1
|
Reverte-López M, Kanwa N, Qutbuddin Y, Belousova V, Jasnin M, Schwille P. Self-organized spatial targeting of contractile actomyosin rings for synthetic cell division. Nat Commun 2024; 15:10415. [PMID: 39614082 DOI: 10.1038/s41467-024-54807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024] Open
Abstract
A key challenge for bottom-up synthetic biology is engineering a minimal module for self-division of synthetic cells. Actin-based cytokinetic rings are considered a promising structure to produce the forces required for the controlled excision of cell-like compartments such as giant unilamellar vesicles (GUVs). Despite prior demonstrations of actin ring targeting to GUV membranes and myosin-induced constriction, large-scale vesicle deformation has been precluded due to the lacking spatial control of these contractile structures. Here we show the combined reconstitution of actomyosin rings and the bacterial MinDE protein system within GUVs. Incorporating this spatial positioning tool, able to induce active transport of membrane-attached diffusible molecules, yields self-organized equatorial assembly of actomyosin rings in vesicles. Remarkably, the synergistic effect of Min oscillations and the contractility of actomyosin bundles induces mid-vesicle deformations and vesicle blebbing. Our system showcases how functional machineries from various organisms may be combined in vitro, leading to the emergence of functionalities towards a synthetic division system.
Collapse
Affiliation(s)
- María Reverte-López
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nishu Kanwa
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Yusuf Qutbuddin
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Viktoriia Belousova
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marion Jasnin
- Helmholtz Pioneer Campus, Helmholtz Munich, Neuherberg, Germany; Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
2
|
Dhanawat G, Dey M, Singh A, Parveen N. Invagination of Giant Unilamellar Vesicles upon Membrane Mixing with Native Vesicles. ACS OMEGA 2024; 9:46615-46626. [PMID: 39583730 PMCID: PMC11579933 DOI: 10.1021/acsomega.4c08971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
We demonstrate rapid membrane mixing between GUVs of pure lipid compositions and membrane vesicles (MVs) isolated from the plasma membrane of Vero cells, resulting in the transfer of native lipids and proteins to the GUVs. The steps involved in the membrane mixing are docking followed by membrane fusion. We show that positively charged lipids of the GUVs are essential for the docking, and the native membrane components of MVs drive the fusion. The interleaflet and lateral asymmetry and a change in the membrane tension upon the membrane mixing trigger membrane invagination. We detected outward and inward invagination sites at the rim of the GUVs within 10-40 min of the membrane mixing. The extent of the invaginations depends on the cholesterol and sphingomyelin (SM) contents in the GUVs. Cholesterol content above a critical concentration disfavors membrane invaginations, and the SM lipid is an essential molecular factor for membrane invagination.
Collapse
Affiliation(s)
- Garvita Dhanawat
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Manorama Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Anirudh Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| |
Collapse
|
3
|
Khakimzhan A, Izri Z, Thompson S, Dmytrenko O, Fischer P, Beisel C, Noireaux V. Cell-free expression with a quartz crystal microbalance enables rapid, dynamic, and label-free characterization of membrane-interacting proteins. Commun Biol 2024; 7:1005. [PMID: 39152195 PMCID: PMC11329788 DOI: 10.1038/s42003-024-06690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Integral and interacting membrane proteins (IIMPs) constitute a vast family of biomolecules that perform essential functions in all forms of life. However, characterizing their interactions with lipid bilayers remains limited due to challenges in purifying and reconstituting IIMPs in vitro or labeling IIMPs without disrupting their function in vivo. Here, we report cell-free transcription-translation in a quartz crystal microbalance with dissipation (TXTL-QCMD) to dynamically characterize interactions between diverse IIMPs and membranes without protein purification or labeling. As part of TXTL-QCMD, IIMPs are synthesized using cell-free transcription-translation (TXTL), and their interactions with supported lipid bilayers are measured using a quartz crystal microbalance with dissipation (QCMD). TXTL-QCMD reconstitutes known IIMP-membrane dependencies, including specific association with prokaryotic or eukaryotic membranes, and the multiple-IIMP dynamical pattern-forming association of the E. coli division-coordinating proteins MinCDE. Applying TXTL-QCMD to the recently discovered Zorya anti-phage system that is unamenable to labeling, we discovered that ZorA and ZorB integrate within the lipids found at the poles of bacteria while ZorE diffuses freely on the non-pole membrane. These efforts establish the potential of TXTL-QCMD to broadly characterize the large diversity of IIMPs.
Collapse
Affiliation(s)
- Aset Khakimzhan
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ziane Izri
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Seth Thompson
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Oleg Dmytrenko
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Patrick Fischer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Chase Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
- Medical Faculty, University of Würzburg, 97080, Würzburg, Germany
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Fasciano S, Wang S. Recent advances of droplet-based microfluidics for engineering artificial cells. SLAS Technol 2024; 29:100090. [PMID: 37245659 DOI: 10.1016/j.slast.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
Abstract
Artificial cells, synthetic cells, or minimal cells are microengineered cell-like structures that mimic the biological functions of cells. Artificial cells are typically biological or polymeric membranes where biologically active components, including proteins, genes, and enzymes, are encapsulated. The goal of engineering artificial cells is to build a living cell with the least amount of parts and complexity. Artificial cells hold great potential for several applications, including membrane protein interactions, gene expression, biomaterials, and drug development. It is critical to generate robust, stable artificial cells using high throughput, easy-to-control, and flexible techniques. Recently, droplet-based microfluidic techniques have shown great potential for the synthesis of vesicles and artificial cells. Here, we summarized the recent advances in droplet-based microfluidic techniques for the fabrication of vesicles and artificial cells. We first reviewed the different types of droplet-based microfluidic devices, including flow-focusing, T-junction, and coflowing. Next, we discussed the formation of multi-compartmental vesicles and artificial cells based on droplet-based microfluidics. The applications of artificial cells for studying gene expression dynamics, artificial cell-cell communications, and mechanobiology are highlighted and discussed. Finally, the current challenges and future outlook of droplet-based microfluidic methods for engineering artificial cells are discussed. This review will provide insights into scientific research in synthetic biology, microfluidic devices, membrane interactions, and mechanobiology.
