1
|
Bucci P, Martínez-Navarrete M, Marti-Quijal FJ, José Guillot A, Barba FJ, Ferrer E, Cantero D, Muñoz R, Melero A. In vivo reduction of skin inflammation using ferulic acid-loaded lipid vesicles derived from Brewer's spent grain. Int J Pharm 2024; 666:124764. [PMID: 39332462 DOI: 10.1016/j.ijpharm.2024.124764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Breweŕs spent grain (BSG) is the main by-product of the brewing industry, and due to its rapid decomposition, it generates serious environmental problems such as malodors and greenhouse gases emissions. On the other hand, this lignocellulosic compound contains a large number of antioxidants, being ferulic acid (FA) the most abundant. FA is a powerful antioxidant molecule that has demonstrated significant protective effects on key components of the skin, including keratinocytes, fibroblasts, collagen, and elastin. FA inhibits melanogenesis, promotes angiogenesis and accelerates the wound healing although its use is limited by its rapid oxidation. In this study, different hydrolysis treatments (chemical, enzymatic and hydrothermal) were performed on BSG to obtain FA. Herein FA-loaded ultradeformable liposomes (ULs) were designed to improve their stability and in vivo performance. These nanosystems allow FA permeability through human skin, as proven by an ex vivo skin permeability assay using Franz diffusion cells. The toxicity and anti-inflammatory activity of the formulation has been investigated. The free form and 100 nm FA_ULs were evaluated. Cell viability was dose-dependent and provided optimal results for the treatment of inflammatory skin conditions in an in vivo Oxazolone-induced Delayed Type Hypersensitivity model using Swiss CD1 mice, demonstrated by the reduction of the inflammatory cytokines expression, ear thickness, bioluminescence and histological evaluation. These results pave the way for FA-based treatments of skin and inflammatory conditions.
Collapse
Affiliation(s)
- Paula Bucci
- Institute of Sustainable Processes, Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.
| | - Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Francisco J Marti-Quijal
- Research group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avenida Vicent Andrés Estellés s/n, Burjassot, València 46100, Spain
| | - Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Francisco J Barba
- Research group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avenida Vicent Andrés Estellés s/n, Burjassot, València 46100, Spain
| | - Emilia Ferrer
- Research group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avenida Vicent Andrés Estellés s/n, Burjassot, València 46100, Spain
| | - Danilo Cantero
- The Institute of Bioeconomy. Calle Dr Mergelina S/N, Department of Chemical Engineering and Environmental Technology, University of Valladolid, Valladolid 47011, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
2
|
Dräger H, Mobley J, Kamali P, Dorrani M, Lynn B, DeHaan L, Schendel RR. Lignin, extractives and structural carbohydrate characteristics of Thinopyrum intermedium biomass reveal additional valorization opportunities for dual-crop utilization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9451-9461. [PMID: 39045781 DOI: 10.1002/jsfa.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Thinopyrum intermedium (Host) Barkworth & D.R. Dewey, or intermediate wheat grass (IWG), is being developed as the first widely-available perennial grain candidate. However, because the crop is still in development, grain yields are lower than those of traditional cereals. Utilization of its non-grain biomass (e.g. for biofuel production and as a source of fine chemicals) would increase the economic value of its cultivation. The present study provides a structural characterization of the lignin and cell wall carbohydrates in IWG biomass and qualitative profiling of biomass extractives and compares them to those of annual wheat (Triticum aestivum) biomass grown in the same location and growing season. RESULTS The monosaccharide composition and ester-linked phenolic acid contents of vegetative biomass material from annual wheat and IWG were similar. IWG vegetative biomass is rich in feruloylated arabinoxylans (AX) with a very low substitution rate, whereas the AX from IWG bran have a slightly higher substitution rate. The structure of IWG lignin was investigated using both the quantitative derivatization followed by reductive cleavage method and 2D-NMR analysis, revealing an H:G:S lignin that incorporates tricin and is acylated with coumaric acid and smaller amounts of ferulates. IWG and wheat extractives contained fatty acids, various free phenolic compounds (tricin, monolignols and phenolic acids), phenolic conjugates and phytosterols. CONCLUSION The present study provides firm support for the further exploration of T. intermedium biomass as a carbohydrate feedstock (e.g, abundant in lightly substituted AX and cellulose polymers) for biofuel production and source of high-value fine chemicals, such as tricin. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hannah Dräger
- Department of Animal and Food Sciences, University of Kentucky, Lexington, USA
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Justin Mobley
- Department of Chemistry, University of Kentucky, Lexington, USA
| | - Poorya Kamali
- Department of Chemistry, University of Kentucky, Lexington, USA
| | | | - Bert Lynn
- Department of Chemistry, University of Kentucky, Lexington, USA
| | | | - Rachel R Schendel
- Department of Animal and Food Sciences, University of Kentucky, Lexington, USA
| |
Collapse
|
3
|
