1
|
Kreplin LZ, Arumugam S. The physical basis of analog-to-digital signal processing in the EGFR system-Delving into the role of the endoplasmic reticulum. Bioessays 2024; 46:e2400026. [PMID: 38991978 DOI: 10.1002/bies.202400026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Receptor tyrosine kinases exhibit ligand-induced activity and uptake into cells via endocytosis. In the case of epidermal growth factor (EGF) receptor (EGFR), the resulting endosomes are trafficked to the perinuclear region, where dephosphorylation of receptors occurs, which are subsequently directed to degradation. Traveling endosomes bearing phosphorylated EGFRs are subjected to the activity of cytoplasmic phosphatases as well as interactions with the endoplasmic reticulum (ER). The peri-nuclear region harbors ER-embedded phosphatases, a component of the EGFR-bearing endosome-ER contact site. The ER is also emerging as a central player in spatiotemporal control of endosomal motility, positioning, tubulation, and fission. Past studies strongly suggest that the physical interaction between the ER and endosomes forms a reaction "unit" for EGFR dephosphorylation. Independently, endosomes have been implicated to enable quantization of EGFR signals by modulation of the phosphorylation levels. Here, we review the distinct mechanisms by which endosomes form the logistical means for signal quantization and speculate on the role of the ER.
Collapse
Affiliation(s)
- Laura Zoe Kreplin
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, Victoria, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, Victoria, Australia
| | - Senthil Arumugam
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, Victoria, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Latypova AA, Yaremenko AV, Pechnikova NA, Minin AS, Zubarev IV. Magnetogenetics as a promising tool for controlling cellular signaling pathways. J Nanobiotechnology 2024; 22:327. [PMID: 38858689 PMCID: PMC11163773 DOI: 10.1186/s12951-024-02616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Magnetogenetics emerges as a transformative approach for modulating cellular signaling pathways through the strategic application of magnetic fields and nanoparticles. This technique leverages the unique properties of magnetic nanoparticles (MNPs) to induce mechanical or thermal stimuli within cells, facilitating the activation of mechano- and thermosensitive proteins without the need for traditional ligand-receptor interactions. Unlike traditional modalities that often require invasive interventions and lack precision in targeting specific cellular functions, magnetogenetics offers a non-invasive alternative with the capacity for deep tissue penetration and the potential for targeting a broad spectrum of cellular processes. This review underscores magnetogenetics' broad applicability, from steering stem cell differentiation to manipulating neuronal activity and immune responses, highlighting its potential in regenerative medicine, neuroscience, and cancer therapy. Furthermore, the review explores the challenges and future directions of magnetogenetics, including the development of genetically programmed magnetic nanoparticles and the integration of magnetic field-sensitive cells for in vivo applications. Magnetogenetics stands at the forefront of cellular manipulation technologies, offering novel insights into cellular signaling and opening new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Anastasiia A Latypova
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia
- Moscow Center for Advanced Studies, Moscow, 123592, Russia
| | - Alexey V Yaremenko
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Nadezhda A Pechnikova
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Saint Petersburg Pasteur Institute, Saint Petersburg, 197101, Russia
| | - Artem S Minin
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russia
| | - Ilya V Zubarev
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia.
| |
Collapse
|
3
|
VanSlyke JK, Boswell BA, Musil LS. Tonic ErbB signaling underlies TGFβ-induced activation of ERK and is required for lens cell epithelial to myofibroblast transition. Mol Biol Cell 2024; 35:ar35. [PMID: 38170570 PMCID: PMC10916858 DOI: 10.1091/mbc.e23-07-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Fibrosis is a major, but incompletely understood, component of many diseases. The most common vision-disrupting complication of cataract surgery involves differentiation of residual lens cells into myofibroblasts. In serum-free primary cultures of lens epithelial cells (DCDMLs), inhibitors of either ERK or of ErbB signaling prevent TGFβ from upregulating both early (fibronectin) and late (αSMA) markers of myofibroblast differentiation. TGFβ stimulates ERK in DCDMLs within 1.5 h. Kinase inhibitors of ErbBs, but not of several other growth factor receptors in lens cells, reduce phospho ERK to below basal levels in the absence or presence of TGFβ. This effect is attributable to constitutive ErbB activity playing a major role in regulating the basal levels pERK. Additional studies support a model in which TGFβ-generated reactive oxygen species serve to indirectly amplify ERK signaling downstream of tonically active ErbBs to mediate myofibroblast differentiation. ERK activity is in turn essential for expression of ErbB1 and ErbB2, major inducers of ERK signaling. By mechanistically linking TGFβ, ErbB, and ERK signaling to myofibroblast differentiation, our data elucidate a new role for ErbBs in fibrosis and reveal a novel mode by which TGFβ directs lens cell fate.