Collapse
Affiliation(s)
- Samantha Fasciano
- Department of Cellular and Molecular Biology, University of New Haven, West Haven, CT, USA
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, USA.
| |
Collapse
|
5
|
Waeterschoot J, Gosselé W, Lemež Š, Casadevall I Solvas X. Artificial cells for in vivo biomedical applications through red blood cell biomimicry. Nat Commun 2024; 15:2504. [PMID: 38509073 PMCID: PMC10954685 DOI: 10.1038/s41467-024-46732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Recent research in artificial cell production holds promise for the development of delivery agents with therapeutic effects akin to real cells. To succeed in these applications, these systems need to survive the circulatory conditions. In this review we present strategies that, inspired by the endurance of red blood cells, have enhanced the viability of large, cell-like vehicles for in vivo therapeutic use, particularly focusing on giant unilamellar vesicles. Insights from red blood cells can guide modifications that could transform these platforms into advanced drug delivery vehicles, showcasing biomimicry's potential in shaping the future of therapeutic applications.
Collapse
Affiliation(s)
- Jorik Waeterschoot
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium.
| | - Willemien Gosselé
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | - Špela Lemež
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | | |
Collapse
|
6
|
Maffeis V, Heuberger L, Nikoletić A, Schoenenberger C, Palivan CG. Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305837. [PMID: 37984885 PMCID: PMC10885666 DOI: 10.1002/advs.202305837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
The exponential growth of research on artificial cells and organelles underscores their potential as tools to advance the understanding of fundamental biological processes. The bottom-up construction from a variety of building blocks at the micro- and nanoscale, in combination with biomolecules is key to developing artificial cells. In this review, artificial cells are focused upon based on compartments where polymers are the main constituent of the assembly. Polymers are of particular interest due to their incredible chemical variety and the advantage of tuning the properties and functionality of their assemblies. First, the architectures of micro- and nanoscale polymer assemblies are introduced and then their usage as building blocks is elaborated upon. Different membrane-bound and membrane-less compartments and supramolecular structures and how they combine into advanced synthetic cells are presented. Then, the functional aspects are explored, addressing how artificial organelles in giant compartments mimic cellular processes. Finally, how artificial cells communicate with their surrounding and each other such as to adapt to an ever-changing environment and achieve collective behavior as a steppingstone toward artificial tissues, is taken a look at. Engineering artificial cells with highly controllable and programmable features open new avenues for the development of sophisticated multifunctional systems.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
| | - Lukas Heuberger
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
| | - Anamarija Nikoletić
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| | | | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| |
Collapse
|
7
|
Van de Cauter L, van Buren L, Koenderink GH, Ganzinger KA. Exploring Giant Unilamellar Vesicle Production for Artificial Cells - Current Challenges and Future Directions. SMALL METHODS 2023; 7:e2300416. [PMID: 37464561 DOI: 10.1002/smtd.202300416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Indexed: 07/20/2023]
Abstract
Creating an artificial cell from the bottom up is a long-standing challenge and, while significant progress has been made, the full realization of this goal remains elusive. Arguably, one of the biggest hurdles that researchers are facing now is the assembly of different modules of cell function inside a single container. Giant unilamellar vesicles (GUVs) have emerged as a suitable container with many methods available for their production. Well-studied swelling-based methods offer a wide range of lipid compositions but at the expense of limited encapsulation efficiency. Emulsion-based methods, on the other hand, excel at encapsulation but are only effective with a limited set of membrane compositions and may entrap residual additives in the lipid bilayer. Since the ultimate artificial cell will need to comply with both specific membrane and encapsulation requirements, there is still no one-method-fits-all solution for GUV formation available today. This review discusses the state of the art in different GUV production methods and their compatibility with GUV requirements and operational requirements such as reproducibility and ease of use. It concludes by identifying the most pressing issues and proposes potential avenues for future research to bring us one step closer to turning artificial cells into a reality.
Collapse
Affiliation(s)
- Lori Van de Cauter
- Autonomous Matter Department, AMOLF, Amsterdam, 1098 XG, The Netherlands
| | - Lennard van Buren
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | | |
Collapse
|
8
|
Radhakrishnan S, Nair KS, Nandi S, Bajaj H. Engineering semi-permeable giant liposomes. Chem Commun (Camb) 2023; 59:13863-13866. [PMID: 37930322 DOI: 10.1039/d3cc04039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Giant unilamellar vesicles (GUVs) with a semi-permeable nature are prerequisites for constructing synthetic cells. Here we engineer semi-permeable GUVs by the inclusion of DOTAP lipid in vesicles. Diffusion of molecules of different charge and size across GUVs are reported. Control over size-selective permeability is demonstrated by modulating the DOTAP lipid composition in different lipid systems without reconstituting membrane proteins. Such semi-permeable GUVs have immense applications for constructing synthetic cells.
