1
|
Yang D, Podkovyroff K, Uno KT, Bowen GJ, Fernandez DP, Cerling TE. Strontium isotope mapping of elephant enamel supports an integrated microsampling-modeling workflow to reconstruct herbivore migrations. Commun Biol 2025; 8:274. [PMID: 39984748 PMCID: PMC11845587 DOI: 10.1038/s42003-025-07686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/05/2025] [Indexed: 02/23/2025] Open
Abstract
Strontium isotope ratios (87Sr/86Sr) in dental tissues are widely used to study animal and human migration. However, questions remain regarding how different biological processes and sampling methods influence measured 87Sr/86Sr and subsequent interpretations. We present a unique experiment with the known relocation history of a zoo elephant to evaluate the influence of biological turnover, tissue type, and sampling methods. We collected 87Sr/86Sr data from the elephant's tusk and molar enamel using in-situ laser ablation microsampling, conventional drilling, and micromilling techniques. Our data comparisons show that the innermost enamel best records the primary 87Sr/86Sr turnover history, while enamel maturation affects outer enamel 87Sr/86Sr. Conventional drilling and micromilling show attenuated 87Sr/86Sr records due to enamel maturation and sample averaging. To effectively account for 87Sr/86Sr signal attenuation due to turnover, we demonstrated a microsampling-modeling workflow using our tusk and enamel data. This recommended workflow can facilitate geospatially explicit interpretations of seasonal migration.
Collapse
Affiliation(s)
- Deming Yang
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA.
- Division of Anthropology, American Museum of Natural History, New York, NY, 10024, USA.
| | - Katya Podkovyroff
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Kevin T Uno
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Gabriel J Bowen
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Diego P Fernandez
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Thure E Cerling
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
2
|
Dickinson ER, Mosbacher JB, Arnison C, Beckmen K, Côté SD, Di Francesco J, Hansson SV, Jahromi EZ, Kinniburgh DW, Le Roux G, Leclerc L, Mavrot F, Schmidt NM, Suitor MJ, Taillon J, Tomaselli M, Kutz SJ. Qiviut Trace and Macro Element Profile Reflects Muskox Population Trends. Ecol Evol 2025; 15:e71020. [PMID: 39991449 PMCID: PMC11842511 DOI: 10.1002/ece3.71020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025] Open
Abstract
Understanding the drivers influencing ungulate population dynamics is crucial for developing conservation and management strategies to support wildlife health. Trace and macro elements are vital for ungulate growth, reproduction and survival. Thus, the trajectory of wildlife populations may be associated with element imbalances. Element concentrations can be measured in hair, an increasingly recognised bio-monitoring tool. However, a better understanding of the relevance for wild ungulate population dynamics is needed. This study aimed to assess if element profiles in hair reflected the population trajectory of a keystone Arctic ungulate, muskox Ovibos moschatus, and whether benchmarks could be defined for element concentrations to assess population status. We measured qiviut (hair) element concentrations of 11 muskox populations ranging across northern America, including Greenland, and evaluated the association between element concentrations and different population trajectories. Seven trace and macro elements differentiated increasing populations from declining and stable populations using linear discriminant analysis. In general, copper, selenium, iron, manganese and cobalt tended to be at higher concentrations in increasing populations, whereas zinc and calcium were generally at lower concentrations in these populations, though variations were observed among populations. Benchmarks were defined for copper, selenium and iron, indicating populations were more likely to decline below a threshold concentration of these elements ('limit') and increase above a threshold concentration ('target'). 'Limit' benchmarks were defined for zinc and calcium where populations were more likely to be increasing below this threshold value. Hair element profiles are a useful indicator of population trajectory in wild ungulate populations. Identified benchmarks can be used to assess population status, complementing ongoing but irregular and expensive monitoring efforts like population surveys, while trace element concentrations can provide insights into the mechanisms driving population change. Hair samples can easily be collected non-invasively or alongside other monitoring activities, enhancing proactive wildlife management and conservation.
