1
|
Whinn KS, Sharma N, van Oijen AM, Ghodke H. Single-Molecule Fluorescence Imaging of DNA Replication Stalling at Sites of Nucleoprotein Complexes. Methods Mol Biol 2024; 2694:215-234. [PMID: 37824007 DOI: 10.1007/978-1-0716-3377-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
DNA replication in cells occurs on crowded and often damaged template DNA, forming potentially deleterious roadblocks to the progressing replication fork. Numerous tools have been developed to investigate the mechanisms of DNA replication and the fate of stalled replication forks. Here, we describe single-molecule fluorescence imaging methods to visualize processive DNA replication and replication fork stalling at site-specific nucleoprotein complexes. Using dCas9 as a protein barrier and rolling-circle DNA templates, we visualize effective, stable, and site-specific blocking of the Escherichia coli replisome. Additionally, we present a protocol to produce an 18-kb rolling-circle DNA template that provides increased spatial resolution in imaging the interplay between replisomes and roadblocks. These methods can be used to investigate encounters of the replisome with nucleoprotein complexes at the single-molecule level, providing important mechanistic details of replisome stalling and downstream rescue or restart pathways.
Collapse
Affiliation(s)
- Kelsey S Whinn
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Nischal Sharma
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.
| | - Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.
| |
Collapse
|
2
|
Hespanhol JT, Karman L, Sanchez-Limache DE, Bayer-Santos E. Intercepting biological messages: Antibacterial molecules targeting nucleic acids during interbacterial conflicts. Genet Mol Biol 2023; 46:e20220266. [PMID: 36880694 PMCID: PMC9990079 DOI: 10.1590/1678-4685-gmb-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/25/2022] [Indexed: 03/08/2023] Open
Abstract
Bacteria live in polymicrobial communities and constantly compete for resources. These organisms have evolved an array of antibacterial weapons to inhibit the growth or kill competitors. The arsenal comprises antibiotics, bacteriocins, and contact-dependent effectors that are either secreted in the medium or directly translocated into target cells. During bacterial antagonistic encounters, several cellular components important for life become a weak spot prone to an attack. Nucleic acids and the machinery responsible for their synthesis are well conserved across the tree of life. These molecules are part of the information flow in the central dogma of molecular biology and mediate long- and short-term storage for genetic information. The aim of this review is to summarize the diversity of antibacterial molecules that target nucleic acids during antagonistic interbacterial encounters and discuss their potential to promote the emergence antibiotic resistance.
Collapse
Affiliation(s)
- Julia Takuno Hespanhol
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Lior Karman
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | | | - Ethel Bayer-Santos
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Teng W, Liao B, Chen M, Shu W. Genomic Legacies of Ancient Adaptation Illuminate GC-Content Evolution in Bacteria. Microbiol Spectr 2023; 11:e0214522. [PMID: 36511682 PMCID: PMC9927291 DOI: 10.1128/spectrum.02145-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacterial evolution is characterized by strong purifying selection as well as rapid adaptive evolution in changing environments. In this context, the genomic GC content (genomic GC) varies greatly but presents some level of phylogenetic stability, making it challenging to explain based on current hypotheses. To illuminate the evolutionary mechanisms of the genomic GC, we analyzed the base composition and functional inventory of 11,083 representative genomes. A phylogenetically constrained bimodal distribution of the genomic GC, which mainly originated from parallel divergences in the early evolution, was demonstrated. Such variation of the genomic GC can be well explained by DNA replication and repair (DRR), in which multiple pathways correlate with the genomic GC. Furthermore, the biased conservation of various stress-related genes, especially the DRR-related ones, implies distinct adaptive processes in the ancestral lineages of high- or low-GC clades which are likely induced by major environmental changes. Our findings support that the mutational biases resulting from these legacies of ancient adaptation have changed the course of adaptive evolution and generated great variation in the genomic GC. This highlights the importance of indirect effects of natural selection, which indicates a new model for bacterial evolution. IMPORTANCE GC content has been shown to be an important factor in microbial ecology and evolution, and the genomic GC of bacteria can be characterized by great intergenomic heterogeneity, high intragenomic homogeneity, and strong phylogenetic inertia, as well as being associated with the environment. Current hypotheses concerning direct selection or mutational biases cannot well explain these features simultaneously. Our findings of the genomic GC showing that ancient adaptations have transformed the DRR system and that the resulting mutational biases further contributed to a bimodal distribution of it offer a more reasonable scenario for the mechanism. This would imply that, when thinking about the evolution of life, diverse processes of adaptation exist, and combined effects of natural selection should be considered.