Collapse
Affiliation(s)
- Sreelakshmi Radhakrishnan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.
| | - Karthika S Nair
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Samir Nandi
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| |
Collapse
|
9
|
Abucayon EG, Rao M, Matyas GR, Alving CR. QS21-Initiated Fusion of Liposomal Small Unilamellar Vesicles to Form ALFQ Results in Concentration of Most of the Monophosphoryl Lipid A, QS21, and Cholesterol in Giant Unilamellar Vesicles. Pharmaceutics 2023; 15:2212. [PMID: 37765181 PMCID: PMC10537867 DOI: 10.3390/pharmaceutics15092212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Army Liposome Formulation with QS21 (ALFQ), a vaccine adjuvant preparation, comprises liposomes containing saturated phospholipids, with 55 mol% cholesterol relative to the phospholipids, and two adjuvants, monophosphoryl lipid A (MPLA) and QS21 saponin. A unique feature of ALFQ is the formation of giant unilamellar vesicles (GUVs) having diameters >1.0 µm, due to a remarkable fusion event initiated during the addition of QS21 to nanoliposomes containing MPLA and 55 mol% cholesterol relative to the total phospholipids. This results in a polydisperse size distribution of ALFQ particles, with diameters ranging from ~50 nm to ~30,000 nm. The purpose of this work was to gain insights into the unique fusion reaction of nanovesicles leading to GUVs induced by QS21. This fusion reaction was probed by comparing the lipid compositions and structures of vesicles purified from ALFQ, which were >1 µm (i.e., GUVs) and the smaller vesicles with diameter <1 µm. Here, we demonstrate that after differential centrifugation, cholesterol, MPLA, and QS21 in the liposomal phospholipid bilayers were present mainly in GUVs (in the pellet). Presumably, this occurred by rapid lateral diffusion during the transition from nanosize to microsize particles. While liposomal phospholipid recoveries by weight in the pellet and supernatant were 44% and 36%, respectively, higher percentages by weight of the cholesterol (~88%), MPLA (94%), and QS21 (96%) were recovered in the pellet containing GUVs, and ≤10% of these individual liposomal constituents were recovered in the supernatant. Despite the polydispersity of ALFQ, most of the cholesterol, and almost all of the adjuvant molecules, were present in the GUVs. We hypothesize that the binding of QS21 to cholesterol caused new structural nanodomains, and subsequent interleaflet coupling in the lipid bilayer might have initiated the fusion process, leading to creation of GUVs. However, the polar regions of MPLA and QS21 together have a "sugar lawn" of ten sugars, the hydrophilicity of which might have provided a driving force for rapid lateral diffusion and concentration of the MPLA and QS21 in the GUVs.
Collapse
Affiliation(s)
- Erwin G. Abucayon
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.)
| | - Gary R. Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.)
| | - Carl R. Alving
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.)
| |
Collapse
|
10
|
Sheshachala S, Huber B, Schuetzke J, Mikut R, Scharnweber T, Domínguez CM, Mutlu H, Niemeyer CM. Charge controlled interactions between DNA-modified silica nanoparticles and fluorosurfactants in microfluidic water-in-oil droplets. NANOSCALE ADVANCES 2023; 5:3914-3923. [PMID: 37496619 PMCID: PMC10367961 DOI: 10.1039/d3na00124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Microfluidic droplets are an important tool for studying and mimicking biological systems, e.g., to examine with high throughput the interaction of biomolecular components and the functionality of natural cells, or to develop basic principles for the engineering of artificial cells. Of particular importance is the approach to generate a biomimetic membrane by supramolecular self-assembly of nanoparticle components dissolved in the aqueous phase of the droplets at the inner water/oil interface, which can serve both to mechanically reinforce the droplets and as an interaction surface for cells and other components. While this interfacial assembly driven by electrostatic interaction of surfactants is quite well developed for water/mineral oil (W/MO) systems, no approaches have yet been described to exploit this principle for water/fluorocarbon oil (W/FO) emulsion droplets. Since W/FO systems exhibit not only better compartmentalization but also gas solubility properties, which is particularly crucial for live cell encapsulation and cultivation, we report here the investigation of charged fluorosurfactants for the self-assembly of DNA-modified silica nanoparticles (SiNP-DNA) at the interface of microfluidic W/FO emulsions. To this end, an efficient multicomponent Ugi reaction was used to synthesize the novel fluorosurfactant M4SURF to study the segregation and accumulation of negatively charged SiNP-DNA at the inner interface of microfluidic droplets. Comparative measurements were performed with the negatively charged fluorosurfactant KRYTOX, which can also induce SiNP-DNA segregation in the presence of cations. The segregation dynamics is characterized and preliminary results of cell encapsulation in the SiNP-DNA functionalized droplets are shown.
Collapse
Affiliation(s)
- Sahana Sheshachala
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Birgit Huber
- Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
| | - Jan Schuetzke
- Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Tim Scharnweber
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Carmen M Domínguez
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
11
|
Sakuta H, Nakatani N, Torisawa T, Sumino Y, Tsumoto K, Oiwa K, Yoshikawa K. Self-emergent vortex flow of microtubule and kinesin in cell-sized droplets under water/water phase separation. Commun Chem 2023; 6:80. [PMID: 37100870 PMCID: PMC10133263 DOI: 10.1038/s42004-023-00879-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
By facilitating a water/water phase separation (w/wPS), crowded biopolymers in cells form droplets that contribute to the spatial localization of biological components and their biochemical reactions. However, their influence on mechanical processes driven by protein motors has not been well studied. Here, we show that the w/wPS droplet spontaneously entraps kinesins as well as microtubules (MTs) and generates a micrometre-scale vortex flow inside the droplet. Active droplets with a size of 10-100 µm are generated through w/wPS of dextran and polyethylene glycol mixed with MTs, molecular-engineered chimeric four-headed kinesins and ATP after mechanical mixing. MTs and kinesin rapidly created contractile network accumulated at the interface of the droplet and gradually generated vortical flow, which can drive translational motion of a droplet. Our work reveals that the interface of w/wPS contributes not only to chemical processes but also produces mechanical motion by assembling species of protein motors in a functioning manner.
