1
|
Koolivand Z, Bahreini F, Rayzan E, Rezaei N. Inducing apoptosis in acute myeloid leukemia; mechanisms and limitations. Heliyon 2025; 11:e41355. [PMID: 39811307 PMCID: PMC11730532 DOI: 10.1016/j.heliyon.2024.e41355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Acute myeloid leukemia is the expansion of leukemic stem cells which might originate from a stem cell or a progenitor which has acquired self-renewal capacity. An aggregation of leukemic blasts in bone marrow, peripheral blood, and extramedullary tissue will result in acute myeloid leukemia. The main difficulty in treating acute myeloid leukemia is multidrug resistance, leading to treatment failure. This unfortunate phenomenon is practically elevated because of apoptosis inhibition in tumor cells. Two general apoptotic pathways are the Bcl-2 regulated pathway (the intrinsic pathway) and the death receptor pathway. Deficiencies in each of these apoptotic pathways can cause the usual resistance mechanism in this disease. This article reviews and highlights different antiapoptotic pathways, currently-used treatments, and new findings in this field, which may lead to the development of treatment methods for acute myeloid leukemia.
Collapse
Affiliation(s)
- Zahra Koolivand
- Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran Medical Sciences University (IAUTMU), Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farbod Bahreini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Elham Rayzan
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Satomaa T, Pynnönen H, Aitio O, Hiltunen JO, Pitkänen V, Lähteenmäki T, Kotiranta T, Heiskanen A, Hänninen AL, Niemelä R, Helin J, Kuusanmäki H, Vänttinen I, Rathod R, Nieminen AI, Yatkin E, Heckman CA, Kontro M, Saarinen J. Targeting CD33+ Acute Myeloid Leukemia with GLK-33, a Lintuzumab-Auristatin Conjugate with a Wide Therapeutic Window. Mol Cancer Ther 2024; 23:1073-1083. [PMID: 38561023 DOI: 10.1158/1535-7163.mct-23-0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
CD33 (Siglec-3) is a cell surface receptor expressed in approximately 90% of acute myeloid leukemia (AML) blasts, making it an attractive target for therapy of AML. Although previous CD33-targeting antibody-drug conjugates (ADC) like gemtuzumab ozogamicin (GO, Mylotarg) have shown efficacy in AML treatment, they have suffered from toxicity and narrow therapeutic window. This study aimed to develop a novelADCwith improved tolerability and a wider therapeutic window. GLK-33 consists of the anti-CD33 antibody lintuzumab and eight mavg-MMAU auristatin linkerpayloads per antibody. The experimental methods included testing in cell cultures, patient-derived samples, mouse xenograft models, and rat toxicology studies. GLK-33 exhibited remarkable efficacy in reducing cell viability within CD33-positive leukemia cell lines and primary AML samples. Notably, GLK-33 demonstrated antitumor activity at single dose as low as 300 mg/kg in mice, while maintaining tolerability at single dose of 20 to 30 mg/kg in rats. In contrast with both GO and lintuzumab vedotin, GLK-33 exhibited a wide therapeutic window and activity against multidrug-resistant cells. The development of GLK-33 addresses the limitations of previous ADCs, offering a wider therapeutic window, improved tolerability, and activity against drug-resistant leukemia cells. These findings encourage further exploration of GLK-33 in AML through clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Heikki Kuusanmäki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
- Finnish Cancer Institute, Helsinki, Finland
| | - Ida Vänttinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
| | - Ramji Rathod
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
| | - Anni I Nieminen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
| | - Emrah Yatkin
- Central Animal Laboratory, University of Turku, Finland
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
| | - Mika Kontro
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
- Finnish Cancer Institute, Helsinki, Finland
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | | |
Collapse
|
3
|