Ye Y, Guo W, Ngo HH, Wei W, Cheng D, Bui XT, Hoang NB, Zhang H. Biofuel production for circular bioeconomy: Present scenario and future scope. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:172863. [PMID: 38788387 DOI: 10.1016/j.scitotenv.2024.172863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
In recent years, biofuel production has attracted considerable attention, especially given the increasing worldwide demand for energy and emissions of greenhouse gases that threaten this planet. In this case, one possible solution is to convert biomass into green and sustainable biofuel, which can enhance the bioeconomy and contribute to sustainable economic development goals. Due to being in large quantities and containing high organic content, various biomass sources such as food waste, textile waste, microalgal waste, agricultural waste and sewage sludge have gained significant attention for biofuel production. Also, biofuel production technologies, including thermochemical processing, anaerobic digestion, fermentation and bioelectrochemical systems, have been extensively reported, which can achieve waste valorization through producing biofuels and re-utilizing wastes. Nevertheless, the commercial feasibility of biofuel production is still being determined, and it is unclear whether biofuel can compete equally with other existing fuels in the market. The concept of a circular economy in biofuel production can promote the environmentally friendly and sustainable valorization of biomass waste. This review comprehensively discusses the state-of-the-art production of biofuel from various biomass sources and the bioeconomy perspectives associated with it. Biofuel production is evaluated within the framework of the bioeconomy. Further perspectives on possible integration approaches to maximizing waste utilization for biofuel production are discussed, and what this could mean for the circular economy. More research related to pretreatment and machine learning of biofuel production should be conducted to optimize the biofuel production process, increase the biofuel yield and make the biofuel prices competitive.
Collapse
Affiliation(s)
- Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia.
| | - Wei Wei
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City 70000, Viet Nam
| | - Ngoc Bich Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Huiying Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Wang Y, Zhang Y, Cui Q, Feng Y, Xuan J. Composition of Lignocellulose Hydrolysate in Different Biorefinery Strategies: Nutrients and Inhibitors. Molecules 2024; 29:2275. [PMID: 38792135 PMCID: PMC11123716 DOI: 10.3390/molecules29102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The hydrolysis and biotransformation of lignocellulose, i.e., biorefinery, can provide human beings with biofuels, bio-based chemicals, and materials, and is an important technology to solve the fossil energy crisis and promote global sustainable development. Biorefinery involves steps such as pretreatment, saccharification, and fermentation, and researchers have developed a variety of biorefinery strategies to optimize the process and reduce process costs in recent years. Lignocellulosic hydrolysates are platforms that connect the saccharification process and downstream fermentation. The hydrolysate composition is closely related to biomass raw materials, the pretreatment process, and the choice of biorefining strategies, and provides not only nutrients but also possible inhibitors for downstream fermentation. In this review, we summarized the effects of each stage of lignocellulosic biorefinery on nutrients and possible inhibitors, analyzed the huge differences in nutrient retention and inhibitor generation among various biorefinery strategies, and emphasized that all steps in lignocellulose biorefinery need to be considered comprehensively to achieve maximum nutrient retention and optimal control of inhibitors at low cost, to provide a reference for the development of biomass energy and chemicals.
Collapse
Affiliation(s)
- Yilan Wang
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
| | - Yuedong Zhang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Xuan
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
5
|
Prestigiacomo C, Fan Y, Hornung U, Dahmen N, Scialdone O, Galia A. Hydrothermal liquefaction of sewage sludge: use of HCOOH and KOH to improve the slurry pumpability in a continuously operated plant. Heliyon 2024; 10:e26287. [PMID: 38390112 PMCID: PMC10881357 DOI: 10.1016/j.heliyon.2024.e26287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
We studied the hydrothermal liquefaction (HTL) of digested sewage sludge (DSS) as model of waste biomass in batch and continuous reactors. HCOOH and KOH were used to improve the slurry pumpability. HTL experiments were conducted at the same kinetic severity factor in a batch reactor of 25 mL of volume and in a continuously operated tubular reactor with 350 mL of volume. The observed outcomes suggested that it was not possible to achieve the pumpability of native DSS when a high concentrated stream of suspended solid particles has been fed to the HTL continuous plant. Using acidic or basic homogeneous additives, as potassium hydroxide or formic acid, it was possible to enhance the pumpability of a concentrated slurry of DSS in the continuous plant achieving yields of heavy oil (fraction of biocrude) similar to those obtained in the batch reactor and with higher H/C ratios. Hence, we found that HCOOH and KOH are promising additives for the practical implementation of a continuous HTL process.