Collapse
Affiliation(s)
| | | | | | | | - Steeve D. Côté
- Caribou Ungava, Département de Biologie & Centre d'études NordiquesUniversité LavalQuebecQuebecCanada
| | - Juliette Di Francesco
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Faculty of Veterinary MedicineUniversity of MontrealSaint‐HyacintheQuebecCanada
| | - Sophia V. Hansson
- Centre de Recherche sur la Biodiversité et l'EnvironnementUniversité de Toulouse, CNRS UMR 5300, IRD, Toulouse INP, Université Toulouse III–Paul Sabatier (UT3)ToulouseFrance
- Department of Ecoscience and Arctic Research CentreAarhus UniversityRoskildeDenmark
| | - Elham Z. Jahromi
- Alberta Centre for ToxicologyUniversity of CalgaryCalgaryAlbertaCanada
| | | | - Gäel Le Roux
- Centre de Recherche sur la Biodiversité et l'EnvironnementUniversité de Toulouse, CNRS UMR 5300, IRD, Toulouse INP, Université Toulouse III–Paul Sabatier (UT3)ToulouseFrance
| | - Lisa‐Marie Leclerc
- Department of EnvironmentGovernment of NunavutKugluktukNorthwest TerritoriesCanada
| | - Fabien Mavrot
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Niels M. Schmidt
- Department of Ecoscience and Arctic Research CentreAarhus UniversityRoskildeDenmark
| | | | - Joëlle Taillon
- Service de la Gestion des Espèces et des Habitats TerrestresMinistère des Forêts, de la Faune et des ParcsQuebecQuebecCanada
| | - Matilde Tomaselli
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Polar Knowledge CanadaCanadian High Arctic Research StationCambridge BayNunavutCanada
| | - Susan J. Kutz
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
3
|
Tomita KM, Manlick PJ, Makoto K, Fujii S, Hyodo F, Miyashita T, Tsunoda T. The underappreciated roles of aboveground vertebrates on belowground communities. Trends Ecol Evol 2025:S0169-5347(24)00319-7. [PMID: 39814653 DOI: 10.1016/j.tree.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
In recent decades, evidence of interactions between aboveground and belowground (i.e., soil) subsystems has accumulated. The effects of aboveground vertebrates on belowground communities have traditionally focused on plant-mediated pathways, but we show that aboveground vertebrates impact belowground communities and ecological functions without plant-mediated pathways via both consumptive and non-consumptive processes. We then show that mobile, aboveground vertebrates have significant but often unrealized potential to structure soil communities from local to macroecological scales by linking aboveground and belowground food webs across habitats and ecosystems. Collectively, this synthesis of aboveground vertebrate effects on belowground communities integrates multiple ecological disciplines to advance a more comprehensive understanding of aboveground-belowground linkages across space and time.
Collapse
Affiliation(s)
- Kanji M Tomita
- Faculty of Agriculture and Marine Science Kochi University, Kochi, Japan.
| | - Philip J Manlick
- Pacific Northwest Research Station, USDA Forest Service, Juneau, AK, USA
| | - Kobayashi Makoto
- Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido, Japan
| | - Saori Fujii
- Department of Forest Entomology, Forestry and Forest Products Research Institute, Ibaraki, Japan
| | - Fujio Hyodo
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
| | - Tadashi Miyashita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomonori Tsunoda
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| |
Collapse
|
4
|
Wendt JAF, Argiriadis E, Whitlock C, Bortolini M, Battistel D, McWethy DB. A 2000-year record of fecal biomarkers reveals past herbivore presence and impacts in a catchment in northern Yellowstone National Park, USA. PLoS One 2024; 19:e0311950. [PMID: 39475901 PMCID: PMC11524497 DOI: 10.1371/journal.pone.0311950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/28/2024] [Indexed: 11/02/2024] Open
Abstract
Molecular biomarkers preserved in lake sediments are increasingly used to develop records of past organism occurrence. When linked with traditional paleoecological methods, analysis of molecular biomarkers can yield new insights into the roles of herbivores and other animals in long-term ecosystem dynamics. We sought to determine whether fecal steroids in lake sediments could be used to reconstruct past ungulate use and dominant taxa in a small catchment in northern Yellowstone National Park. To do so, we characterized the fecal steroid profiles of a selection of North American ungulates historically present in the Yellowstone region (bison, elk, moose, mule deer, and pronghorn) and compared them with those of sediments from a small lake in the Yellowstone Northern Range. Analysis of a set of fecal steroids from herbivore dung (Δ5-sterols, 5α-stanols, 5β-stanols, epi5β-stanols, stanones, and bile acids) differentiated moose, pronghorn, and mule deer, whereas bison and elk were partially differentiated. Our results show that bison and/or elk were the primary ungulates in the watershed over the past c. 2300 years. Fecal steroid influxes reached historically unprecedented levels during the early and middle 20th century, possibly indicating high local use by ungulates. Comparison of fecal steroid influxes with pollen and diatom data suggests that elevated ungulate presence may have contributed to decreased forage taxa (Poaceae, Artemisia, and Salix), relative to long-term averages, and possibly increased lake production. Our results reflect past change within a single watershed, and extending this approach to a network of sites could provide much-needed information on past herbivore communities, use, and environmental influences in Yellowstone National Park and elsewhere.