Fan R, Satilmis H, Vandewalle N, Verheye E, De Bruyne E, Menu E, De Beule N, De Becker A, Ates G, Massie A, Kerre T, Törngren M, Eriksson H, Vanderkerken K, Breckpot K, Maes K, De Veirman K. Targeting S100A9 protein affects mTOR-ER stress signaling and increases venetoclax sensitivity in Acute Myeloid Leukemia. Blood Cancer J 2023; 13:188. [PMID: 38110349 PMCID: PMC10728073 DOI: 10.1038/s41408-023-00962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is a heterogeneous disease with limited treatment options and a high demand for novel targeted therapies. Since myeloid-related protein S100A9 is abundantly expressed in AML, we aimed to unravel the therapeutic impact and underlying mechanisms of targeting both intracellular and extracellular S100A9 protein in AML cell lines and primary patient samples. S100A9 silencing in AML cell lines resulted in increased apoptosis and reduced AML cell viability and proliferation. These therapeutic effects were associated with a decrease in mTOR and endoplasmic reticulum stress signaling. Comparable results on AML cell proliferation and mTOR signaling could be observed using the clinically available S100A9 inhibitor tasquinimod. Interestingly, while siRNA-mediated targeting of S100A9 affected both extracellular acidification and mitochondrial metabolism, tasquinimod only affected the mitochondrial function of AML cells. Finally, we found that S100A9-targeting approaches could significantly increase venetoclax sensitivity in AML cells, which was associated with a downregulation of BCL-2 and c-MYC in the combination group compared to single agent therapy. This study identifies S100A9 as a novel molecular target to treat AML and supports the therapeutic evaluation of tasquinimod in venetoclax-based regimens for AML patients.
Collapse
Affiliation(s)
- Rong Fan
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
| | - Hatice Satilmis
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
| | - Niels Vandewalle
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
| | - Emma Verheye
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Pleinlaan 2, 1050, Brussels, Belgium
| | - Elke De Bruyne
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
| | - Eline Menu
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
| | - Nathan De Beule
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium. Laarbeeklaan 101, 1090, Brussel, Belgium
| | - Ann De Becker
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium. Laarbeeklaan 101, 1090, Brussel, Belgium
| | - Gamze Ates
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussel, Belgium
| | - Ann Massie
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussel, Belgium
| | - Tessa Kerre
- Department of Hematology, Ghent University Hospital, Faculty of Medicine and Health Sciences, Ghent University, 9000, Ghent, Belgium
| | - Marie Törngren
- Active Biotech AB, Lund, Sweden. Scheelevägen 22, 22363, Lund, Sweden
| | - Helena Eriksson
- Active Biotech AB, Lund, Sweden. Scheelevägen 22, 22363, Lund, Sweden
| | - Karin Vanderkerken
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussel, Belgium
| | - Ken Maes
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, 1090, Brussel, Belgium
| | - Kim De Veirman
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium.
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium.
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium. Laarbeeklaan 101, 1090, Brussel, Belgium.
| |
Collapse
|
4
|
Kent A, Schwartz M, McMahon C, Amaya M, Smith CA, Tobin J, Marciano K, Rezac R, Bosma G, Pollyea DA, Gutman JA. Venetoclax is safe and tolerable as post-transplant maintenance therapy for AML patients at high risk for relapse. Bone Marrow Transplant 2023; 58:849-854. [PMID: 37185614 DOI: 10.1038/s41409-023-01987-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Relapse is the most common cause of mortality in acute myeloid leukemia (AML) patients after allogeneic stem cell transplant (SCT). Post-SCT maintenance strategies that prevent relapse are desirable but must be well tolerated and convenient to administer. We hypothesized single agent venetoclax (ven) may be an effective maintenance therapy among high relapse risk patients. Between February 2019 and December 2021, we administered post-SCT ven maintenance to 49 AML patients at high-risk for relapse as a prospectively defined off-label practice at our institution. Ven was planned to be administered until 1-year post-SCT. While temporary interruptions were common (67.3% of all patients), of those with >1 year follow up, 22/25 (88%) completed the full year of planned therapy. Cytopenias (40.8%) and gastrointestinal adverse events (34.7%) were the most common toxicities. At 1-year post-SCT, overall survival (OS) and relapse-free survival (RFS) were 70% and 67% respectively. Our experience demonstrates single agent ven is a safe, tolerable, and feasible maintenance therapy that may improve RFS and OS in high relapse risk post-SCT patients.