Collapse
Affiliation(s)
- Judy K. VanSlyke
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| | - Bruce A. Boswell
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| | - Linda S. Musil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
4
|
Wan T, Zhang FS, Qin MY, Jiang HR, Zhang M, Qu Y, Wang YL, Zhang PX. Growth factors: Bioactive macromolecular drugs for peripheral nerve injury treatment - Molecular mechanisms and delivery platforms. Biomed Pharmacother 2024; 170:116024. [PMID: 38113623 DOI: 10.1016/j.biopha.2023.116024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Bioactive macromolecular drugs known as Growth Factors (GFs), approved by the Food and Drug Administration (FDA), have found successful application in clinical practice. They hold significant promise for addressing peripheral nerve injuries (PNIs). Peripheral nerve guidance conduits (NGCs) loaded with GFs, in the context of tissue engineering, can ensure sustained and efficient release of these bioactive compounds. This, in turn, maintains a stable, long-term, and effective GF concentration essential for treating damaged peripheral nerves. Peripheral nerve regeneration is a complex process that entails the secretion of various GFs. Following PNI, GFs play a pivotal role in promoting nerve cell growth and survival, axon and myelin sheath regeneration, cell differentiation, and angiogenesis. They also regulate the regenerative microenvironment, stimulate plasticity changes post-nerve injury, and, consequently, expedite nerve structure and function repair. Both exogenous and endogenous GFs, including NGF, BDNF, NT-3, GDNF, IGF-1, bFGF, and VEGF, have been successfully loaded onto NGCs using techniques like physical adsorption, blend doping, chemical covalent binding, and engineered transfection. These approaches have effectively promoted the repair of peripheral nerves. Numerous studies have demonstrated similar tissue functional therapeutic outcomes compared to autologous nerve transplantation. This evidence underscores the substantial clinical application potential of GFs in the domain of peripheral nerve repair. In this article, we provide an overview of GFs in the context of peripheral nerve regeneration and drug delivery systems utilizing NGCs. Looking ahead, commercial materials for peripheral nerve repair hold the potential to facilitate the effective regeneration of damaged peripheral nerves and maintain the functionality of distant target organs through the sustained release of GFs.
Collapse
Affiliation(s)
- Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Feng-Shi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Ming-Yu Qin
- Suzhou Medical College, Soochow University, Suzhou 215026, China
| | - Hao-Ran Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Yang Qu
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Lin Wang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China.
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China; Peking University People's Hospital Qingdao Hospital, Qingdao 266000, China.
| |
Collapse
|
5
|
Madsen RR, Toker A. PI3K signaling through a biochemical systems lens. J Biol Chem 2023; 299:105224. [PMID: 37673340 PMCID: PMC10570132 DOI: 10.1016/j.jbc.2023.105224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Following 3 decades of extensive research into PI3K signaling, it is now evidently clear that the underlying network does not equate to a simple ON/OFF switch. This is best illustrated by the multifaceted nature of the many diseases associated with aberrant PI3K signaling, including common cancers, metabolic disease, and rare developmental disorders. However, we are still far from a complete understanding of the fundamental control principles that govern the numerous phenotypic outputs that are elicited by activation of this well-characterized biochemical signaling network, downstream of an equally diverse set of extrinsic inputs. At its core, this is a question on the role of PI3K signaling in cellular information processing and decision making. Here, we review the determinants of accurate encoding and decoding of growth factor signals and discuss outstanding questions in the PI3K signal relay network. We emphasize the importance of quantitative biochemistry, in close integration with advances in single-cell time-resolved signaling measurements and mathematical modeling.