Collapse
Affiliation(s)
- John A. F. Wendt
- Department of Earth Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Elena Argiriadis
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
- Institute of Polar Sciences CNR-ISP, Venice, Italy
| | - Cathy Whitlock
- Department of Earth Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Mara Bortolini
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
| | - Dario Battistel
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
| | - David B. McWethy
- Department of Earth Sciences, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
5
|
Prima MC, Garel M, Marchand P, Redcliffe J, Börger L, Barnier F. Combined effects of landscape fragmentation and sampling frequency of movement data on the assessment of landscape connectivity. MOVEMENT ECOLOGY 2024; 12:63. [PMID: 39252118 PMCID: PMC11385819 DOI: 10.1186/s40462-024-00492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/10/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Network theory is largely applied in real-world systems to assess landscape connectivity using empirical or theoretical networks. Empirical networks are usually built from discontinuous individual movement trajectories without knowing the effect of relocation frequency on the assessment of landscape connectivity while theoretical networks generally rely on simple movement rules. We investigated the combined effects of relocation sampling frequency and landscape fragmentation on the assessment of landscape connectivity using simulated trajectories and empirical high-resolution (1 Hz) trajectories of Alpine ibex (Capra ibex). We also quantified the capacity of commonly used theoretical networks to accurately predict landscape connectivity from multiple movement processes. METHODS We simulated forager trajectories from continuous correlated biased random walks in simulated landscapes with three levels of landscape fragmentation. High-resolution ibex trajectories were reconstructed using GPS-enabled multi-sensor biologging data and the dead-reckoning technique. For both simulated and empirical trajectories, we generated spatial networks from regularly resampled trajectories and assessed changes in their topology and information loss depending on the resampling frequency and landscape fragmentation. We finally built commonly used theoretical networks in the same landscapes and compared their predictions to actual connectivity. RESULTS We demonstrated that an accurate assessment of landscape connectivity can be severely hampered (e.g., up to 66% of undetected visited patches and 29% of spurious links) when the relocation frequency is too coarse compared to the temporal dynamics of animal movement. However, the level of landscape fragmentation and underlying movement processes can both mitigate the effect of relocation sampling frequency. We also showed that network topologies emerging from different movement behaviours and a wide range of landscape fragmentation were complex, and that commonly used theoretical networks accurately predicted only 30-50% of landscape connectivity in such environments. CONCLUSIONS Very high-resolution trajectories were generally necessary to accurately identify complex network topologies and avoid the generation of spurious information on landscape connectivity. New technologies providing such high-resolution datasets over long periods should thus grow in the movement ecology sphere. In addition, commonly used theoretical models should be applied with caution to the study of landscape connectivity in real-world systems as they did not perform well as predictive tools.
Collapse
Affiliation(s)
- Marie-Caroline Prima
- PatriNat (OFB - MNHN), 75005, Paris, France.
- Office Français de la Biodiversité, Direction de la Recherche et de l'Appui Scientifique, Service Anthropisation et Fonctionnement des Ecosystèmes Terrestres, 38610, Gières, France.
| | - Mathieu Garel
- Office Français de la Biodiversité, Direction de la Recherche et de l'Appui Scientifique, Service Anthropisation et Fonctionnement des Ecosystèmes Terrestres, 38610, Gières, France
| | - Pascal Marchand
- Office Français de la Biodiversité, Direction de la Recherche et de l'Appui Scientifique, Service Anthropisation et Fonctionnement des Ecosystèmes Terrestres, 34990, Juvignac, France
| | - James Redcliffe
- Department of Biosciences, Swansea University, Swansea, SA15HF, UK
| | - Luca Börger
- Department of Biosciences, Swansea University, Swansea, SA15HF, UK
- Centre for Biomathematics, Swansea University, Swansea, SA15HF, UK
| | | |
Collapse
|
6
|
Vander Pluym D, Mason NA. Toward a comparative framework for studies of altitudinal migration. Ecol Evol 2024; 14:e70240. [PMID: 39219567 PMCID: PMC11364985 DOI: 10.1002/ece3.70240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The study and importance of altitudinal migration has attracted increasing interest among zoologists. Altitudinal migrants are taxonomically widespread and move across altitudinal gradients as partial or complete migrants, subjecting them to a wide array of environments and ecological interactions. Here, we present a brief synthesis of recent developments in the field and suggest future directions toward a more taxonomically inclusive comparative framework for the study of altitudinal migration. Our framework centers on a working definition of altitudinal migration that hinges on its biological relevance, which is scale-dependent and related to fitness outcomes. We discuss linguistic nuances of altitudinal movements and provide concrete steps to compare altitudinal migration phenomena across traditionally disparate study systems. Together, our comparative framework outlines a "phenotypic space" that contextualizes the biotic and abiotic interactions encountered by altitudinal migrants from divergent lineages and biomes. We also summarize new opportunities, methods, and challenges for the ongoing study of altitudinal migration. A persistent, primary challenge is characterizing the taxonomic extent of altitudinal migration within and among species. Fortunately, a host of new methods have been developed to help researchers assess the taxonomic prevalence of altitudinal migration-each with their own advantages and disadvantages. An improved comparative framework will allow researchers that study disparate disciplines and taxonomic groups to better communicate and to test hypotheses regarding the evolutionary and ecological drivers underlying variation in altitudinal migration among populations and species.