Collapse
Affiliation(s)
- C Prestigiacomo
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Palermo, Italy
| | - Y Fan
- Institut für Katalyseforschung und -technologie, Karlsruher Institut für Technologie (IKFT), Karlsruhe, Germany
- Nanyang Institute of Technology, School of Civil Engineering, Nanyang, 473004, PR China
| | - U Hornung
- Institut für Katalyseforschung und -technologie, Karlsruher Institut für Technologie (IKFT), Karlsruhe, Germany
| | - N Dahmen
- Institut für Katalyseforschung und -technologie, Karlsruher Institut für Technologie (IKFT), Karlsruhe, Germany
| | - O Scialdone
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Palermo, Italy
| | - A Galia
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
6
|
Hoang AT, Nguyen XP, Duong XQ, Ağbulut Ü, Len C, Nguyen PQP, Kchaou M, Chen WH. Steam explosion as sustainable biomass pretreatment technique for biofuel production: Characteristics and challenges. BIORESOURCE TECHNOLOGY 2023; 385:129398. [PMID: 37385558 DOI: 10.1016/j.biortech.2023.129398] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
The biorefining process of lignocellulosic biomass has recently emerged as one of the most profitable biofuel production options. However, pretreatment is required to improve the recalcitrant lignocellulose's enzymatic conversion efficiency. Among biomass pretreatment methods, the steam explosion is an eco-friendly, inexpensive, and effective approach to pretreating biomass, significantly promoting biofuel production efficiency and yield. This review paper critically presents the steam explosion's reaction mechanism and technological characteristics for lignocellulosic biomass pretreatment. Indeed, the principles of steam explosion technology for lignocellulosic biomass pretreatment were scrutinized. Moreover, the impacts of process factors on pretreatment efficiency and sugar recovery for the following biofuel production were also discussed in detail. Finally, the limitations and prospects of steam explosion pretreatment were mentioned. Generally, steam explosion technology applications could bring great potential in pretreating biomass, although deeper studies are needed to deploy this method on industrial scales.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Xuan Quang Duong
- Institute of Mechanical Engineering, Vietnam Maritime University, Haiphong, Viet Nam
| | - Ümit Ağbulut
- Department of Mechanical Engineering, Faculty of Engineering, Duzce University, 81620, Düzce, Türkiye
| | - Christophe Len
- PSL Research University, Chimie ParisTech, CNRS, Paris Cedex 05, France
| | - Phuoc Quy Phong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Mohamed Kchaou
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 1, Bisha, Saudi Arabia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| |
Collapse
|
7
|
Hu Z, Li Q, Chen Y, Li T, Wang Y, Zhang R, Peng H, Wang H, Wang Y, Tang J, Nauman Aftab M, Peng L. Intermittent ultrasound retains cellulases unlock for enhanced cellulosic ethanol with high-porosity biochar for dye adsorption using desirable rice mutant straw. BIORESOURCE TECHNOLOGY 2023; 369:128437. [PMID: 36470495 DOI: 10.1016/j.biortech.2022.128437] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
In this study, optimal ultrasound pretreatment was performed with recalcitrance-reduced rice mutant straw to effectively extract lignin and hemicellulose for improved cellulose accessibility. Intermittent ultrasound-assistant enzymatic hydrolyses were followed to maintain more cellulases unlock and less cellulose surface block with lignin for raised hexose yield at 81 % (% cellulose) and bioethanol concentration at 9.9 g/L, which was higher than those of other mechanical pretreatments as previously conducted. Using all enzyme-undigestible lignocellulose residues, this work generated the biochar with the highest porosity (SBET at 2971 m2/g) among all biomass-based biochar obtained from previous studies. Furthermore, the biochar were respectively examined with high adsorption capacity for Congo red and methylene blue at 7946 mg/g and 861 mg/g. Therefore, this study has demonstrated a green-like process technology for high-yield bioethanol and high-porosity biochar with full biomass utilization by integrating optimal ultrasound pretreatment with intermittent ultrasound-assistant enzymatic hydrolyses of recalcitrance-reduced lignocellulose in crop straws.
Collapse
Affiliation(s)
- Zhen Hu
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Fermentation Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qian Li
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Chen
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianqi Li
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Youmei Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ran Zhang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Peng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hailang Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanting Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingfeng Tang
- Key Laboratory of Fermentation Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | | | - Liangcai Peng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Fermentation Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Singh A, Tsai ML, Chen CW, Rani Singhania R, Kumar Patel A, Tambat V, Dong CD. Role of hydrothermal pretreatment towards sustainable biorefinery. BIORESOURCE TECHNOLOGY 2023; 367:128271. [PMID: 36351534 DOI: 10.1016/j.biortech.2022.128271] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Recently, the world is experiencing a shift from petroleum refineries to biorefineries due to fossil fuel depletion and environmental concerns. To achieve sustainable development of biorefineries and other components of the biofuel production process, eco-friendly and cost-effective approaches are necessary. Therefore, lignocellulosic biomass (LCB) must be exploited in biorefineries for the generation of a broad spectrum of products. The complex structure of LCB prevents its direct saccharification by enzymatic means, so pretreatment is necessary. There are several pretreatment technologies for disrupting the lignocellulosic structure, but hydrothermal pretreatment is the leading pretreatment technology for recovering hemicellulose fraction with a low number of inhibitors and an increased amount of cellulose. The severity of hydrothermal pretreatment plays a principal role in affecting cellulose, hemicellulose, and lignin structure. A detailed account of microwave-assisted hydrothermal pretreatment technologies and the cost-effectiveness, eco-friendliness, and upcoming challenges of this technology for commercialization with the probable solution is presented.