Collapse
Affiliation(s)
- Ralitsa R Madsen
- MRC-Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom.
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Mo G, Qin D, Wu Y, Luo Z, Mo K, Deng B. Dual-potential electrochemiluminescence cytosensor based on a metal-organic framework and ABEI-PEI-Au@AgNPs for the simultaneous determination of phosphatidylserine and epidermal growth factor receptors on an apoptotic cell surface. Mikrochim Acta 2023; 190:347. [PMID: 37563470 DOI: 10.1007/s00604-023-05934-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/26/2023] [Indexed: 08/12/2023]
Abstract
A new electrochemiluminescence (ECL) cytosensor is proposed for the simultaneous determination of phosphatidylserine (PS) and epidermal growth factor receptor (EGFR) based on the ECL signals of metal-organic framework-5 (MOF-5) loaded CdS quantum dots and N-(aminobutyl)-N-(ethylisoluminol)-polyethylenimine capped Au and Ag nanoparticles. Apoptosis promotes the exposure of PS and reduces the expression of EGFR in cell membranes. Two spatially resolved areas on dual-disk glassy carbon electrodes were designed to eliminate the interference from different ECL probes. Using HepG2 cells treated with resveratrol to induce apoptosis, the cytosensor exhibited high sensitivity, simplicity, and high reproducibility, demonstrating its potential in drug screening and rapid apoptotic cell detection. The strategy reported provides a promising platform for the highly sensitive cytosensing and convenient screening of clinically relevant anticancer drugs.
Collapse
Affiliation(s)
- Guichun Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, School of Chemistry and Food Science, Yulin Normal University, Yulin, 537000, China
| | - Dongmiao Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yusheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zhi Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Keting Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
7
|
York HM, Joshi K, Wright CS, Kreplin LZ, Rodgers SJ, Moorthi UK, Gandhi H, Patil A, Mitchell CA, Iyer-Biswas S, Arumugam S. Deterministic early endosomal maturations emerge from a stochastic trigger-and-convert mechanism. Nat Commun 2023; 14:4652. [PMID: 37532690 PMCID: PMC10397212 DOI: 10.1038/s41467-023-40428-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Endosomal maturation is critical for robust and timely cargo transport to specific cellular compartments. The most prominent model of early endosomal maturation involves a phosphoinositide-driven gain or loss of specific proteins on individual endosomes, emphasising an autonomous and stochastic description. However, limitations in fast, volumetric imaging long hindered direct whole cell-level measurements of absolute numbers of maturation events. Here, we use lattice light-sheet imaging and bespoke automated analysis to track individual very early (APPL1-positive) and early (EEA1-positive) endosomes over the entire population, demonstrating that direct inter-endosomal contact drives maturation between these populations. Using fluorescence lifetime, we show that this endosomal interaction is underpinned by asymmetric binding of EEA1 to very early and early endosomes through its N- and C-termini, respectively. In combination with agent-based simulation which supports a 'trigger-and-convert' model, our findings indicate that APPL1- to EEA1-positive maturation is driven not by autonomous events but by heterotypic EEA1-mediated interactions, providing a mechanism for temporal and population-level control of maturation.
Collapse
Affiliation(s)
- Harrison M York
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia.
| | - Kunaal Joshi
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Charles S Wright
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Laura Z Kreplin
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - Samuel J Rodgers
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - Ullhas K Moorthi
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - Hetvi Gandhi
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - Abhishek Patil
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - Christina A Mitchell
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - Srividya Iyer-Biswas
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| | - Senthil Arumugam
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia.
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton/Melbourne, VIC, 3800, Australia.
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC, 3800, Australia.
