to biological preservation. Inspired by natural antifreeze proteins, we designed and synthesized a new class of small-molecule antifreezes based on α-helical p-terphenyl scaffolds with guanidine side chains. These p-terphenyl guanidines 1, among the smallest molecules that mimic α-helical structures, exhibit potent ice recrystallization inhibition (IRI) activity, similar to that of existing large α-helical antifreeze compounds. The most effective compound, 1a, with four C1-carbon guanidine moieties, demonstrated a superior IRI activity of 0.46 (1 mg/mL). Using molecular dynamics simulations with density-functional theory and separate pKa calculations, we elucidated the mechanisms underlying their antifreeze properties.
Collapse
Affiliation(s)
- Putri Nur Arina Mohd Ariff
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Daniel M Sedgwick
- Department of Organic Chemistry, University of Valencia, Pharmacy Faculty, Burjassot, Valencia 46100, Spain
| | - Kenta Iwasawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Tatsuki Kiyono
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Yuji Sumii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Ryoya Ikuta
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Masayuki Uranagase
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Hidehisa Kawahara
- KUREi Co., Ltd., 404 Center for Innovation & Creativity, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| | - Santos Fustero
- Department of Organic Chemistry, University of Valencia, Pharmacy Faculty, Burjassot, Valencia 46100, Spain
| | - Shuji Ogata
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| |
Collapse
|
4
|
Yang T, Zhang Y, Guo L, Li D, Liu A, Bilal M, Xie C, Yang R, Gu Z, Jiang D, Wang P. Antifreeze Polysaccharides from Wheat Bran: The Structural Characterization and Antifreeze Mechanism. Biomacromolecules 2024; 25:3877-3892. [PMID: 38388358 DOI: 10.1021/acs.biomac.3c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Exploring a novel natural cryoprotectant and understanding its antifreeze mechanism allows the rational design of future sustainable antifreeze analogues. In this study, various antifreeze polysaccharides were isolated from wheat bran, and the antifreeze activity was comparatively studied in relation to the molecular structure. The antifreeze mechanism was further revealed based on the interactions of polysaccharides and water molecules through dynamic simulation analysis. The antifreeze polysaccharides showed distinct ice recrystallization inhibition activity, and structural analysis suggested that the polysaccharides were arabinoxylan, featuring a xylan backbone with a majority of Araf and minor fractions of Manp, Galp, and Glcp involved in the side chain. The antifreeze arabinoxylan, characterized by lower molecular weight, less branching, and more flexible conformation, could weaken the hydrogen bonding of the surrounding water molecules more evidently, thus retarding the transformation of water molecules into the ordered ice structure.
Collapse
Affiliation(s)
- Tao Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yining Zhang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Li Guo
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Anqi Liu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Muhammad Bilal
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Chong Xie
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| |
Collapse
|
5
|
Weng L. Cell Therapy Drug Product Development: Technical Considerations and Challenges. J Pharm Sci 2023; 112:2615-2620. [PMID: 37549846 DOI: 10.1016/j.xphs.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Cell therapy uses living cells as a drug to treat diseases. To develop a cell therapy drug product (DP), cryopreservation plays a central role in extending the shelf life of these living medicines by pausing their biological activities, especially preventing degradation, at a temperature as low as liquid nitrogen. This helps overcome the temporal and geographical gaps between centralized manufacturing and clinical administration, as well as allowing sufficient time for full release testing and flexibility in scheduling patients for administration. Cryopreservation determines or influences several key manufacturing, logistical, or clinical in-use processes, including formulation, filling, controlled rate freezing, cryogenic storage and transportation, thawing, and dose preparation. This article overviews the key technical aspects of cell therapy DP development and elucidates fundamental principles of cryobiology that should be considered when we design and optimize the relevant processes. This article also discusses the challenges that motivate continued innovation for cell therapy drug product development.
Collapse
Affiliation(s)
- Lindong Weng
- Novo Nordisk Research Center Seattle, Inc., United States.
| |
Collapse
|