Collapse
Affiliation(s)
- David Vander Pluym
- Department of Biological Sciences, Museum of Natural ScienceLouisiana State UniversityBaton RougeLouisianaUSA
| | - Nicholas A. Mason
- Department of Biological Sciences, Museum of Natural ScienceLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
7
|
Wolfenson LI, Pereira JA, Ruzzante DE, Solé-Cava AM, McCracken GR, Gómez-Fernández MJ, Pereyra MD, Mirol PM. Southern marsh deer (Blastocerus dichotomus) populations assessed using Amplicon Sequencing on fecal samples. Sci Rep 2024; 14:16169. [PMID: 39003391 PMCID: PMC11246461 DOI: 10.1038/s41598-024-67062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
Populations in isolated and small fragments lose genetic variability very fast and are usually of conservation concern because they are at greater risk of local extinction. The largest native deer in South America, Blastocerus dichotomus (Illiger, 1815), is a Vulnerable species according to the IUCN categorization, which inhabits tropical and subtropical swampy areas. In Argentina, its presence has been restricted to four isolated fragments. Here we examine the genetic diversity and differentiation among three of them, including the three different patches that form the southernmost population, using 18 microsatellite markers genotyped by Amplicon Sequencing of DNA extracted from fecal samples. Genetic diversity was low (HE < 0.45) in all three populations studied. We found three genetic clusters compatible with the geographic location of the samples. We also found a metapopulation dynamics that involves the patches that make up the southernmost population, with evidence of a barrier to gene flow between two of them. Our results point to the creation of a corridor as a necessary and urgent management action. This is the first study, at the population level, employing microsatellite genotyping by Amplicon Sequencing with non-invasive samples in an endangered species.
Collapse
Affiliation(s)
- Laura I Wolfenson
- División de Mastozoología, Museo Argentino de Ciencias Naturales, "Bernardino Rivadavia", Av. Ángel Gallardo 470, Ciudad Autónoma de Buenos Aires, CP 1405, Buenos Airesss, Argentina.
| | - Javier A Pereira
- División de Mastozoología, Museo Argentino de Ciencias Naturales, "Bernardino Rivadavia", Av. Ángel Gallardo 470, Ciudad Autónoma de Buenos Aires, CP 1405, Buenos Airesss, Argentina
| | | | - Antonio M Solé-Cava
- Departamento de Genetica, Centro Nacional Para a Identificação Molecular do Pescado (CENIMP), Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - María J Gómez-Fernández
- División de Mastozoología, Museo Argentino de Ciencias Naturales, "Bernardino Rivadavia", Av. Ángel Gallardo 470, Ciudad Autónoma de Buenos Aires, CP 1405, Buenos Airesss, Argentina
| | - María D Pereyra
- División de Mastozoología, Museo Argentino de Ciencias Naturales, "Bernardino Rivadavia", Av. Ángel Gallardo 470, Ciudad Autónoma de Buenos Aires, CP 1405, Buenos Airesss, Argentina
| | - Patricia M Mirol
- División de Mastozoología, Museo Argentino de Ciencias Naturales, "Bernardino Rivadavia", Av. Ángel Gallardo 470, Ciudad Autónoma de Buenos Aires, CP 1405, Buenos Airesss, Argentina
| |
Collapse
|
8
|
John C, Avgar T, Rittger K, Smith JA, Stephenson LW, Stephenson TR, Post E. Pursuit and escape drive fine-scale movement variation during migration in a temperate alpine ungulate. Sci Rep 2024; 14:15068. [PMID: 38956435 PMCID: PMC11219842 DOI: 10.1038/s41598-024-65948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Climate change reduces snowpack, advances snowmelt phenology, drives summer warming, alters growing season precipitation regimes, and consequently modifies vegetation phenology in mountain systems. Elevational migrants track spatial variation in seasonal plant growth by moving between ranges at different elevations during spring, so climate-driven vegetation change may disrupt historic benefits of migration. Elevational migrants can furthermore cope with short-term environmental variability by undertaking brief vertical movements to refugia when sudden adverse conditions arise. We uncover drivers of fine-scale vertical movement variation during upland migration in an endangered alpine specialist, Sierra Nevada bighorn sheep (Ovis canadensis sierrae) using a 20-year study of GPS collar data collected from 311 unique individuals. We used integrated step-selection analysis to determine factors that promote vertical movements and drive selection of destinations following vertical movements. Our results reveal that relatively high temperatures consistently drive uphill movements, while precipitation likely drives downhill movements. Furthermore, bighorn select destinations at their peak annual biomass and maximal time since snowmelt. These results indicate that although Sierra Nevada bighorn sheep seek out foraging opportunities related to landscape phenology, they compensate for short-term environmental stressors by undertaking brief up- and downslope vertical movements. Migrants may therefore be impacted by future warming and increased storm frequency or intensity, with shifts in annual migration timing, and fine-scale vertical movement responses to environmental variability.