Collapse
Affiliation(s)
- Hiroki Sakuta
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
- Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
- Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Meguro, Tokyo, 153-8902, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, 153-8902, Japan
| | - Naoki Nakatani
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Takayuki Torisawa
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Yutaka Sumino
- Department of Applied Physics, Faculty of Advanced Engineering, WaTUS and DCIS, Tokyo University of Science, Katsushika, Tokyo, 125-8585, Japan.
| | - Kanta Tsumoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie, 514-8507, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo, 651-2492, Japan.
- Department of Life Science, Graduate School of Science, University of Hyogo, Ako, Hyogo, 678-1297, Japan.
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| |
Collapse
|
12
|
Zhang Q, Gao L, Li F, Bi Y. Sensing and manipulating single lipid vesicles using dynamic DNA nanotechnology. NANOSCALE 2023; 15:5158-5166. [PMID: 36825547 DOI: 10.1039/d2nr07192d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Natural and artificial lipid vesicles have been widely involved in nano-delivery, bio-analysis and diagnosis. For sensing and manipulating single lipid vesicles, dynamic DNA reactions were constructed inside or on the surface of lipid vesicles. In this review, we interpreted various ways of integrating lipid vesicles and dynamic DNA nanotechnology by summarizing the latest reports in bio-analysis and biomimetic cell research.
Collapse
Affiliation(s)
- Qi Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University, Tai'An, Shandong, 271016, P. R. China.
- Key laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Sichuan, 610064, P. R. China.
| | - Lu Gao
- Key laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Sichuan, 610064, P. R. China.
| | - Feng Li
- Key laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Sichuan, 610064, P. R. China.
| | - Yanping Bi
- School of Pharmaceutical Sciences, Shandong First Medical University, Tai'An, Shandong, 271016, P. R. China.
| |
Collapse
|
13
|
van Buren L, Koenderink GH, Martinez-Torres C. DisGUVery: A Versatile Open-Source Software for High-Throughput Image Analysis of Giant Unilamellar Vesicles. ACS Synth Biol 2023; 12:120-135. [PMID: 36508359 PMCID: PMC9872171 DOI: 10.1021/acssynbio.2c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 12/14/2022]
Abstract
Giant unilamellar vesicles (GUVs) are cell-sized aqueous compartments enclosed by a phospholipid bilayer. Due to their cell-mimicking properties, GUVs have become a widespread experimental tool in synthetic biology to study membrane properties and cellular processes. In stark contrast to the experimental progress, quantitative analysis of GUV microscopy images has received much less attention. Currently, most analysis is performed either manually or with custom-made scripts, which makes analysis time-consuming and results difficult to compare across studies. To make quantitative GUV analysis accessible and fast, we present DisGUVery, an open-source, versatile software that encapsulates multiple algorithms for automated detection and analysis of GUVs in microscopy images. With a performance analysis, we demonstrate that DisGUVery's three vesicle detection modules successfully identify GUVs in images obtained with a wide range of imaging sources, in various typical GUV experiments. Multiple predefined analysis modules allow the user to extract properties such as membrane fluorescence, vesicle shape, and internal fluorescence from large populations. A new membrane segmentation algorithm facilitates spatial fluorescence analysis of nonspherical vesicles. Altogether, DisGUVery provides an accessible tool to enable high-throughput automated analysis of GUVs, and thereby to promote quantitative data analysis in synthetic cell research.
Collapse
Affiliation(s)
- Lennard van Buren
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| | - Gijsje Hendrika Koenderink
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| | - Cristina Martinez-Torres
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZDelft, The Netherlands
| |
Collapse
|
14
|
Baldauf L, van Buren L, Fanalista F, Koenderink GH. Actomyosin-Driven Division of a Synthetic Cell. ACS Synth Biol 2022; 11:3120-3133. [PMID: 36164967 PMCID: PMC9594324 DOI: 10.1021/acssynbio.2c00287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 01/24/2023]
Abstract
One of the major challenges of bottom-up synthetic biology is rebuilding a minimal cell division machinery. From a reconstitution perspective, the animal cell division apparatus is mechanically the simplest and therefore attractive to rebuild. An actin-based ring produces contractile force to constrict the membrane. By contrast, microbes and plant cells have a cell wall, so division requires concerted membrane constriction and cell wall synthesis. Furthermore, reconstitution of the actin division machinery helps in understanding the physical and molecular mechanisms of cytokinesis in animal cells and thus our own cells. In this review, we describe the state-of-the-art research on reconstitution of minimal actin-mediated cytokinetic machineries. Based on the conceptual requirements that we obtained from the physics of the shape changes involved in cell division, we propose two major routes for building a minimal actin apparatus capable of division. Importantly, we acknowledge both the passive and active roles that the confining lipid membrane can play in synthetic cytokinesis. We conclude this review by identifying the most pressing challenges for future reconstitution work, thereby laying out a roadmap for building a synthetic cell equipped with a minimal actin division machinery.