Collapse
Affiliation(s)
- Wenkai Teng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengyun Chen
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Wensheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Single-molecule studies of helicases and translocases in prokaryotic genome-maintenance pathways. DNA Repair (Amst) 2021; 108:103229. [PMID: 34601381 DOI: 10.1016/j.dnarep.2021.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022]
Abstract
Helicases involved in genomic maintenance are a class of nucleic-acid dependent ATPases that convert the energy of ATP hydrolysis into physical work to execute irreversible steps in DNA replication, repair, and recombination. Prokaryotic helicases provide simple models to understand broadly conserved molecular mechanisms involved in manipulating nucleic acids during genome maintenance. Our understanding of the catalytic properties, mechanisms of regulation, and roles of prokaryotic helicases in DNA metabolism has been assembled through a combination of genetic, biochemical, and structural methods, further refined by single-molecule approaches. Together, these investigations have constructed a framework for understanding the mechanisms that maintain genomic integrity in cells. This review discusses recent single-molecule insights into molecular mechanisms of prokaryotic helicases and translocases.
Collapse
|
5
|
Sobhy MA, Tehseen M, Takahashi M, Bralić A, De Biasio A, Hamdan SM. Implementing fluorescence enhancement, quenching, and FRET for investigating flap endonuclease 1 enzymatic reaction at the single-molecule level. Comput Struct Biotechnol J 2021; 19:4456-4471. [PMID: 34471492 PMCID: PMC8385120 DOI: 10.1016/j.csbj.2021.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is an important component of the intricate molecular machinery for DNA replication and repair. FEN1 is a structure-specific 5' nuclease that cleaves nascent single-stranded 5' flaps during the maturation of Okazaki fragments. Here, we review our research primarily applying single-molecule fluorescence to resolve important mechanistic aspects of human FEN1 enzymatic reaction. The methodology presented in this review is aimed as a guide for tackling other biomolecular enzymatic reactions by fluorescence enhancement, quenching, and FRET and their combinations. Using these methods, we followed in real-time the structures of the substrate and product and 5' flap cleavage during catalysis. We illustrate that FEN1 actively bends the substrate to verify its features and continues to mold it to induce a protein disorder-to-order transitioning that controls active site assembly. This mechanism suppresses off-target cleavage of non-cognate substrates and promotes their dissociation with an accuracy that was underestimated from bulk assays. We determined that product release in FEN1 after the 5' flap release occurs in two steps; a brief binding to the bent nicked-product followed by longer binding to the unbent nicked-product before dissociation. Based on our cryo-electron microscopy structure of the human lagging strand replicase bound to FEN1, we propose how this two-step product release mechanism may regulate the final steps during the maturation of Okazaki fragments.
Collapse
Affiliation(s)
- Mohamed A Sobhy
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Tehseen
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Masateru Takahashi
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alfredo De Biasio
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester LE1 7HB, UK
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
6
|
Capp J. Interplay between genetic, epigenetic, and gene expression variability: Considering complexity in evolvability. Evol Appl 2021; 14:893-901. [PMID: 33897810 PMCID: PMC8061278 DOI: 10.1111/eva.13204] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic variability, epigenetic variability, and gene expression variability (noise) are generally considered independently in their relationship with phenotypic variation. However, they appear to be intrinsically interconnected and influence it in combination. The study of the interplay between genetic and epigenetic variability has the longest history. This article rather considers the introduction of gene expression variability in its relationships with the two others and reviews for the first time experimental evidences over the four relationships connected to gene expression noise. They show how introducing this third source of variability complicates the way of thinking evolvability and the emergence of biological novelty. Finally, cancer cells are proposed to be an ideal model to decipher the dynamic interplay between genetic, epigenetic, and gene expression variability when one of them is either experimentally increased or therapeutically targeted. This interplay is also discussed in an evolutionary perspective in the context of cancer cell drug resistance.