Collapse
Affiliation(s)
- Anusuiya Singh
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Vaibhav Tambat
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
9
|
Calvo-Flores FG, Martin-Martinez FJ. Biorefineries: Achievements and challenges for a bio-based economy. Front Chem 2022; 10:973417. [PMID: 36438874 PMCID: PMC9686847 DOI: 10.3389/fchem.2022.973417] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/05/2022] [Indexed: 12/07/2023] Open
Abstract
Climate change, socioeconomical pressures, and new policy and legislation are driving a decarbonization process across industries, with a critical shift from a fossil-based economy toward a biomass-based one. This new paradigm implies not only a gradual phasing out of fossil fuels as a source of energy but also a move away from crude oil as a source of platform chemicals, polymers, drugs, solvents and many other critical materials, and consumer goods that are ubiquitous in our everyday life. If we are to achieve the United Nations' Sustainable Development Goals, crude oil must be substituted by renewable sources, and in this evolution, biorefineries arise as the critical alternative to traditional refineries for producing fuels, chemical building blocks, and materials out of non-edible biomass and biomass waste. State-of-the-art biorefineries already produce cost-competitive chemicals and materials, but other products remain challenging from the economic point of view, or their scaled-up production processes are still not sufficiently developed. In particular, lignin's depolymerization is a required milestone for the success of integrated biorefineries, and better catalysts and processes must be improved to prepare bio-based aromatic simple molecules. This review summarizes current challenges in biorefinery systems, while it suggests possible directions and goals for sustainable development in the years to come.
Collapse
Affiliation(s)
- Francisco G. Calvo-Flores
- Grupo de Modelizacion y Diseño Molecular, Departamento de Quimica Organica, Universidad de Granada, Granada, Spain
| | - Francisco J. Martin-Martinez
- Department of Chemistry, Swansea University, Swansea, United Kingdom
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
10
|
Demirel F, Germec M, Turhan I. Fermentable sugars production from wheat bran and rye bran: response surface model optimization of dilute sulfuric acid hydrolysis. ENVIRONMENTAL TECHNOLOGY 2022; 43:3779-3800. [PMID: 34029158 DOI: 10.1080/09593330.2021.1934563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
ABSTRACTOptimization of hydrolysis conditions of lignocellulosic biomass is crucial to able to produce value-added products by fermentation. This study not only determines optimal dilute sulfuric acid (H2SO4) hydrolysis conditions of wheat bran (WB) and rye bran (RB) by using one-factor-at-a-time method and subsequently Box-Behnken design but also elucidates chemical composition of hydrolysates yielded under optimal hydrolysis conditions. Based on the results, optimal hydrolysis conditions of WB and RB were 121 and 130°C of temperature, 1/8 and 1/8 w/v of solid to liquid ratio, 2.66 and 1.58% v/v of dilute H2SO4 ratio, and 30 and 16 min of implementation time, respectively. Hydrolysates obtained from WB and RB at these conditions contained 72.7 (0.58 g sugar/g biomass) and 89.4 g/L (0.72 g sugar/g biomass) of reducing sugar concentration, respectively. Hydrolysis rates of WB and RB were 87.79 and 91.33%, respectively. Main reducing sugar in RB hydrolysate was glucose with 31.17 g/L (0.25 g glucose/g biomass) while glucose and xylose were the main monosaccharides with 20.90 (0.17 g glucose/g biomass) and 18.69 g/L (0.15 g xylose/g biomass) in WB hydrolysate, respectively. With acidic hydrolysis of WB and RB, inhibitors such as phenolics, 5-Hydroxymethylfurfural, 2-Furaldehyde (not for RB), acetic acid, and formic acid (not for WB) formed. Catalytic efficiency values of H2SO4 for WB and RB were 15.2 and 24.4 g /g, respectively, indicating that inhibitor concentration in WB hydrolysate was higher than that of RB. These results indicated that WB and RB have a high potential in production of value-added products by fermentation.