Collapse
Affiliation(s)
| | | | - Federico Fanalista
- Department of Bionanoscience,
Kavli Institute of Nanoscience Delft, Delft
University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje Hendrika Koenderink
- Department of Bionanoscience,
Kavli Institute of Nanoscience Delft, Delft
University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
15
|
Mondal A, Morrison G. Compression-induced buckling of a semiflexible filament in two and three dimensions. J Chem Phys 2022; 157:104903. [DOI: 10.1063/5.0104910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ability of biomolecules to exert forces on their surroundings or resist compression from the environment is essential in a variety of biologically relevant contexts. For filaments in the low-temperature limit and under a constant compressive force, Euler buckling theory predicts a sudden transition from a compressed to a bent state in these slender rods. In this paper, we use a mean-field theory to show that if a semiflexible chain is compressed at a finite temperature with a fixed end-to-end distance (permitting fluctuations in the compressive forces), it exhibits a continuous phase transition to a buckled state at a critical level of compression. We determine a quantitatively accurate prediction of the transverse position distribution function of the midpoint of the chain that indicates this transition. We find the mean compressive forces are non-monotonic as the extension of the filament varies, consistent with the observation that strongly buckled filaments are less able to bear an external load. We also find that for the fixed extension (isometric) ensemble, the buckling transition does not coincide with the local minimum of the mean force (in contrast to Euler buckling). We also show the theory is highly sensitive to fluctuations in length in two dimensions, and that the buckling transition can still be accurately recovered by accounting for those fluctuations. These predictions may be useful in understanding the behavior of filamentous biomolecules compressed by fluctuating forces, relevant in a variety of biological contexts.
Collapse
Affiliation(s)
- Ananya Mondal
- Physics, University of Houston, United States of America
| | - Greg Morrison
- Physics, University of Houston, United States of America
| |
Collapse
|
16
|
Wagner AM, Eto H, Joseph A, Kohyama S, Haraszti T, Zamora RA, Vorobii M, Giannotti MI, Schwille P, Rodriguez-Emmenegger C. Dendrimersome Synthetic Cells Harbor Cell Division Machinery of Bacteria. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202364. [PMID: 35579491 DOI: 10.1002/adma.202202364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Indexed: 06/15/2023]
Abstract
The integration of active cell machinery with synthetic building blocks is the bridge toward developing synthetic cells with biological functions and beyond. Self-replication is one of the most important tasks of living systems, and various complex machineries exist to execute it. In Escherichia coli, a contractile division ring is positioned to mid-cell by concentration oscillations of self-organizing proteins (MinCDE), where it severs membrane and cell wall. So far, the reconstitution of any cell division machinery has exclusively been tied to liposomes. Here, the reconstitution of a rudimentary bacterial divisome in fully synthetic bicomponent dendrimersomes is shown. By tuning the membrane composition, the interaction of biological machinery with synthetic membranes can be tailored to reproduce its dynamic behavior. This constitutes an important breakthrough in the assembly of synthetic cells with biological elements, as tuning of membrane-divisome interactions is the key to engineering emergent biological behavior from the bottom-up.
Collapse
Affiliation(s)
- Anna M Wagner
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Hiromune Eto
- Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Anton Joseph
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Shunshi Kohyama
- Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Tamás Haraszti
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Ricardo A Zamora
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Mariia Vorobii
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
- University of Barcelona, Department of Materials Science and Physical Chemistry, Martí i Franquès 10, Barcelona, 08028, Spain
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Cesar Rodriguez-Emmenegger
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
17
|
Ángeles-Robles G, Ortiz-Dosal LC, Aranda-Espinoza H, Olivares-Illana V, Arauz-Lara JL, Aranda-Espinoza S. Actin protein inside DMPC GUVs and its mechanical response to AC electric fields. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183883. [PMID: 35181295 DOI: 10.1016/j.bbamem.2022.183883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/10/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Cells are dynamic systems with complex mechanical properties, regulated by the presence of different species of proteins capable to assemble (and disassemble) into filamentous forms as required by different cells functions. Giant unilamellar vesicles (GUVs) of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) are systems frequently used as a simplified model of cells because they offer the possibility of assaying separately different stimuli, which is no possible in living cells. Here we present a study of the effect of acting protein on mechanical properties of GUVs, when the protein is inside the vesicles in either monomeric G-actin or filamentous F-actin. For this, rabbit skeletal muscle G-actin is introduced inside GUVs by the electroformation method. Protein polymerization inside the GUVs is promoted by adding to the solution MgCl2 and the ion carrier A23187 to allow the transport of Mg+2 ions into the GUVs. To determine how the presence of actin changes the mechanical properties of GUVs, the vesicles are deformed by the application of an AC electric field in both cases with G-actin and with polymerized F-actin. The changes in shape of the vesicles are characterized by optical microscopy and from them the bending stiffness of the membrane are determined. It is found that G-actin has no appreciable effect on the bending stiffness of DMPC GUVs, but the polymerized actin makes the vesicles more rigid and therefore more resistant to deformations. This result is supported by evidence that actin filaments tend to accumulate near the membrane.