Collapse
Affiliation(s)
- Jean‐Pascal Capp
- Toulouse Biotechnology InstituteINSACNRSINRAEUniversity of ToulouseToulouseFrance
| |
Collapse
|
7
|
Lagage V, Uphoff S. Pulses and delays, anticipation and memory: seeing bacterial stress responses from a single-cell perspective. FEMS Microbiol Rev 2021; 44:565-571. [PMID: 32556120 DOI: 10.1093/femsre/fuaa022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Stress responses are crucial for bacteria to survive harmful conditions that they encounter in the environment. Although gene regulatory mechanisms underlying stress responses in bacteria have been thoroughly characterised for decades, recent advances in imaging technologies helped to uncover previously hidden dynamics and heterogeneity that become visible at the single-cell level. Despite the diversity of stress response mechanisms, certain dynamic regulatory features are frequently seen in single cells, such as pulses, delays, stress anticipation and memory effects. Often, these dynamics are highly variable across cells. While any individual cell may not achieve an optimal stress response, phenotypic diversity can provide a benefit at the population level. In this review, we highlight microscopy studies that offer novel insights into how bacteria sense stress, regulate protective mechanisms, cope with response delays and prepare for future environmental challenges. These studies showcase developments in the single-cell imaging toolbox including gene expression reporters, FRET, super-resolution microscopy and single-molecule tracking, as well as microfluidic techniques to manipulate cells and create defined stress conditions.
Collapse
Affiliation(s)
- Valentine Lagage
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
8
|
Stracy M, Schweizer J, Sherratt DJ, Kapanidis AN, Uphoff S, Lesterlin C. Transient non-specific DNA binding dominates the target search of bacterial DNA-binding proteins. Mol Cell 2021; 81:1499-1514.e6. [PMID: 33621478 PMCID: PMC8022225 DOI: 10.1016/j.molcel.2021.01.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/24/2020] [Accepted: 01/27/2021] [Indexed: 12/18/2022]
Abstract
Despite their diverse biochemical characteristics and functions, all DNA-binding proteins share the ability to accurately locate their target sites among the vast excess of non-target DNA. Toward identifying universal mechanisms of the target search, we used single-molecule tracking of 11 diverse DNA-binding proteins in living Escherichia coli. The mobility of these proteins during the target search was dictated by DNA interactions rather than by their molecular weights. By generating cells devoid of all chromosomal DNA, we discovered that the nucleoid is not a physical barrier for protein diffusion but significantly slows the motion of DNA-binding proteins through frequent short-lived DNA interactions. The representative DNA-binding proteins (irrespective of their size, concentration, or function) spend the majority (58%–99%) of their search time bound to DNA and occupy as much as ∼30% of the chromosomal DNA at any time. Chromosome crowding likely has important implications for the function of all DNA-binding proteins. Protein motion was compared between unperturbed cells and DNA-free cells Protein mobility was dictated by DNA interactions rather than molecular weight The nucleoid is not a physical barrier for protein diffusion The proteins studied spend most (58%–99%) of their search time bound to DNA
Collapse
Affiliation(s)
- Mathew Stracy
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Jakob Schweizer
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Christian Lesterlin
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Lyon 1, CNRS, INSERM, UMR5086, 69007 Lyon, France.