Collapse
Affiliation(s)
- Fadime Demirel
- Department of Food Engineering, Akdeniz University, Antalya, Turkey
| | - Mustafa Germec
- Department of Food Engineering, Akdeniz University, Antalya, Turkey
| | - Irfan Turhan
- Department of Food Engineering, Akdeniz University, Antalya, Turkey
| |
Collapse
|
11
|
Recovery of Nutrients from Residual Streams Using Ion-Exchange Membranes: Current State, Bottlenecks, Fundamentals and Innovations. MEMBRANES 2022; 12:membranes12050497. [PMID: 35629823 PMCID: PMC9145069 DOI: 10.3390/membranes12050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 11/23/2022]
Abstract
The review describes the place of membrane methods in solving the problem of the recovery and re-use of biogenic elements (nutrients), primarily trivalent nitrogen NIII and pentavalent phosphorus PV, to provide the sustainable development of mankind. Methods for the recovery of NH4+ − NH3 and phosphates from natural sources and waste products of humans and animals, as well as industrial streams, are classified. Particular attention is paid to the possibilities of using membrane processes for the transition to a circular economy in the field of nutrients. The possibilities of different methods, already developed or under development, are evaluated, primarily those that use ion-exchange membranes. Electromembrane methods take a special place including capacitive deionization and electrodialysis applied for recovery, separation, concentration, and reagent-free pH shift of solutions. This review is distinguished by the fact that it summarizes not only the successes, but also the “bottlenecks” of ion-exchange membrane-based processes. Modern views on the mechanisms of NH4+ − NH3 and phosphate transport in ion-exchange membranes in the presence and in the absence of an electric field are discussed. The innovations to enhance the performance of electromembrane separation processes for phosphate and ammonium recovery are considered.
Collapse
|
12
|
Modelling and Environmental Profile Associated with the Valorization of Wheat Straw as Carbon Source in the Biotechnological Production of Manganese Peroxidase. SUSTAINABILITY 2022. [DOI: 10.3390/su14084842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Interest in the development of biorefineries and biotechnological processes based on renewable resources has multiplied in recent years. This driving force is the result of the availability of lignocellulosic biomass and the range of applications that arise from its use and valorization. The approach of second-generation sugars from lignocellulosic biomass opens up the possibility of producing biotechnological products such as enzymes as a feasible alternative in the framework of biorefineries. It is in this context that this manuscript is framed, focusing on the modelling of a large-scale fermentative biotechnological process to produce the enzyme manganese peroxidase (MnP) by the fungus Irpex lacteus using wheat straw as a carbon source. The production scheme is based on the sequence of four stages: pretreatment of wheat straw, seed fermenters, enzyme production and downstream processes. For its environmental assessment, the Life Cycle Assessment methodology, which allows the identification and quantification of environmental impacts associated with the process, was utilized. As the main finding, the stages of the process with the highest environmental burdens are those of pretreatment and fermentation, mainly due to energy requirements. With the aim of proposing improvement scenarios, sensitivity analyses were developed around the identified hotspots. An improvement in the efficiency of steam consumption leads to a reduction of environmental damage of up to 30%.
Collapse
|
13
|
Ortiz MS, Alvarado JG, Zambrano F, Marquez R. Surfactants produced from carbohydrate derivatives: A review of the biobased building blocks used in their synthesis. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Ronald Marquez
- TotalEnergies SE Pôle d'Etudes et de Recherche de Lacq Lacq France
- Laboratoire commun TotalEnergies/ESPCI Paris, Physico‐Chimie des Interfaces Complexes CHEMSTARTUP Lacq France
| |
Collapse
|
14
|
Recovery of Household Waste by Generation of Biogas as Energy and Compost as Bio-Fertilizer—A Review. Processes (Basel) 2021. [DOI: 10.3390/pr10010081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nowadays, organic waste and especially household waste represents a significant global issue due to population growth. The anaerobic digestion (AD) process is an essential operation contributing powerfully to the valorization of organic waste including food waste in terms of renewable energy generation (biogas) and the rich-nutrient residue that can be utilized as bio-fertilizer. Thus, this process (AD) allows for good recovery of household waste by generating biogas and compost. However, the AD operation has been affected by several key factors. In this paper, we aim to involve different critical parameters influencing the AD process, including temperature, pH, organic loading rate (OLR), carbon to nitrogen ratio (C/N), and total solid content (TS(%)). Further, the paper highlights the inhibition caused by the excessive accumulation of volatile fatty acids (VFAs) and ammoniac, which exhibits the positive effects of co-digestion, pretreatment methods, and mixing techniques for maintaining process stability and enhancing biogas production. We analyze some current mathematical models explored in the literature, such as distinct generic, non-structural, combined, and kinetic first-order models. Finally, the study discusses challenges, provides some possible solutions, and a future perspective that promises to be a highly useful resource for researchers working in the field of household waste recovery for the generation of biogas.