- Single Molecule Science, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
8
|
Myers PJ, Lee SH, Lazzara MJ. An integrated mechanistic and data-driven computational model predicts cell responses to high- and low-affinity EGFR ligands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.543329. [PMID: 37425852 PMCID: PMC10327094 DOI: 10.1101/2023.06.25.543329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The biophysical properties of ligand binding heavily influence the ability of receptors to specify cell fates. Understanding the rules by which ligand binding kinetics impact cell phenotype is challenging, however, because of the coupled information transfers that occur from receptors to downstream signaling effectors and from effectors to phenotypes. Here, we address that issue by developing an integrated mechanistic and data-driven computational modeling platform to predict cell responses to different ligands for the epidermal growth factor receptor (EGFR). Experimental data for model training and validation were generated using MCF7 human breast cancer cells treated with the high- and low-affinity ligands epidermal growth factor (EGF) and epiregulin (EREG), respectively. The integrated model captures the unintuitive, concentration-dependent abilities of EGF and EREG to drive signals and phenotypes differently, even at similar levels of receptor occupancy. For example, the model correctly predicts the dominance of EREG over EGF in driving a cell differentiation phenotype through AKT signaling at intermediate and saturating ligand concentrations and the ability of EGF and EREG to drive a broadly concentration-sensitive migration phenotype through cooperative ERK and AKT signaling. Parameter sensitivity analysis identifies EGFR endocytosis, which is differentially regulated by EGF and EREG, as one of the most important determinants of the alternative phenotypes driven by different ligands. The integrated model provides a new platform to predict how phenotypes are controlled by the earliest biophysical rate processes in signal transduction and may eventually be leveraged to understand receptor signaling system performance depends on cell context. One-sentence summary Integrated kinetic and data-driven EGFR signaling model identifies the specific signaling mechanisms that dictate cell responses to EGFR activation by different ligands.
Collapse
|
9
|
Sun J, Song S, Singaram I, Sharma A, Wang W, Hu Y, Lo WT, Koch PA, Zhao JJ, Haucke V, Gao R, Cho W. PI(3,5)P 2 Controls the Signaling Activity of Class I PI3K. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525550. [PMID: 36747849 PMCID: PMC9900776 DOI: 10.1101/2023.01.25.525550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
3'-Phosphoinositides are ubiquitous cellular lipids that play pivotal regulatory roles in health and disease. Generation of 3'-phosphoinositides are driven by three families of phosphoinositide 3-kinases (PI3K) but the mechanisms underlying their regulation and cross-talk are not fully understood. Among 3'-phosphoinositides, phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) remains the least understood species in terms of its spatiotemporal dynamics and physiological function due to the lack of specific probes. By means of spatiotemporally resolved in situ quantitative imaging of PI(3,5)P 2 using a newly developed ratiometric PI(3,5)P 2 sensor we demonstrate that a special pool of PI(3,5)P 2 is generated on lysosomes and late endosomes in response to growth factor stimulation. This PI(3,5)P 2 pool, the formation of which is mediated by Class II PI3KC2β and PIKFyve, plays a crucial role in terminating the activity of growth factor-stimulated Class I PI3K, one of the most frequently mutated proteins in cancer, via specific interaction with its regulatory p85 subunit. Cancer-causing mutations of Class I PI3K inhibit the p85-PI(3,5)P 2 interaction and thereby induce sustained activation of Class I PI3K. Our results unravel a hitherto unknown tight regulatory interplay between Class I and II PI3Ks mediated by PI(3,5)P 2 , which may be important for controlling the strength of PI3K-mediated growth factor signaling. These results also suggest a new therapeutic possibility of treating cancer patients with p85 mutations.
Collapse
|
10
|
Bard JB. Modelling speciation: Problems and implications. In Silico Biol 2023; 15:23-42. [PMID: 36502315 PMCID: PMC10741375 DOI: 10.3233/isb-220253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Darwin's and Wallace's 1859 explanation that novel speciation resulted from natural variants that had been subjected to selection was refined over the next 150 years as genetic inheritance and the importance of mutation-induced change were discovered, the quantitative theory of evolutionary population genetics was produced, the speed of genetic change in small populations became apparent and the ramifications of the DNA revolution became clear. This paper first discusses the modern view of speciation in its historical context. It then uses systems-biology approaches to consider the many complex processes that underpin the production of a new species; these extend in scale from genes to populations with the processes of variation, selection and speciation being affected by factors that range from mutation to climate change. Here, events at a particular scale level (e.g. protein network activity) are activated by the output of the level immediately below (i.e. gene expression) and generate a new output that activates the layer above (e.g. embryological development), with this change often being modulated by feedback from higher and lower levels. The analysis shows that activity at each level in the evolution of a new species is marked by stochastic activity, with mutation of course being the key step for variation. The paper examines events at each of these scale levels and particularly considers how the pathway by which mutation leads to phenotypic variants and the wide range of factors that drive selection can be investigated computationally. It concludes that, such is the complexity of speciation, most steps in the process are currently difficult to model and that predictions about future speciation will, apart from a few special cases, be hard to make. The corollary is that opportunities for novel variants to form are maximised.