| |
Collapse
|
9
|
Bacterial phenotypic heterogeneity in DNA repair and mutagenesis. Biochem Soc Trans 2021; 48:451-462. [PMID: 32196548 PMCID: PMC7200632 DOI: 10.1042/bst20190364] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Genetically identical cells frequently exhibit striking heterogeneity in various phenotypic traits such as their morphology, growth rate, or gene expression. Such non-genetic diversity can help clonal bacterial populations overcome transient environmental challenges without compromising genome stability, while genetic change is required for long-term heritable adaptation. At the heart of the balance between genome stability and plasticity are the DNA repair pathways that shield DNA from lesions and reverse errors arising from the imperfect DNA replication machinery. In principle, phenotypic heterogeneity in the expression and activity of DNA repair pathways can modulate mutation rates in single cells and thus be a source of heritable genetic diversity, effectively reversing the genotype-to-phenotype dogma. Long-standing evidence for mutation rate heterogeneity comes from genetics experiments on cell populations, which are now complemented by direct measurements on individual living cells. These measurements are increasingly performed using fluorescence microscopy with a temporal and spatial resolution that enables localising, tracking, and counting proteins with single-molecule sensitivity. In this review, we discuss which molecular processes lead to phenotypic heterogeneity in DNA repair and consider the potential consequences on genome stability and dynamics in bacteria. We further inspect these concepts in the context of DNA damage and mutation induced by antibiotics.
Collapse
|
10
|
Hakim MS, Annisa L, Jariah ROA, Vink C. The mechanisms underlying antigenic variation and maintenance of genomic integrity in Mycoplasma pneumoniae and Mycoplasma genitalium. Arch Microbiol 2020; 203:413-429. [PMID: 32970220 DOI: 10.1007/s00203-020-02041-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/02/2020] [Accepted: 09/12/2020] [Indexed: 11/28/2022]
Abstract
Mycoplasma pneumoniae and Mycoplasma genitalium are important causative agents of infections in humans. Like all other mycoplasmas, these species possess genomes that are significantly smaller than that of other prokaryotes. Moreover, both organisms possess an exceptionally compact set of DNA recombination and repair-associated genes. These genes, however, are sufficient to generate antigenic variation by means of homologous recombination between specific repetitive genomic elements. At the same time, these mycoplasmas have likely evolved strategies to maintain the stability and integrity of their 'minimal' genomes. Previous studies have indicated that there are considerable differences between mycoplasmas and other bacteria in the composition of their DNA recombination and repair machinery. However, the complete repertoire of activities executed by the putative recombination and repair enzymes encoded by Mycoplasma species is not yet fully understood. In this paper, we review the current knowledge on the proteins that likely form part of the DNA repair and recombination pathways of two of the most clinically relevant Mycoplasma species, M. pneumoniae and M. genitalium. The characterization of these proteins will help to define the minimal enzymatic requirements for creating bacterial genetic diversity (antigenic variation) on the one hand, while maintaining genomic integrity on the other.
Collapse
Affiliation(s)
- Mohamad S Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, 55281, Yogyakarta, Indonesia. .,Postgraduate School of Molecular Medicine, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Luthvia Annisa
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, 55281, Yogyakarta, Indonesia
| | - Rizka O A Jariah
- Department of Health Science, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Cornelis Vink
- Department of Life Sciences, Erasmus University College, Erasmus University, 3011 HP, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Structures and stability of simple DNA repeats from bacteria. Biochem J 2020; 477:325-339. [PMID: 31967649 PMCID: PMC7015867 DOI: 10.1042/bcj20190703] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 01/12/2023]
Abstract
DNA is a fundamentally important molecule for all cellular organisms due to its biological role as the store of hereditary, genetic information. On the one hand, genomic DNA is very stable, both in chemical and biological contexts, and this assists its genetic functions. On the other hand, it is also a dynamic molecule, and constant changes in its structure and sequence drive many biological processes, including adaptation and evolution of organisms. DNA genomes contain significant amounts of repetitive sequences, which have divergent functions in the complex processes that involve DNA, including replication, recombination, repair, and transcription. Through their involvement in these processes, repetitive DNA sequences influence the genetic instability and evolution of DNA molecules and they are located non-randomly in all genomes. Mechanisms that influence such genetic instability have been studied in many organisms, including within human genomes where they are linked to various human diseases. Here, we review our understanding of short, simple DNA repeats across a diverse range of bacteria, comparing the prevalence of repetitive DNA sequences in different genomes. We describe the range of DNA structures that have been observed in such repeats, focusing on their propensity to form local, non-B-DNA structures. Finally, we discuss the biological significance of such unusual DNA structures and relate this to studies where the impacts of DNA metabolism on genetic stability are linked to human diseases. Overall, we show that simple DNA repeats in bacteria serve as excellent and tractable experimental models for biochemical studies of their cellular functions and influences.