Collapse
|
15
|
Hoang AT, Nižetić S, Ong HC, Mofijur M, Ahmed SF, Ashok B, Bui VTV, Chau MQ. Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. CHEMOSPHERE 2021; 281:130878. [PMID: 34022602 DOI: 10.1016/j.chemosphere.2021.130878] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
The utilization of renewable lignocellulosic biomasses for bioenergy synthesis is believed to facilitate competitive commercialization and realize affordable clean energy sources in the future. Among the pathways for biomass pretreatment methods that enhance the efficiency of the whole biofuel production process, the combined microwave irradiation and physicochemical approach is found to provide many economic and environmental benefits. Several studies on microwave-based pretreatment technologies for biomass conversion have been conducted in recent years. Although some reviews are available, most did not comprehensively analyze microwave-physicochemical pretreatment techniques for biomass conversion. The study of these techniques is crucial for sustainable biofuel generation. Therefore, the biomass pretreatment process that combines the physicochemical method with microwave-assisted irradiation is reviewed in this paper. The effects of this pretreatment process on lignocellulosic structure and the ratio of achieved components were also discussed in detail. Pretreatment processes for biomass conversion were substantially affected by temperature, irradiation time, initial feedstock components, catalyst loading, and microwave power. Consequently, neoteric technologies utilizing high efficiency-based green and sustainable solutions should receive further focus. In addition, methodologies for quantifying and evaluating effects and relevant trade-offs should be develop to facilitate the take-off of the biofuel industry with clean and sustainable goals.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam.
| | - Sandro Nižetić
- University of Split, FESB, Rudjera Boskovica 32, 21000, Split, Croatia
| | - Hwai Chyuan Ong
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia.
| | - M Mofijur
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| | - S F Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - B Ashok
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India
| | - Van The Vinh Bui
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam
| | - Minh Quang Chau
- Faculty of Mechanical Technology, Industrial University of Ho Chi Minh City (IUH), Ho Chi Minh City, Viet Nam
| |
Collapse
|
16
|
Mushroom Ligninolytic Enzymes―Features and Application of Potential Enzymes for Conversion of Lignin into Bio-Based Chemicals and Materials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mushroom ligninolytic enzymes are attractive biocatalysts that can degrade lignin through oxido-reduction. Laccase, lignin peroxidase, manganese peroxidase, and versatile peroxidase are the main enzymes that depolymerize highly complex lignin structures containing aromatic or aliphatic moieties and oxidize the subunits of monolignol associated with oxidizing agents. Among these enzymes, mushroom laccases are secreted glycoproteins, belonging to a polyphenol oxidase family, which have a powerful oxidizing capability that catalyzes the modification of lignin using synthetic or natural mediators by radical mechanisms via lignin bond cleavage. The high redox potential laccase within mediators can catalyze the oxidation of a wide range of substrates and the polymerization of lignin derivatives for value-added chemicals and materials. The chemoenzymatic process using mushroom laccases has been applied effectively for lignin utilization and the degradation of recalcitrant chemicals as an eco-friendly technology. Laccase-mediated grafting has also been employed to modify lignin and other polymers to obtain novel functional groups able to conjugate small and macro-biomolecules. In this review, the biochemical features of mushroom ligninolytic enzymes and their potential applications in catalytic reactions involving lignin and its derivatives to obtain value-added chemicals and novel materials in lignin valorization are discussed.
Collapse
|
17
|
Sánchez-Muñoz S, Mier-Alba E, da Silva SS, Chandel AK. Commercial Washing Detergents-Assisted Alkaline Pretreatment for Lignocellulosic Sugars Production: A First Report. SUGAR TECH : AN INTERNATIONAL JOURNAL OF SUGAR CROPS & RELATED INDUSTRIES 2021; 23:1425-1431. [PMID: 33976476 PMCID: PMC8101606 DOI: 10.1007/s12355-021-00988-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Lignocellulosic sugars are the major renewable building blocks for green fuels and chemicals production. However, the implication of an effective pretreatment process is an inevitable process to access the biomass sugars. Alkaline pretreatment is a viable pretreatment process, causing a selective removal of lignin, with a minimum degradation of carbohydrates, increasing porosity and surface area, eventually enhancing enzymatic hydrolysis. Here, we have assessed commercial cloth washing detergents as catalytic agents, for the lignin removal from sugarcane bagasse. Three different detergents (Brilhiante® (B), Omo® (O), Sabonito Flash® (F)) were tested using three different concentrations (5, 10 and 15%) with and without pH adjustment. Pretreatment with O5pH (5% Omo®, pH 12) showed the maximum lignin removal (81.14%) and retainment of cellulose (44.15%), and hemicellulose (29.71%) in the pretreated bagasse. The maximum sugars (26.62 g/L) were released from the O10pH-pretreated sugarcane bagasse. This study shows the potential of washing detergents as the new potential catalytic agents for the pretreatment of biomass for efficient sugars recovery and retaining maximum lignin in the pretreated substrate.