Collapse
|
11
|
Thiemicke A, Neuert G. Rate thresholds in cell signaling have functional and phenotypic consequences in non-linear time-dependent environments. Front Cell Dev Biol 2023; 11:1124874. [PMID: 37025183 PMCID: PMC10072286 DOI: 10.3389/fcell.2023.1124874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
All cells employ signal transduction pathways to respond to physiologically relevant extracellular cytokines, stressors, nutrient levels, hormones, morphogens, and other stimuli that vary in concentration and rate in healthy and diseased states. A central unsolved fundamental question in cell signaling is whether and how cells sense and integrate information conveyed by changes in the rate of extracellular stimuli concentrations, in addition to the absolute difference in concentration. We propose that different environmental changes over time influence cell behavior in addition to different signaling molecules or different genetic backgrounds. However, most current biomedical research focuses on acute environmental changes and does not consider how cells respond to environments that change slowly over time. As an example of such environmental change, we review cell sensitivity to environmental rate changes, including the novel mechanism of rate threshold. A rate threshold is defined as a threshold in the rate of change in the environment in which a rate value below the threshold does not activate signaling and a rate value above the threshold leads to signal activation. We reviewed p38/Hog1 osmotic stress signaling in yeast, chemotaxis and stress response in bacteria, cyclic adenosine monophosphate signaling in Amoebae, growth factors signaling in mammalian cells, morphogen dynamics during development, temporal dynamics of glucose and insulin signaling, and spatio-temproral stressors in the kidney. These reviewed examples from the literature indicate that rate thresholds are widespread and an underappreciated fundamental property of cell signaling. Finally, by studying cells in non-linear environments, we outline future directions to understand cell physiology better in normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Alexander Thiemicke
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN, United States
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, United States
| | - Gregor Neuert
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN, United States
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, United States
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, United States
- *Correspondence: Gregor Neuert,
| |
Collapse
|
12
|
Pang K, Shi ZD, Wei LY, Dong Y, Ma YY, Wang W, Wang GY, Cao MY, Dong JJ, Chen YA, Zhang P, Hao L, Xu H, Pan D, Chen ZS, Han CH. Research progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/PD-L1 blockade. Drug Resist Updat 2023; 66:100907. [PMID: 36527888 DOI: 10.1016/j.drup.2022.100907] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
The binding of programmed death-1 (PD-1) on the surface of T cells and PD-1 ligand 1 (PD-L1) on tumor cells can prevent the immune-killing effect of T cells on tumor cells and promote the immune escape of tumor cells. Therefore, immune checkpoint blockade targeting PD-1/PD-L1 is a reliable tumor therapy with remarkable efficacy. However, the main challenges of this therapy are low response rate and acquired resistance, so that the outcomes of this therapy are usually unsatisfactory. This review begins with the description of biological structure of the PD-1/PD-L1 immune checkpoint and its role in a variety of cells. Subsequently, the therapeutic effects of immune checkpoint blockers (PD-1 / PD-L1 inhibitors) in various tumors were introduced and analyzed, and the reasons affecting the function of PD-1/PD-L1 were systematically analyzed. Then, we focused on analyzing, sorting out and introducing the possible underlying mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade including abnormal expression of PD-1/PD-L1 and some factors, immune-related pathways, tumor immune microenvironment, and T cell dysfunction and others. Finally, promising therapeutic strategies to sensitize the resistant patients with PD-1/PD-L1 blockade treatment were described. This review is aimed at providing guidance for the treatment of various tumors, and highlighting the drug resistance mechanisms to offer directions for future tumor treatment and improvement of patient prognosis.