Collapse
|
12
|
Abstract
Structural maintenance of chromosomes (SMC) proteins play a central role in the organization, segregation and maintenance of chromosomes across domains of life. In bacteria, an SMC-family protein, RecN, has been implicated to have important functions in DNA damage repair. Recent studies have suggested that RecN is required to increase chromosome cohesion in response to DNA damage and may also stimulate specific events during recombination-based repair. While biochemical and genetic assays provide insights into mechanism of action of RecN and other repair factors, in vivo understanding of activity and regulation of proteins can be predominantly gained via microscopy-based approaches. Here, we describe a protocol to study the localization of fluorescently tagged RecN to a site-specific double-strand break (DSB) in Caulobacter crescentus. We further outline a method to probe RecN dynamics in cells with a single, nonreplicating chromosome. This technique can be used to study the early steps of recombination-based repair and understand the regulation of protein recruitment to and further association with sites of damage.
Collapse
|
13
|
Mittal P, Sinha R, Kumar A, Singh P, Ngasainao MR, Singh A, Singh IK. Focusing on DNA Repair and Damage Tolerance Mechanisms in Mycobacterium tuberculosis: An Emerging Therapeutic Theme. Curr Top Med Chem 2020; 20:390-408. [PMID: 31924156 DOI: 10.2174/1568026620666200110114322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/02/2019] [Accepted: 10/10/2019] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) is one such disease that has become a nuisance in the world scenario and one of the most deadly diseases of the current times. The etiological agent of tuberculosis, Mycobacterium tuberculosis (M. tb) kills millions of people each year. Not only 1.7 million people worldwide are estimated to harbor M. tb in the latent form but also 5 to 15 percent of which are expected to acquire an infection during a lifetime. Though curable, a long duration of drug regimen and expense leads to low patient adherence. The emergence of multi-, extensive- and total- drug-resistant strains of M. tb further complicates the situation. Owing to high TB burden, scientists worldwide are trying to design novel therapeutics to combat this disease. Therefore, to identify new drug targets, there is a growing interest in targeting DNA repair pathways to fight this infection. Thus, this review aims to explore DNA repair and damage tolerance as an efficient target for drug development by understanding M. tb DNA repair and tolerance machinery and its regulation, its role in pathogenesis and survival, mutagenesis, and consequently, in the development of drug resistance.
Collapse
Affiliation(s)
- Pooja Mittal
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Rajesh Sinha
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Amit Kumar
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Pooja Singh
- Public Health Research Institute, NJMS-Rutgers University, New Jersey, United States
| | - Moses Rinchui Ngasainao
- Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India.,Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India.,Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
14
|
Whinn KS, van Oijen AM, Ghodke H. Spy-ing on Cas9: Single-molecule tools reveal the enzymology of Cas9. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Integration Host Factor IHF facilitates homologous recombination and mutagenic processes in Pseudomonas putida. DNA Repair (Amst) 2019; 85:102745. [PMID: 31715424 DOI: 10.1016/j.dnarep.2019.102745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022]
Abstract
Nucleoid-associated proteins (NAPs) such as IHF, HU, Fis, and H-NS alter the topology of bound DNA and may thereby affect accessibility of DNA to repair and recombination processes. To examine this possibility, we investigated the effect of IHF on the frequency of homologous recombination (HR) and point mutations in soil bacterium Pseudomonas putida by using plasmidial and chromosomal assays. We observed positive effect of IHF on the frequency of HR, whereas this effect varied depending both on the chromosomal location of the HR target and the type of plasmid used in the assay. The occurrence of point mutations in plasmid was also facilitated by IHF, whereas in the chromosome the positive effect of IHF appeared only at certain DNA sequences and/or chromosomal positions. We did not observe any significant effects of IHF on the spectrum of mutations. However, despite of the presence or absence of IHF, different mutational hot spots appeared both in plasmid and in chromosome. Additionally, the frequency of frameshift mutations in the chromosome was also strongly affected by the location of the mutational target sequence. Taking together, our results indicate that IHF facilitates the occurrence of genetic changes in P. putida, whereas the location of the target sequence affects both the IHF-dependent and IHF-independent mechanisms.