Collapse
Affiliation(s)
- S. Sánchez-Muñoz
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena, SP 12.602.810. Brazil
| | - E. Mier-Alba
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena, SP 12.602.810. Brazil
| | - S. S. da Silva
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena, SP 12.602.810. Brazil
| | - A. K. Chandel
- Bioprocesses and Sustainable Products Laboratory, Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena, SP 12.602.810. Brazil
| |
Collapse
|
18
|
Exploring Environmental and Economic Costs and Benefits of a Forest-Based Circular Economy: A Literature Review. FORESTS 2021. [DOI: 10.3390/f12040436] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of a forest sector in the transition to a circular economy (CE) is critical. Therefore, the purpose of this study is to summarize the main findings of the most important published articles and to provide insights on the interdisciplinary space at the interface of concepts related to a forest-based CE. Moreover, it attempts to assess the challenges raised from adopting the CE in forest sector. Through a systematic literature review, 69 scientific publications were selected and evaluated by two sights: (i) a descriptive analysis and (ii) a cluster analysis of the keywords related to the forest-based CE. The study highlights the need for additional survey on optimizing the interaction between forest ecosystem services and circular economy. Further discussion is also needed about the relations of the key factors associated with the forest-based circular economy, as they emerged from the cluster analysis and the co-occurrence network map.
Collapse
|
19
|
Influence of the Heating Method on the Efficiency of Biomethane Production from Expired Food Products. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7010012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of the study was to determine the effect of heating with microwave electromagnetic radiation (EMR) on the efficiency of the methane fermentation (MF) of expired food products (EFP). The research was inspired by the positive effect of EMR on the production of biogas and methane from different organic substrates. The experiment was carried out on a laboratory scale in fully mixed, semi-continuous anaerobic reactors. The technological conditions were as follows: temperature, 35 ± 1 °C; organic load rate (OLR), 2.0 kgVS·m−3∙d−1; and hydraulic retention time (HRT), 40 days. The source of the EMR was a magnetron (electric power, 300 W). There was no statistically significant influence of the use of EMR on the achieved technological effects of MF. The efficiency of biogas production was 710 ± 35 dm3·kgVS−1 in the variant with EMR and 679 ± 26 dm3·kgVS−1 in the variant with convection heating (CH). The methane contents were 63.5 ± 2.4% (EMR) and 62.4 ± 4.0% (CH), and the cumulative methane production after 40 days was 271.2 and 288.6 dm3CH4, respectively.
Collapse
|
20
|
Wang F, Shi D, Han J, Zhang G, Jiang X, Yang M, Wu Z, Fu C, Li Z, Xian M, Zhang H. Comparative Study on Pretreatment Processes for Different Utilization Purposes of Switchgrass. ACS OMEGA 2020; 5:21999-22007. [PMID: 32923758 PMCID: PMC7482092 DOI: 10.1021/acsomega.0c01047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/11/2020] [Indexed: 05/19/2023]
Abstract
Switchgrass (Panicum virgatum, L., Poaceae) with the advantages of high cellulose yield, and high growth even under low input and poor soil quality, has been identified as a promising candidate for production of low-cost biofuels, papermaking, and nanocellulose. In this study, 12 chemical pretreatments on a laboratory scale were compared for different utilization purposes of switchgrass. It was found that the pretreated switchgrass with sodium hydroxide showed considerable potential for providing mixed sugars for fermentation with 11.10% of residual lignin, 53.85% of residual cellulose, and 22.06% of residual hemicellulose. The pretreatment with 2.00% (v/v) nitric acid was the best method to remove 78.37% of hemicellulose and 39.82% of lignin under a low temperature (125 °C, 30 min), which can be used in the production of nanocellulose. Besides, a completely randomized design analysis of switchgrass pretreatments provided the alternative ethanol organosolv delignification of switchgrass for the papermaking industry with a high residual cellulose of 58.56%. Finally, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR) were carried out to confirm the changes in functional groups, crystallinity, and thermal behavior of the three materials, respectively, from the optimal pretreatments.