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China; School of Life Sciences, Jiangsu Normal University, Jiangsu, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China; School of Life Sciences, Jiangsu Normal University, Jiangsu, China; Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Liu-Ya Wei
- School of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, China
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Yu-Yang Ma
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Wei Wang
- Department of Medical College, Southeast University, 87 DingjiaQiao, Nanjing, China
| | - Guang-Yue Wang
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Ming-Yang Cao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Jia-Jun Dong
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yu-Ang Chen
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Peng Zhang
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China
| | - Hao Xu
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Deng Pan
- Graduate School, Bengbu Medical College, Building 1, Administration Building, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, Jiangsu, China; School of Life Sciences, Jiangsu Normal University, Jiangsu, China; Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| |
Collapse
|
13
|
Immune Checkpoint and Other Receptor-Ligand Pairs Modulating Macrophages in Cancer: Present and Prospects. Cancers (Basel) 2022; 14:cancers14235963. [PMID: 36497444 PMCID: PMC9736575 DOI: 10.3390/cancers14235963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapy, especially immune checkpoint blocking, has become the primary anti-tumor treatment in recent years. However, the current immune checkpoint inhibitor (ICI) therapy is far from satisfactory. Macrophages are a key component of anti-tumor immunity as they are a common immune cell subset in tumor tissues and act as a link between innate and adaptive immunity. Hence, understanding the regulation of macrophage activation in tumor tissues by receptor-ligand interaction will provide promising macrophage-targeting strategies to complement current adaptive immunity-based immunotherapy and traditional anti-tumor treatment. This review aims to offer a systematic summary of the current advances in number, structure, expression, biological function, and interplay of immune checkpoint and other receptor-ligand between macrophages and tumor cells.
Collapse
|
14
|
Dessauges C, Mikelson J, Dobrzyński M, Jacques M, Frismantiene A, Gagliardi PA, Khammash M, Pertz O. Optogenetic actuator - ERK biosensor circuits identify MAPK network nodes that shape ERK dynamics. Mol Syst Biol 2022; 18:e10670. [PMID: 35694820 PMCID: PMC9189677 DOI: 10.15252/msb.202110670] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
Combining single-cell measurements of ERK activity dynamics with perturbations provides insights into the MAPK network topology. We built circuits consisting of an optogenetic actuator to activate MAPK signaling and an ERK biosensor to measure single-cell ERK dynamics. This allowed us to conduct RNAi screens to investigate the role of 50 MAPK proteins in ERK dynamics. We found that the MAPK network is robust against most node perturbations. We observed that the ERK-RAF and the ERK-RSK2-SOS negative feedback operate simultaneously to regulate ERK dynamics. Bypassing the RSK2-mediated feedback, either by direct optogenetic activation of RAS, or by RSK2 perturbation, sensitized ERK dynamics to further perturbations. Similarly, targeting this feedback in a human ErbB2-dependent oncogenic signaling model increased the efficiency of a MEK inhibitor. The RSK2-mediated feedback is thus important for the ability of the MAPK network to produce consistent ERK outputs, and its perturbation can enhance the efficiency of MAPK inhibitors.