Collapse
Affiliation(s)
- Gabriela Ángeles-Robles
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S. L. P., Mexico
| | - Luis Carlos Ortiz-Dosal
- Unidad Académica de Ingeniería I, Universidad Autónoma de Zacatecas, Zacatecas, Zac., Mexico
| | - H Aranda-Espinoza
- Fischell Department of Bioengineering, University of Maryland, College Park, United States of America
| | - Vanesa Olivares-Illana
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S. L. P., Mexico
| | - José Luis Arauz-Lara
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S. L. P., Mexico
| | - S Aranda-Espinoza
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S. L. P., Mexico.
| |
Collapse
|
18
|
Contini C, Hu W, Elani Y. Manufacturing polymeric porous capsules. Chem Commun (Camb) 2022; 58:4409-4419. [PMID: 35298578 PMCID: PMC8981216 DOI: 10.1039/d1cc06565c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/09/2022] [Indexed: 12/19/2022]
Abstract
Polymeric porous capsules represent hugely promising systems that allow a size-selective through-shell material exchange with their surroundings. They have vast potential in applications ranging from drug delivery and chemical microreactors to artificial cell science and synthetic biology. Due to their porous core-shell structure, polymeric porous capsules possess an enhanced permeability that enables the exchange of small molecules while retaining larger compounds and macromolecules. The cross-capsule transfer of material is regulated by their pore size cut-off, which depends on the molecular composition and adopted fabrication method. This review outlines the main strategies for manufacturing polymeric porous capsules and provides some practical guidance for designing polymeric capsules with controlled pore size.
Collapse
Affiliation(s)
- Claudia Contini
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Wenyi Hu
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| |
Collapse
|
19
|
Laurence MJ, Carpenter TS, Laurence TA, Coleman MA, Shelby M, Liu C. Biophysical Characterization of Membrane Proteins Embedded in Nanodiscs Using Fluorescence Correlation Spectroscopy. MEMBRANES 2022; 12:membranes12040392. [PMID: 35448362 PMCID: PMC9028781 DOI: 10.3390/membranes12040392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
Proteins embedded in biological membranes perform essential functions in all organisms, serving as receptors, transporters, channels, cell adhesion molecules, and other supporting cellular roles. These membrane proteins comprise ~30% of all human proteins and are the targets of ~60% of FDA-approved drugs, yet their extensive characterization using established biochemical and biophysical methods has continued to be elusive due to challenges associated with the purification of these insoluble proteins. In response, the development of nanodisc techniques, such as nanolipoprotein particles (NLPs) and styrene maleic acid polymers (SMALPs), allowed membrane proteins to be expressed and isolated in solution as part of lipid bilayer rafts with defined, consistent nanometer sizes and compositions, thus enabling solution-based measurements. Fluorescence correlation spectroscopy (FCS) is a relatively simple yet powerful optical microscopy-based technique that yields quantitative biophysical information, such as diffusion kinetics and concentrations, about individual or interacting species in solution. Here, we first summarize current nanodisc techniques and FCS fundamentals. We then provide a focused review of studies that employed FCS in combination with nanodisc technology to investigate a handful of membrane proteins, including bacteriorhodopsin, bacterial division protein ZipA, bacterial membrane insertases SecYEG and YidC, Yersinia pestis type III secretion protein YopB, yeast cell wall stress sensor Wsc1, epidermal growth factor receptor (EGFR), ABC transporters, and several G protein-coupled receptors (GPCRs).
Collapse
Affiliation(s)
- Matthew J. Laurence
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
| | - Timothy S. Carpenter
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
| | - Ted A. Laurence
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA;
| | - Matthew A. Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95616, USA
| | - Megan Shelby
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
- Correspondence: (M.S.); (C.L.)
| | - Chao Liu
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (M.J.L.); (T.S.C.); (M.A.C.)
- Correspondence: (M.S.); (C.L.)
| |
Collapse
|
20
|
Lv M, Li H, Cao H, Wang T, He C, Liang Y, Mao X, Wang Z. Assembling Alkaline-Responsive Chitosan@Giant Liposomes through an Ultrasound-Integrated Microfluidic Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3223-3233. [PMID: 35245076 DOI: 10.1021/acs.langmuir.1c03304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper presents the fabrication of an alkaline-responsive drug carrier, chitosan@giant liposome (CS-GL), by using an ultrasound-integrated microfluidic approach. On the microfluidic chip, water/oil/water droplets are first prepared and then move through an area of ultrasonic radiation to improve the regional saturation of organic solvent and accelerate its removal. At the same time, phospholipid molecules in the oil phase of the droplets are efficiently self-assembled into giant liposomes (GLs). Subsequently, microfluidic channels combined with an up-down separated structure can help in the fabrication and purification of the GLs. Due to the electrostatic interaction between the amino group of chitosan and the phosphate group of phospholipids, the GLs and chitosan are assembled into CS-GLs. The change of ζ potential after this operation indicates that chitosan is coated on the surface of GLs. The formed CS-GLs are monodispersed with a 54.1 ± 0.7 μm diameter and high drug encapsulation efficiency (∼96%), and the structural integrity can be kept without leakage of contents for more than a week in an acid medium (pH = 1.2). When this structure is placed in an aqueous solution of pH = 7.8, chitosan precipitates gradually and detaches from the GL, causing its rupture. The drug encapsulated in a single CS-GL can be rapidly released within 4 s, and 99.6% of the CS-GL carriers can complete the release within 10 min.