Collapse
Affiliation(s)
- Fan Wang
- Key
Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and
Bioprocess Technology, Chinese Academy of
Sciences, 189 Songling Road, Qingdao, Shandong 266101, China
- Sino-Danish
College, University of Chinese Academy of
Sciences, 19(A) Yuquan
Road, Beijing 100049, China
| | - Dongxiang Shi
- Key
Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and
Bioprocess Technology, Chinese Academy of
Sciences, 189 Songling Road, Qingdao, Shandong 266101, China
- Lanzhou
University of Technology, 287 Langongping Road, Lanzhou, Gansu 730050, China
| | - Ju Han
- Key
Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and
Bioprocess Technology, Chinese Academy of
Sciences, 189 Songling Road, Qingdao, Shandong 266101, China
- Sino-Danish
College, University of Chinese Academy of
Sciences, 19(A) Yuquan
Road, Beijing 100049, China
| | - Ge Zhang
- Key
Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and
Bioprocess Technology, Chinese Academy of
Sciences, 189 Songling Road, Qingdao, Shandong 266101, China
- Sino-Danish
College, University of Chinese Academy of
Sciences, 19(A) Yuquan
Road, Beijing 100049, China
| | - Xinglin Jiang
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, Kongens Lyngby 2800, Denmark
| | - Mingjun Yang
- Lanzhou
University of Technology, 287 Langongping Road, Lanzhou, Gansu 730050, China
| | - Zhenying Wu
- Key
Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and
Bioprocess Technology, Chinese Academy of
Sciences, 189 Songling Road, Qingdao, Shandong 266101, China
| | - Chunxiang Fu
- Key
Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and
Bioprocess Technology, Chinese Academy of
Sciences, 189 Songling Road, Qingdao, Shandong 266101, China
| | - Zhihao Li
- Key
Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and
Bioprocess Technology, Chinese Academy of
Sciences, 189 Songling Road, Qingdao, Shandong 266101, China
| | - Mo Xian
- Key
Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and
Bioprocess Technology, Chinese Academy of
Sciences, 189 Songling Road, Qingdao, Shandong 266101, China
- Sino-Danish
College, University of Chinese Academy of
Sciences, 19(A) Yuquan
Road, Beijing 100049, China
| | - Haibo Zhang
- Key
Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and
Bioprocess Technology, Chinese Academy of
Sciences, 189 Songling Road, Qingdao, Shandong 266101, China
- Sino-Danish
College, University of Chinese Academy of
Sciences, 19(A) Yuquan
Road, Beijing 100049, China
- . Phone: +86 139 6978 0438
| |
Collapse
|
21
|
Østby H, Hansen LD, Horn SJ, Eijsink VGH, Várnai A. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. J Ind Microbiol Biotechnol 2020; 47:623-657. [PMID: 32840713 PMCID: PMC7658087 DOI: 10.1007/s10295-020-02301-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Efficient saccharification of lignocellulosic biomass requires concerted development of a pretreatment method, an enzyme cocktail and an enzymatic process, all of which are adapted to the feedstock. Recent years have shown great progress in most aspects of the overall process. In particular, increased insights into the contributions of a wide variety of cellulolytic and hemicellulolytic enzymes have improved the enzymatic processing step and brought down costs. Here, we review major pretreatment technologies and different enzyme process setups and present an in-depth discussion of the various enzyme types that are currently in use. We pay ample attention to the role of the recently discovered lytic polysaccharide monooxygenases (LPMOs), which have led to renewed interest in the role of redox enzyme systems in lignocellulose processing. Better understanding of the interplay between the various enzyme types, as they may occur in a commercial enzyme cocktail, is likely key to further process improvements.
Collapse
Affiliation(s)
- Heidi Østby
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Line Degn Hansen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway.
| |
Collapse
|
22
|
Mihiretu GT, Chimphango AF, Görgens JF. Steam explosion pre-treatment of alkali-impregnated lignocelluloses for hemicelluloses extraction and improved digestibility. BIORESOURCE TECHNOLOGY 2019; 294:122121. [PMID: 31561152 DOI: 10.1016/j.biortech.2019.122121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
The application of steam explosion pre-treatment to extract xylan-rich biopolymers from alkali-impregnated lignocelluloses, while simultaneously increasing the enzymatic digestibility of cellulose, was investigated. Steam-enhanced extraction of xylan from sugarcane trash (SCT) and aspen wood (AW) was performed at varying temperatures (176-204 °C) and retention times (3-17 min) after the impregnation of biomass samples with sodium hydroxide at 1:20 (w/w) solid loading ratio. Xylan extraction and cellulose digestibility results were statistically analysed to fix the condition/s for significantly enhanced values. Accordingly, maximum xylan yields of 51 and 24%, and highest cellulose digestibility of 92 and 81%, were attained for SCT and AW respectively following their pre-treatment at 204 °C for 10 min. At this most-severe condition, neither xylose nor furfural - a degradation product from xylose - were observed in the hemicellulose extract, indicating steam explosion pre-treatment with alkali impregnation of lignocelluloses as viable biorefinery approach to co-produce xylan biopolymers and bioethanol.
Collapse
Affiliation(s)
- Gezahegn T Mihiretu
- Stellenbosch University, Process Engineering Department, Stellenbosch 7602, South Africa
| | - Annie F Chimphango
- Stellenbosch University, Process Engineering Department, Stellenbosch 7602, South Africa
| | - Johann F Görgens
- Stellenbosch University, Process Engineering Department, Stellenbosch 7602, South Africa.
| |
Collapse
|