Collapse
Affiliation(s)
- Christian John
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA.
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, USA.
| | - Tal Avgar
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
- Department of Biology, University of British Columbia - Okanagan, Kelowna, BC, Canada
- Wildlife Science Centre, Biodiversity Pathways Ltd., Kelowna, BC, Canada
| | - Karl Rittger
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Boulder, CO, USA
| | - Justine A Smith
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA
| | - Logan W Stephenson
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| | - Thomas R Stephenson
- California Department of Fish and Wildlife, Sierra Nevada Bighorn Sheep Recovery Program, Bishop, CA, USA
| | - Eric Post
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
9
|
Malpeli KC, Endyke SC, Weiskopf SR, Thompson LM, Johnson CG, Kurth KA, Carlin MA. Existing evidence on the effects of climate variability and climate change on ungulates in North America: a systematic map. ENVIRONMENTAL EVIDENCE 2024; 13:8. [PMID: 39294746 PMCID: PMC11378825 DOI: 10.1186/s13750-024-00331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/19/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Climate is an important driver of ungulate life-histories, population dynamics, and migratory behaviors. Climate conditions can directly impact ungulates via changes in the costs of thermoregulation and locomotion, or indirectly, via changes in habitat and forage availability, predation, and species interactions. Many studies have documented the effects of climate variability and climate change on North America's ungulates, recording impacts to population demographics, physiology, foraging behavior, migratory patterns, and more. However, ungulate responses are not uniform and vary by species and geography. Here, we present a systematic map describing the abundance and distribution of evidence on the effects of climate variability and climate change on native ungulates in North America. METHODS We searched for all evidence documenting or projecting how climate variability and climate change affect the 15 ungulate species native to the U.S., Canada, Mexico, and Greenland. We searched Web of Science, Scopus, and the websites of 62 wildlife management agencies to identify relevant academic and grey literature. We screened English-language documents for inclusion at both the title and abstract and full-text levels. Data from all articles that passed full-text review were extracted and coded in a database. We identified knowledge clusters and gaps related to the species, locations, climate variables, and outcome variables measured in the literature. REVIEW FINDINGS We identified a total of 674 relevant articles published from 1947 until September 2020. Caribou (Rangifer tarandus), elk (Cervus canadensis), and white-tailed deer (Odocoileus virginianus) were the most frequently studied species. Geographically, more research has been conducted in the western U.S. and western Canada, though a notable concentration of research is also located in the Great Lakes region. Nearly 75% more articles examined the effects of precipitation on ungulates compared to temperature, with variables related to snow being the most commonly measured climate variables. Most studies examined the effects of climate on ungulate population demographics, habitat and forage, and physiology and condition, with far fewer examining the effects on disturbances, migratory behavior, and seasonal range and corridor habitat. CONCLUSIONS The effects of climate change, and its interactions with stressors such as land-use change, predation, and disease, is of increasing concern to wildlife managers. With its broad scope, this systematic map can help ungulate managers identify relevant climate impacts and prepare for future changes to the populations they manage. Decisions regarding population control measures, supplemental feeding, translocation, and the application of habitat treatments are just some of the management decisions that can be informed by an improved understanding of climate impacts. This systematic map also identified several gaps in the literature that would benefit from additional research, including climate effects on ungulate migratory patterns, on species that are relatively understudied yet known to be sensitive to changes in climate, such as pronghorn (Antilocapra americana) and mountain goats (Oreamnos americanus), and on ungulates in the eastern U.S. and Mexico.