Collapse
Affiliation(s)
| | - Jan Mikelson
- Department of Biosystems Science and EngineeringETH ZurichBaselSwitzerland
| | | | | | | | | | - Mustafa Khammash
- Department of Biosystems Science and EngineeringETH ZurichBaselSwitzerland
| | - Olivier Pertz
- Institute of Cell BiologyUniversity of BernBernSwitzerland
| |
Collapse
|
15
|
Rajagopal V, Arumugam S, Hunter PJ, Khadangi A, Chung J, Pan M. The Cell Physiome: What Do We Need in a Computational Physiology Framework for Predicting Single-Cell Biology? Annu Rev Biomed Data Sci 2022; 5:341-366. [PMID: 35576556 DOI: 10.1146/annurev-biodatasci-072018-021246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modern biology and biomedicine are undergoing a big data explosion, needing advanced computational algorithms to extract mechanistic insights on the physiological state of living cells. We present the motivation for the Cell Physiome project: a framework and approach for creating, sharing, and using biophysics-based computational models of single-cell physiology. Using examples in calcium signaling, bioenergetics, and endosomal trafficking, we highlight the need for spatially detailed, biophysics-based computational models to uncover new mechanisms underlying cell biology. We review progress and challenges to date toward creating cell physiome models. We then introduce bond graphs as an efficient way to create cell physiome models that integrate chemical, mechanical, electromagnetic, and thermal processes while maintaining mass and energy balance. Bond graphs enhance modularization and reusability of computational models of cells at scale. We conclude with a look forward at steps that will help fully realize this exciting new field of mechanistic biomedical data science. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia;
| | - Senthil Arumugam
- Cellular Physiology Lab, Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences; European Molecular Biological Laboratory (EMBL) Australia; and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton/Melbourne, Victoria, Australia
| | - Peter J Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Afshin Khadangi
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia;
| | - Joshua Chung
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia;
| | - Michael Pan
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Kapoor SS, Zaiss DMW. Emerging Role of EGFR Mutations in Creating an Immune Suppressive Tumour Microenvironment. Biomedicines 2021; 10:biomedicines10010052. [PMID: 35052732 PMCID: PMC8772868 DOI: 10.3390/biomedicines10010052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Several types of tumours overexpress the Epidermal Growth Factor Receptor (EGFR) in either wild type or mutated form. These tumours are often highly aggressive and difficult to treat. The underlying mechanisms for this phenomenon have remained largely unresolved, but recent publications suggest two independent mechanisms that may contribute. According to one line of research, tumours that overexpress the EGFR grow autonomously and become “addicted” to growth factor signalling. Inhibition of this signal using EGFR inhibitors can, therefore, induce cell death in tumour cells and lead to tumour shrinkage. The other line of research, as highlighted by recent findings, suggests that the overexpression, specifically of mutant forms of the EGFR, may create an immune-suppressive and lymphocyte depleted microenvironment within tumours. Such a lymphocyte depleted microenvironment may explain the resistance of EGFR overexpressing cancers to tumour therapies, particularly to check-point inhibitor treatments. In this article, we discuss the recent data which support an immune modulatory effect of EGFR signalling and compare these published studies with the most recent data from The Cancer Genome Atlas (TCGA), in this way, dissecting possible underlying mechanisms. We thereby focus our study on how EGFR overexpression may lead to the local activation of TGFβ, and hence to an immune suppressive environment. Consequently, we define a novel concept of how the mitogenic and immune modulatory effects of EGFR overexpression may contribute to tumour resistance to immunotherapy, and how EGFR specific inhibitors could be used best to enhance the efficacy of tumour therapy.
Collapse
Affiliation(s)
- Simran S. Kapoor
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK;
| | - Dietmar M. W. Zaiss
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK;
- Faculty of Medicine, Institute of Immune Medicine, University of Regensburg, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
17
|
Huebinger J, Grecco H, Masip ME, Christmann J, Fuhr GR, Bastiaens PIH. Ultrarapid cryo-arrest of living cells on a microscope enables multiscale imaging of out-of-equilibrium molecular patterns. SCIENCE ADVANCES 2021; 7:eabk0882. [PMID: 34890224 PMCID: PMC8664253 DOI: 10.1126/sciadv.abk0882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Imaging molecular patterns in cells by fluorescence micro- or nanoscopy has the potential to relate collective molecular behavior to cellular function. However, spatial and spectroscopic resolution is fundamentally limited by motional blur caused by finite photon fluxes and photobleaching. At physiological temperatures, photochemical reactivity does not only limit imaging at multiple scales but is also toxic to biochemical reactions that maintain cellular organization. Here, we present cryoprotectant-free ultrarapid cryo-arrest directly on a multimodal fluorescence microscope that preserves the out-of-equilibrium molecular organization of living cells. This allows the imaging of dynamic processes before cryo-arrest in combination with precise molecular pattern determination at multiple scales within the same cells under cryo-arrest. We both experimentally and theoretically show that ultrarapid cryo-arrest overcomes the fundamental resolution barrier imposed by motional blur and photochemical reactivity, enabling observation of native molecular distributions and reaction patterns that are not resolvable at physiological temperatures.