Collapse
|
16
|
Uphoff S. A Quantitative Model Explains Single-Cell Dynamics of the Adaptive Response in Escherichia coli. Biophys J 2019; 117:1156-1165. [PMID: 31466698 PMCID: PMC6818145 DOI: 10.1016/j.bpj.2019.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 01/05/2023] Open
Abstract
DNA damage caused by alkylating chemicals induces an adaptive response in Escherichia coli that increases the tolerance of cells to further damage. Signaling of the response occurs through irreversible methylation of the Ada protein, which acts as a DNA repair protein and damage sensor. Methylated Ada induces its own gene expression through a positive feedback loop. However, random fluctuations in the abundance of Ada jeopardize the reliability of the induction signal. I developed a quantitative model to test how gene expression noise and feedback amplification affect the fidelity of the adaptive response. A remarkably simple model accurately reproduced experimental observations from single-cell measurements of gene expression dynamics in a microfluidic device. Stochastic simulations showed that delays in the adaptive response are a direct consequence of the very low number of Ada molecules present to signal DNA damage. For cells that have zero copies of Ada, response activation becomes a memoryless process that is dictated by an exponential waiting time distribution between basal Ada expression events. Experiments also confirmed the model prediction that the strength of the adaptive response drops with an increasing growth rate of cells.
Collapse
Affiliation(s)
- Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
17
|
The journey of a molecular detective. Heredity (Edinb) 2019; 123:18-22. [PMID: 31189908 DOI: 10.1038/s41437-019-0216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 11/09/2022] Open
|
18
|
Rescuing Replication from Barriers: Mechanistic Insights from Single-Molecule Studies. Mol Cell Biol 2019; 39:MCB.00576-18. [PMID: 30886122 DOI: 10.1128/mcb.00576-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To prevent replication failure due to fork barriers, several mechanisms have evolved to restart arrested forks independent of the origin of replication. Our understanding of these mechanisms that underlie replication reactivation has been aided through unique dynamic perspectives offered by single-molecule techniques. These techniques, such as optical tweezers, magnetic tweezers, and fluorescence-based methods, allow researchers to monitor the unwinding of DNA by helicase, nucleotide incorporation during polymerase synthesis, and replication fork progression in real time. In addition, they offer the ability to distinguish DNA intermediates after obstacles to replication at high spatial and temporal resolutions, providing new insights into the replication reactivation mechanisms. These and other highlights of single-molecule techniques and remarkable studies on the recovery of the replication fork from barriers will be discussed in this review.
Collapse
|
19
|
Banaz N, Mäkelä J, Uphoff S. Choosing the right label for single-molecule tracking in live bacteria: side-by-side comparison of photoactivatable fluorescent protein and Halo tag dyes. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2019; 52:064002. [PMID: 30799881 PMCID: PMC6372142 DOI: 10.1088/1361-6463/aaf255] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 11/20/2018] [Indexed: 05/21/2023]
Abstract
Visualizing and quantifying molecular motion and interactions inside living cells provides crucial insight into the mechanisms underlying cell function. This has been achieved by super-resolution localization microscopy and single-molecule tracking in conjunction with photoactivatable fluorescent proteins (PA-FPs). An alternative labelling approach relies on genetically-encoded protein tags with cell-permeable fluorescent ligands which are brighter and less prone to photobleaching than fluorescent proteins but require a laborious labelling process. Either labelling method is associated with significant advantages and disadvantages that should be taken into consideration depending on the microscopy experiment planned. Here, we describe an optimised procedure for labelling Halo-tagged proteins in live Escherichia coli cells. We provide a side-by-side comparison of Halo tag with different fluorescent ligands against the popular photoactivatable fluorescent protein PAmCherry. Using test proteins with different intracellular dynamics, we evaluated fluorescence intensity, background, photostability, and results from single-molecule localization and tracking experiments. Capitalising on the brightness and extended spectral range of fluorescent Halo ligands, we also demonstrate high-speed and dual-colour single-molecule tracking.