Collapse
Affiliation(s)
- Katherine C Malpeli
- U.S. Geological Survey, National Climate Adaptation Science Center, Reston, USA.
| | - Sarah C Endyke
- Appalachian Laboratory, University of Maryland Center for Environmental Science, College Park, USA
| | - Sarah R Weiskopf
- U.S. Geological Survey, National Climate Adaptation Science Center, Reston, USA
| | - Laura M Thompson
- U.S. Geological Survey, National Climate Adaptation Science Center, Reston, USA
- School of Natural Resources, University of Tennessee, Knoxville, USA
| | - Ciara G Johnson
- Department of Environmental Science & Policy, George Mason University, Fairfax, USA
| | - Katherine A Kurth
- U.S. Geological Survey, National Climate Adaptation Science Center, Reston, USA
| | - Maxfield A Carlin
- U.S. Geological Survey, National Climate Adaptation Science Center, Reston, USA
| |
Collapse
|
10
|
Oster KW, Gustine DD, Smeins FE, Barboza PS. Estimating Mineral Requirements of Wild Herbivores: Modelling Arctic Caribou ( Rangifer tarandus granti) in Summer. Animals (Basel) 2024; 14:868. [PMID: 38539965 PMCID: PMC10967348 DOI: 10.3390/ani14060868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Mineral requirements are poorly described for most wildlife. Consequently, the role of forage minerals in movement and productivity are poorly understood for sedentary and migratory ungulates, such as reindeer and caribou (Rangifer tarandus). We applied estimates of maintenance, lactation, body mass change, and antler growth to production curves (body mass, daily intake, and milk yield) for female caribou to calculate their mineral requirements over summer. The total requirements (mg or g·d-1) were divided by the daily intake (kg·d-1) to estimate the minimum concentration of minerals required in the diet (mg or g·kg-1) to balance demand. The daily requirements (mg·d-1) of all minerals increased from parturition to the end of summer. The minimum dietary concentrations (mg·kg-1) of macro-minerals (Ca, P, Mg, Na, K) declined as food intake (kg·d-1) increased over summer. The minimum dietary concentrations (Fe, Mn, Cu, Zn) were heavily influenced by body mass gain, which increased through late lactation even though food intakes rose. Our modeling framework can be applied to other wild ungulates to assess the impacts of changing forage phenology, plant community compositions, or environmental disturbances on movement and productivity.
Collapse
Affiliation(s)
- Keith W. Oster
- Alaska Department of Fish and Game, Division of Wildlife Conservation, P.O. Box 1467, Bethel, AK 99559, USA;
| | - David D. Gustine
- U.S. Fish and Wildlife Service, 1011 E. Tudor Road, Anchorage, AK 99503, USA;
| | - Fred E. Smeins
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA;
| | - Perry S. Barboza
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA;
- Department of Rangelands, Wildlife and Fisheries Management, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Musto C, Cerri J, Capizzi D, Fontana MC, Rubini S, Merialdi G, Berzi D, Ciuti F, Santi A, Rossi A, Barsi F, Gelmini L, Fiorentini L, Pupillo G, Torreggiani C, Bianchi A, Gazzola A, Prati P, Sala G, Apollonio M, Delogu M, Biancardi A, Uboldi L, Moretti A, Garbarino C. First evidence of widespread positivity to anticoagulant rodenticides in grey wolves (Canis lupus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169990. [PMID: 38232835 DOI: 10.1016/j.scitotenv.2024.169990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Second-generation Anticoagulant Rodenticides (ARs) can be critical for carnivores, due to their widespread use and impacts. However, although many studies explored the impacts of ARs on small and mesocarnivores, none assessed the extent to which they could contaminate large carnivores in anthropized landscapes. We filled this gap by exploring spatiotemporal trends in grey wolf (Canis lupus) exposure to ARs in central and northern Italy, by subjecting a large sample of dead wolves (n = 186) to the LC-MS/MS method. Most wolves (n = 115/186, 61.8 %) tested positive for ARs (1 compound, n = 36; 2 compounds, n = 47; 3 compounds, n = 16; 4 or more compounds, n = 16). Bromadiolone, brodifacoum and difenacoum, were the most common compounds, with brodifacoum and bromadiolone being the ARs that co-occurred the most (n = 61). Both the probability of testing positive for multiple ARs and the concentration of brodifacoum, and bromadiolone in the liver, systematically increased in wolves that were found at more anthropized sites. Moreover, wolves became more likely to test positive for ARs through time, particularly after 2020. Our results underline that rodent control, based on ARs, increases the risks of unintentional poisoning of non-target wildlife. However, this risk does not only involve small and mesocarnivores, but also large carnivores at the top of the food chain, such as wolves. Therefore, rodent control is adding one further conservation threat to endangered large carnivores in anthropized landscapes of Europe, whose severity could increase over time and be far higher than previously thought. Large-scale monitoring schemes for ARs in European large carnivores should be devised as soon as possible.