Collapse
Affiliation(s)
- Andrew Kent
- The University of Colorado School of Medicine, Division of Hematology, Aurora, CO, USA
| | - Marc Schwartz
- The University of Colorado School of Medicine, Division of Hematology, Aurora, CO, USA
| | - Christine McMahon
- The University of Colorado School of Medicine, Division of Hematology, Aurora, CO, USA
| | - Maria Amaya
- The University of Colorado School of Medicine, Division of Hematology, Aurora, CO, USA
| | - Clayton A Smith
- The University of Colorado School of Medicine, Division of Hematology, Aurora, CO, USA
| | - Jennifer Tobin
- The University of Colorado School of Medicine, Division of Hematology, Aurora, CO, USA
| | - Kelsey Marciano
- The University of Colorado School of Medicine, Division of Hematology, Aurora, CO, USA
| | - Rebecca Rezac
- The University of Colorado School of Medicine, Division of Hematology, Aurora, CO, USA
| | - Grace Bosma
- The University of Colorado School of Medicine, Division of Hematology, Aurora, CO, USA
| | - Daniel A Pollyea
- The University of Colorado School of Medicine, Division of Hematology, Aurora, CO, USA
| | - Jonathan A Gutman
- The University of Colorado School of Medicine, Division of Hematology, Aurora, CO, USA.
| |
Collapse
|
5
|
Abbas HA, Ayoub E, Sun H, Kanagal-Shamanna R, Short NJ, Issa G, Yilmaz M, Pierce S, Rivera D, Cham B, Wing S, Li Z, Hammond D, Jabbour E, Borthakur G, Garcia-Manero G, Andreeff M, Daver N, Kadia T, Konopleva M, DiNardo C, Ravandi F. Clinical and molecular profiling of AML patients with chromosome 7 or 7q deletions in the context of TP53 alterations and venetoclax treatment. Leuk Lymphoma 2022; 63:3105-3116. [PMID: 36089905 PMCID: PMC9772202 DOI: 10.1080/10428194.2022.2118533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 01/26/2023]
Abstract
Deletions in chromosome 7 (del(7)) or its long arm (del(7q)) constitute the most common adverse cytogenetic events in acute myeloid leukemia (AML). We retrospectively analyzed 243 treatment-naive patients with AML and del(7) (168/243; 69%) or del(7q) (75/243; 31%) who did not receive any myeloid-directed therapy prior to AML diagnosis. This is the largest comprehensive clinical and molecular analysis of AML patients with del(7) and del(7q). Our results show that relapse-free survival was significantly longer for AML patients with del(7q) compared to del(7), but the overall survival and remission duration were similar. TP53 mutations and del5/5q were the most frequent co-occurring mutations and cytogenetic abnormalities, and conferred worse outcomes in del(7) and del(7q) patients. Venetoclax-based treatments were associated with worse outcomes in TP53 mutated AML patients with del(7) or del(7q), as well as del(7) with TP53 wildtype status, requiring further investigation.
Collapse
Affiliation(s)
- Hussein A. Abbas
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematology and Medical Oncology, The University of Texas Health Science Center, Houston, TX, USA
| | - Edward Ayoub
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hanxiao Sun
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biostatistics, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, Division of Pathology-Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas J Short
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ghayas Issa
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Musa Yilmaz
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sherry Pierce
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Rivera
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brent Cham
- Department of Internal Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Shane Wing
- Department of Internal Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Ziyi Li
- Department of Biostatistics, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Danielle Hammond
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan Kadia
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney DiNardo
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|