Collapse
Affiliation(s)
- Jan Huebinger
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
| | - Hernan Grecco
- Department of Physics, FCEN, University of Buenos Aires and IFIBA, CONICET, Buenos Aires, Argentina
| | - Martín E. Masip
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
| | - Jens Christmann
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
| | - Günter R. Fuhr
- Fraunhofer Institute for Biomedical Engineering, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Philippe I. H. Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
18
|
Brüggemann Y, Karajannis LS, Stanoev A, Stallaert W, Bastiaens PIH. Growth factor-dependent ErbB vesicular dynamics couple receptor signaling to spatially and functionally distinct Erk pools. Sci Signal 2021; 14:14/683/eabd9943. [PMID: 34006609 DOI: 10.1126/scisignal.abd9943] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growth factor-dependent vesicular dynamics allow cells to regulate the spatial distribution of growth factor receptors and thereby their coupling to downstream signaling effectors that guide cellular responses. We found that the ErbB ligands epidermal growth factor (EGF) and heregulin (HRG) generated distinct spatiotemporal patterns of cognate receptor activities to activate distinct subcellular pools of the extracellular signal-regulated kinase (Erk). Sustained plasma membrane activity of the receptor tyrosine kinases ErbB2/ErbB3 signaled to Erk complexed with the scaffold protein KSR to promote promigratory EphA2 phosphorylation and cellular motility upon HRG stimulation. In contrast, receptor-saturating EGF stimuli caused proliferation-inducing transient activation of cytoplasmic Erk due to the rapid internalization of EGF receptors (EGFR or ErbB1) toward endosomes. Paradoxically, promigratory signaling mediated by Erk complexed to KSR was sustained at low EGF concentrations by vesicular recycling that maintained steady-state amounts of active, phosphorylated EGFR at the plasma membrane. Thus, the effect of ligand identity and concentration on determining ErbB vesicular dynamics constitutes a mechanism by which cells can transduce growth factor composition through spatially distinct Erk pools to enable functionally diverse cellular responses.
Collapse
Affiliation(s)
- Yannick Brüggemann
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Lisa S Karajannis
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
| | - Angel Stanoev
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
| | - Wayne Stallaert
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany. .,Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
19
|
Ferro E, Bosia C, Campa CC. RAB11-Mediated Trafficking and Human Cancers: An Updated Review. BIOLOGY 2021; 10:biology10010026. [PMID: 33406725 PMCID: PMC7823896 DOI: 10.3390/biology10010026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
Simple Summary The small GTPase RAB11 is a master regulator of both vesicular trafficking and membrane dynamic defining the surface proteome of cellular membranes. As a consequence, the alteration of RAB11 activity induces changes in both the sensory and the transduction apparatuses of cancer cells leading to tumor progression and invasion. Here, we show that this strictly depends on RAB11′s ability to control the sorting of signaling receptors from endosomes. Therefore, RAB11 is a potential therapeutic target over which to develop future therapies aimed at dampening the acquisition of aggressive traits by cancer cells. Abstract Many disorders block and subvert basic cellular processes in order to boost their progression. One protein family that is prone to be altered in human cancers is the small GTPase RAB11 family, the master regulator of vesicular trafficking. RAB11 isoforms function as membrane organizers connecting the transport of cargoes towards the plasma membrane with the assembly of autophagic precursors and the generation of cellular protrusions. These processes dramatically impact normal cell physiology and their alteration significantly affects the survival, progression and metastatization as well as the accumulation of toxic materials of cancer cells. In this review, we discuss biological mechanisms ensuring cargo recognition and sorting through a RAB11-dependent pathway, a prerequisite to understand the effect of RAB11 alterations in human cancers.
Collapse
Affiliation(s)
- Elsi Ferro
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Turin, Italy; (E.F.); (C.B.)
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo, Italy
| | - Carla Bosia
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Turin, Italy; (E.F.); (C.B.)
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo, Italy
| | - Carlo C. Campa
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, 10129 Turin, Italy; (E.F.); (C.B.)
- Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov. le 142, km 3.95, 10060 Candiolo, Italy
- Correspondence:
| |
Collapse
|