Collapse
Affiliation(s)
- Carmela Musto
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy.
| | - Jacopo Cerri
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy.
| | - Dario Capizzi
- Directorate for Environment, Latium Region, 00173 Rome, Italy
| | - Maria Cristina Fontana
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Silva Rubini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giuseppe Merialdi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Duccio Berzi
- Centro per lo Studio e la Documentazione sul Lupo, 50033 Firenze, Italy
| | - Francesca Ciuti
- Centro per lo Studio e la Documentazione sul Lupo, 50033 Firenze, Italy
| | - Annalisa Santi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Arianna Rossi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Filippo Barsi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Luca Gelmini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Laura Fiorentini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giovanni Pupillo
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Camilla Torreggiani
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandro Bianchi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandra Gazzola
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Paola Prati
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giovanni Sala
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Mauro Delogu
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - Alberto Biancardi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Laura Uboldi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandro Moretti
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Chiara Garbarino
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| |
Collapse
|
12
|
Monk JD, Donadio E, Gregorio PF, Schmitz OJ. Vicuña antipredator diel movement drives spatial nutrient subsidies in a high Andean ecosystem. Ecology 2024; 105:e4262. [PMID: 38351587 DOI: 10.1002/ecy.4262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/13/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024]
Abstract
Large animals could be important drivers of spatial nutrient subsidies when they ingest resources in some habitats and release them in others, even moving nutrients against elevational gradients. In high Andean deserts, vicuñas (Vicugna vicugna) move daily between nutrient-rich wet meadows, where there is abundant water and forage but high risk of predation by pumas (Puma concolor), and nutrient-poor open plains with lower risk of predation. In all habitats, vicuñas defecate and urinate in communal latrines. We investigated how these latrines impacted soil and plant nutrient concentrations across three habitats in the Andean ecosystem (meadows, plains, and canyons) and used stable isotope analysis to explore the source of fecal nutrients in latrines. Latrine soils had higher concentrations of nitrogen, carbon, and other nutrients than did nonlatrine soils across all habitats. These inputs corresponded with an increase in plant quality (lower C:N) at latrine sites in plains and canyons, but not in meadows. Stable isotope mixing models suggest that ~7% of nutrients in plains latrines originated from vegetation in meadows, which is disproportionately higher than the relative proportion of meadow habitat (2.6%) in the study area. In contrast, ~68% of nutrients in meadow latrines appear to originate from plains and canyon vegetation, though these habitats made up nearly 98% of the study area. Vicuña diel movements thus appear to concentrate nutrients in latrines within habitats and to drive cross-habitat nutrient subsidies, with disproportionate transport from low-lying, nutrient-rich meadows to more elevated, nutrient-poor plains. When these results are scaled up to the landscape scale, the amount of nitrogen and phosphorus subsidized in soil at plains latrines was of the same order of magnitude as estimates of annual atmospheric nitrogen and phosphorus deposition for this region (albeit far more localized and patchy). Thus, vicuña-mediated nutrient redistribution and deposition appears to be an important process impacting ecosystem functioning in arid Andean environments, on par with other major inputs of nutrients to the system.
Collapse
Affiliation(s)
- Julia D Monk
- School of the Environment, Yale University, New Haven, Connecticut, USA
- Fundación Rewilding Argentina, Buenos Aires, Argentina
| | | | - Pablo F Gregorio
- Grupo de Investigaciones en Ecofisiología de Fauna Silvestre, INIBIOMA (Universidad Nacional del Comahue-CONICET), San Martín de los Andes, Argentina
| | - Oswald J Schmitz
- School of the Environment, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Anderson TM, Hepler SA, Holdo RM, Donaldson JE, Erhardt RJ, Hopcraft JGC, Hutchinson MC, Huebner SE, Morrison TA, Muday J, Munuo IN, Palmer MS, Pansu J, Pringle RM, Sketch R, Packer C. Interplay of competition and facilitation in grazing succession by migrant Serengeti herbivores. Science 2024; 383:782-788. [PMID: 38359113 DOI: 10.1126/science.adg0744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Competition, facilitation, and predation offer alternative explanations for successional patterns of migratory herbivores. However, these interactions are difficult to measure, leaving uncertainty about the mechanisms underlying body-size-dependent grazing-and even whether succession occurs at all. We used data from an 8-year camera-trap survey, GPS-collared herbivores, and fecal DNA metabarcoding to analyze the timing, arrival order, and interactions among migratory grazers in Serengeti National Park. Temporal grazing succession is characterized by a "push-pull" dynamic: Competitive grazing nudges zebra ahead of co-migrating wildebeest, whereas grass consumption by these large-bodied migrants attracts trailing, small-bodied gazelle that benefit from facilitation. "Natural experiments" involving intense wildfires and rainfall respectively disrupted and strengthened these effects. Our results highlight a balance between facilitative and competitive forces in co-regulating large-scale ungulate migrations.