Collapse
Affiliation(s)
- Mengting Lv
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Huanan Li
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Hua Cao
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Teng Wang
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Chengdian He
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yi Liang
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xiang Mao
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Zhenyu Wang
- The State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
21
|
Dam T, Chouliara M, Junghans V, Jönsson P. Supported Lipid Bilayers and the Study of Two-Dimensional Binding Kinetics. Front Mol Biosci 2022; 9:833123. [PMID: 35252352 PMCID: PMC8896763 DOI: 10.3389/fmolb.2022.833123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Binding between protein molecules on contacting cells is essential in initiating and regulating several key biological processes. In contrast to interactions between molecules in solution, these events are restricted to the two-dimensional (2D) plane of the meeting cell surfaces. However, converting between the more commonly available binding kinetics measured in solution and the so-called 2D binding kinetics has proven a complicated task since for the latter several factors other than the protein-protein interaction per se have an impact. A few important examples of these are: protein density, membrane fluctuations, force on the bond and the use of auxiliary binding molecules. The development of model membranes, and in particular supported lipid bilayers (SLBs), has made it possible to simplify the studied contact to analyze these effects and to measure 2D binding kinetics of individual protein-protein interactions. We will in this review give an overview of, and discuss, how different SLB systems have been used for this and compare different methods to measure binding kinetics in cell-SLB contacts. Typically, the SLB is functionalized with fluorescently labelled ligands whose interaction with the corresponding receptor on a binding cell can be detected. This interaction can either be studied 1) by an accumulation of ligands in the cell-SLB contact, whose magnitude depends on the density of the proteins and binding affinity of the interaction, or 2) by tracking single ligands in the SLB, which upon interaction with a receptor result in a change of motion of the diffusing ligand. The advantages and disadvantages of other methods measuring 2D binding kinetics will also be discussed and compared to the fluorescence-based methods. Although binding kinetic measurements in cell-SLB contacts have provided novel information on how ligands interact with receptors in vivo the number of these measurements is still limited. This is influenced by the complexity of the system as well as the required experimental time. Moreover, the outcome can vary significantly between studies, highlighting the necessity for continued development of methods to study 2D binding kinetics with higher precision and ease.
Collapse
Affiliation(s)
- Tommy Dam
- Department of Chemistry, Lund University, Lund, Sweden
| | | | - Victoria Junghans
- Nuffield Department of Medicine, CAMS Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Peter Jönsson
- Department of Chemistry, Lund University, Lund, Sweden
- *Correspondence: Peter Jönsson,
| |
Collapse
|
22
|
Single-molecule manipulation of macromolecules on GUV or SUV membranes using optical tweezers. Biophys J 2021; 120:5454-5465. [PMID: 34813728 DOI: 10.1016/j.bpj.2021.11.2884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/16/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
Despite their wide applications in soluble macromolecules, optical tweezers have rarely been used to characterize the dynamics of membrane proteins, mainly due to the lack of model membranes compatible with optical trapping. Here, we examined optical trapping and mechanical properties of two potential model membranes, giant and small unilamellar vesicles (GUVs and SUVs, respectively) for studies of membrane protein dynamics. We found that optical tweezers can stably trap GUVs containing iodixanol with controlled membrane tension. The trapped GUVs with high membrane tension can serve as a force sensor to accurately detect reversible folding of a DNA hairpin or membrane binding of synaptotagmin-1 C2AB domain attached to the GUV. We also observed that SUVs are rigid enough to resist large pulling forces and are suitable for detecting protein conformational changes induced by force. Our methodologies may facilitate single-molecule manipulation studies of membrane proteins using optical tweezers.
Collapse
|
23
|
Ghosh S, Gutti S, Chaudhuri D. Pattern formation, localized and running pulsation on active spherical membranes. SOFT MATTER 2021; 17:10614-10627. [PMID: 34605510 DOI: 10.1039/d1sm00937k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Active force generation by an actin-myosin cortex coupled to a cell membrane allows the cell to deform, respond to the environment, and mediate cell motility and division. Several membrane-bound activator proteins move along it and couple to the membrane curvature. Besides, they can act as nucleating sites for the growth of filamentous actin. Actin polymerization can generate a local outward push on the membrane. Inward pull from the contractile actomyosin cortex can propagate along the membrane via actin filaments. We use coupled evolution of fields to perform linear stability analysis and numerical calculations. As activity overcomes the stabilizing factors such as surface tension and bending rigidity, the spherical membrane shows instability towards pattern formation, localized pulsation, and running pulsation between poles. We present our results in terms of phase diagrams and evolutions of the coupled fields. They have relevance for living cells and can be verified in experiments on artificial cell-like constructs.
Collapse
Affiliation(s)
- Subhadip Ghosh
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia.
| | - Sashideep Gutti
- BITS Pilani Hyderabad Campus, Hyderabad 500078, Telengana, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
24
|
Sharma B, Moghimianavval H, Hwang SW, Liu AP. Synthetic Cell as a Platform for Understanding Membrane-Membrane Interactions. MEMBRANES 2021; 11:912. [PMID: 34940413 PMCID: PMC8706075 DOI: 10.3390/membranes11120912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/27/2023]
Abstract
In the pursuit of understanding life, model membranes made of phospholipids were envisaged decades ago as a platform for the bottom-up study of biological processes. Micron-sized lipid vesicles have gained great acceptance as their bilayer membrane resembles the natural cell membrane. Important biological events involving membranes, such as membrane protein insertion, membrane fusion, and intercellular communication, will be highlighted in this review with recent research updates. We will first review different lipid bilayer platforms used for incorporation of integral membrane proteins and challenges associated with their functional reconstitution. We next discuss different methods for reconstitution of membrane fusion and compare their fusion efficiency. Lastly, we will highlight the importance and challenges of intercellular communication between synthetic cells and synthetic cells-to-natural cells. We will summarize the review by highlighting the challenges and opportunities associated with studying membrane-membrane interactions and possible future research directions.