Collapse
Affiliation(s)
- Nehir Banaz
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Jarno Mäkelä
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
20
|
Real-time dynamics of mutagenesis reveal the chronology of DNA repair and damage tolerance responses in single cells. Proc Natl Acad Sci U S A 2018; 115:E6516-E6525. [PMID: 29941584 DOI: 10.1073/pnas.1801101115] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Evolutionary processes are driven by diverse molecular mechanisms that act in the creation and prevention of mutations. It remains unclear how these mechanisms are regulated because limitations of existing mutation assays have precluded measuring how mutation rates vary over time in single cells. Toward this goal, I detected nascent DNA mismatches as a proxy for mutagenesis and simultaneously followed gene expression dynamics in single Escherichia coli cells using microfluidics. This general microscopy-based approach revealed the real-time dynamics of mutagenesis in response to DNA alkylation damage and antibiotic treatments. It also enabled relating the creation of DNA mismatches to the chronology of the underlying molecular processes. By avoiding population averaging, I discovered cell-to-cell variation in mutagenesis that correlated with heterogeneity in the expression of alternative responses to DNA damage. Pulses of mutagenesis are shown to arise from transient DNA repair deficiency. Constitutive expression of DNA repair pathways and induction of damage tolerance by the SOS response compensate for delays in the activation of inducible DNA repair mechanisms, together providing robustness against the toxic and mutagenic effects of DNA alkylation damage.
Collapse
|
21
|
Dersch S, Graumann PL. The ultimate picture-the combination of live cell superresolution microscopy and single molecule tracking yields highest spatio-temporal resolution. Curr Opin Microbiol 2017; 43:55-61. [PMID: 29227820 DOI: 10.1016/j.mib.2017.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022]
Abstract
We are witnessing a breathtaking development in light (fluorescence) microscopy, where structures can be resolved down to the size of a ribosome within cells. This has already yielded surprising insight into the subcellular structure of cells, including the smallest cells, bacteria. Moreover, it has become possible to visualize and track single fluorescent protein fusions in real time, and quantify molecule numbers within individual cells. Combined, super resolution and single molecule tracking are pushing the limits of our understanding of the spatio-temporal organization even of the smallest cells to an unprecedented depth.
Collapse
Affiliation(s)
- Simon Dersch
- Centre for Synthetic Microbiology (SYNMIKRO), and Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Peter L Graumann
- Centre for Synthetic Microbiology (SYNMIKRO), and Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany.
| |
Collapse
|
22
|
Hu J, Selby CP, Adar S, Adebali O, Sancar A. Molecular mechanisms and genomic maps of DNA excision repair in Escherichia coli and humans. J Biol Chem 2017; 292:15588-15597. [PMID: 28798238 DOI: 10.1074/jbc.r117.807453] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nucleotide excision repair is a major DNA repair mechanism in all cellular organisms. In this repair system, the DNA damage is removed by concerted dual incisions bracketing the damage and at a precise distance from the damage. Here, we review the basic mechanisms of excision repair in Escherichia coli and humans and the recent genome-wide mapping of DNA damage and repair in these organisms at single-nucleotide resolution.
Collapse
Affiliation(s)
- Jinchuan Hu
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Christopher P Selby
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Sheera Adar
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and.,the Department of Microbiology and Molecular Genetics, Hebrew University-Hadassah Medical School, Ein Kerem 71120, Jerusalem, Israel
| | - Ogun Adebali
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Aziz Sancar
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| |
Collapse
|