Collapse
Affiliation(s)
- Bineet Sharma
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
| | - Hossein Moghimianavval
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
| | - Sung-Won Hwang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
25
|
Tivony R, Fletcher M, Al Nahas K, Keyser UF. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models. ACS Synth Biol 2021; 10:3105-3116. [PMID: 34761904 PMCID: PMC8609574 DOI: 10.1021/acssynbio.1c00371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Cell-sized vesicles
like giant unilamellar vesicles (GUVs) are
established as a promising biomimetic model for studying cellular
phenomena in isolation. However, the presence of residual components
and byproducts, generated during vesicles preparation and manipulation,
severely limits the utility of GUVs in applications like synthetic
cells. Therefore, with the rapidly growing field of synthetic biology,
there is an emergent demand for techniques that can continuously purify
cell-like vesicles from diverse residues, while GUVs are being simultaneously
synthesized and manipulated. We have developed a microfluidic platform
capable of purifying GUVs through stream bifurcation, where a vesicles
suspension is partitioned into three fractions: purified GUVs, residual
components, and a washing solution. Using our purification approach,
we show that giant vesicles can be separated from various residues—which
range in size and chemical composition—with a very high efficiency
(e = 0.99), based on size and deformability of the
filtered objects. In addition, by incorporating the purification module
with a microfluidic-based GUV-formation method, octanol-assisted liposome
assembly (OLA), we established an integrated production-purification
microfluidic unit that sequentially produces, manipulates, and purifies
GUVs. We demonstrate the applicability of the integrated device to
synthetic biology through sequentially fusing SUVs with freshly prepared
GUVs and separating the fused GUVs from extraneous SUVs and oil droplets
at the same time.
Collapse
Affiliation(s)
- Ran Tivony
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Marcus Fletcher
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Kareem Al Nahas
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Ulrich F. Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|
26
|
Schwille P, Frohn BP. Hidden protein functions and what they may teach us. Trends Cell Biol 2021; 32:102-109. [PMID: 34654605 DOI: 10.1016/j.tcb.2021.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 11/15/2022]
Abstract
Bottom-up synthetic biology is a new research field with the goal of constructing living systems from a minimal number of functional components. The key challenges are, first, to identify a necessary canon of functions for a system to be considered alive, and second, to reconstitute these respective modules in vitro. When using proteins as obvious candidates, it appears that not only some of their described physiological functions fail to unfold outside the cellular context, but that completely new and unexpected functions are being observed. We put these insights in the context of other recent findings on protein functionality and discuss their potential role in the emergence and evolution of life.
Collapse
Affiliation(s)
- Petra Schwille
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| | - Béla P Frohn
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
27
|
Smuggle tau through a secret(ory) pathway. Biochem J 2021; 478:2921-2925. [PMID: 34319403 DOI: 10.1042/bcj20210324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022]
Abstract
Secretion of misfolded tau, a microtubule-binding protein enriched in nerve cells, is linked to the progression of tau pathology. However, the molecular mechanisms underlying tau secretion are poorly understood. Recent work by Lee et al. [Biochemical J. (2021) 478: 1471-1484] demonstrated that the transmembrane domains of syntaxin6 and syntaxin8 could be exploited for tau release, setting a stage for testing a novel hypothesis that has profound implications in tauopathies (e.g. Alzheimer's disease, FTDP-17, and CBD/PSP) and other related neurodegenerative diseases. The present commentary highlights the importance and limitations of the study, and discusses opportunities and directions for future investigations.
Collapse
|
28
|
Litschel T, Kelley CF, Holz D, Adeli Koudehi M, Vogel SK, Burbaum L, Mizuno N, Vavylonis D, Schwille P. Reconstitution of contractile actomyosin rings in vesicles. Nat Commun 2021; 12:2254. [PMID: 33859190 PMCID: PMC8050101 DOI: 10.1038/s41467-021-22422-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
One of the grand challenges of bottom-up synthetic biology is the development of minimal machineries for cell division. The mechanical transformation of large-scale compartments, such as Giant Unilamellar Vesicles (GUVs), requires the geometry-specific coordination of active elements, several orders of magnitude larger than the molecular scale. Of all cytoskeletal structures, large-scale actomyosin rings appear to be the most promising cellular elements to accomplish this task. Here, we have adopted advanced encapsulation methods to study bundled actin filaments in GUVs and compare our results with theoretical modeling. By changing few key parameters, actin polymerization can be differentiated to resemble various types of networks in living cells. Importantly, we find membrane binding to be crucial for the robust condensation into a single actin ring in spherical vesicles, as predicted by theoretical considerations. Upon force generation by ATP-driven myosin motors, these ring-like actin structures contract and locally constrict the vesicle, forming furrow-like deformations. On the other hand, cortex-like actin networks are shown to induce and stabilize deformations from spherical shapes. Cytoskeletal networks support and direct cell shape and guide intercellular transport, but relatively little is understood about the self-organization of cytoskeletal components on the scale of an entire cell. Here, authors use an in vitro system and observe the assembly of different types of actin networks and the condensation of membrane-bound actin into single rings.
Collapse
Affiliation(s)
- Thomas Litschel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Charlotte F Kelley
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Danielle Holz
- Department of Physics, Lehigh University, Bethlehem, PA, USA
| | | | - Sven K Vogel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Laura Burbaum
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Naoko Mizuno
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|