Collapse
Affiliation(s)
- T Michael Anderson
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Staci A Hepler
- Department of Statistical Sciences, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Ricardo M Holdo
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Jason E Donaldson
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Robert J Erhardt
- Department of Statistical Sciences, Wake Forest University, Winston-Salem, NC 27109, USA
| | - J Grant C Hopcraft
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Matthew C Hutchinson
- Department of Life & Environmental Sciences, University of California Merced, Merced, CA 95343, USA
| | - Sarah E Huebner
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Thomas A Morrison
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Jeffry Muday
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Issack N Munuo
- Serengeti Wildlife Research Centre, 2113 Lemara, Arusha, TZ
| | - Meredith S Palmer
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Johan Pansu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Robert M Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Robert Sketch
- Department of Statistical Sciences, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Craig Packer
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
14
|
Barboza PS, Shively RD, Thompson DP. Robust Responses of Female Caribou to Changes in Food Supply. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:29-52. [PMID: 38717369 DOI: 10.1086/729668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
AbstractUngulates can respond to changes in food supply by altering foraging behavior, digestive function, and metabolism. A multifaceted response to an environmental change is considered robust. Short seasons of plant growth make herbivores sensitive to changes in food supply because maintenance and production must be accomplished in less time with fewer options in a more fragile response. Caribou live at high latitudes where short summers constrain their response to changes in food supply. We measured the ability of female caribou to resist and tolerate changes in the quality and quantity of their food supply during winter and summer. Caribou resisted changes in food abundance and quality by changing food intake and physical activity with changes in daily temperature within each season. Peak food intake rose by 134% from winter pregnancy to summer lactation (98 vs. 229 g kg-0.75 d-1), as digestible requirements to maintain the body increased by 85% for energy (1,164 vs. 2,155 kJ kg-0.75 d-1) and by 266% for N (0.79 vs. 2.89 g N kg-0.75 d-1). Caribou required a diet with a digestible content of 12 kJ g-1 and 0.8% N in pregnancy, 18 kJ g-1 and 1.9% N in early lactation, and 11 kJ g-1 and 1.2% N in late lactation, which corresponds with the phenology of the wild diet. Female caribou tolerated restriction of ad lib. food intake to 58% of their energy requirement (680 vs. 1,164 kJ kg-0.75 d-1) during winter pregnancy and to 84% of their energy requirement (1,814 vs. 2,155 kJ kg-0.75 d-1) during summer lactation without a change in stress level, as indicated by fecal corticosterone concentration. Conversely, caribou can respond to increased availability of food with a spare capacity to process digestible energy and N at 123% (2,642 vs. 2,155 kJ kg-0.75 d-1) and 145% (4.20 vs. 2.89 g N kg-0.75 d-1) of those respective requirements during lactation. Robust responses to changes in food supply allow caribou to sustain reproduction, which would buffer demographic response. However, herds may decline when thresholds of behavioral resistance and physiological tolerance are frequently exceeded. Therefore, the challenge for managing declining populations of caribou and other robust species is to identify declines in robustness before their response becomes fragile.
Collapse
|
15
|
Shaw AK, Levet M, Binning SA. A unified evolutionary framework for understanding parasite infection and host migratory behaviour. Ecol Lett 2023; 26:1987-2002. [PMID: 37706582 DOI: 10.1111/ele.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 09/15/2023]
Abstract
Animal migration impacts organismal health and parasite transmission: migrants are simultaneously exposed to parasites and able to reduce infection for both individuals and populations. However, these dynamics are difficult to study; empirical studies reveal disparate results while existing theory makes assumptions that simplify natural complexity. Here, we systematically review empirical studies of migration and infection across taxa, highlighting key gaps in our understanding. Next, we develop a unified evolutionary framework incorporating different selective pressures of parasite-migration interactions while accounting for ecological complexity that goes beyond previous theory. Our framework generates diverse migration-infection patterns paralleling those seen in empirical systems, including partial and differential migration. Finally, we generate predictions about which mechanisms dominate which empirical systems to guide future studies. Our framework provides an overarching understanding of selective pressures shaping migration patterns in the context of animal health and disease, which is critical for predicting how environmental change may threaten migration.
Collapse
Affiliation(s)
- Allison K Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Marie Levet
- Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Sandra A Binning
- Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
16
|
Šmejkal M, Bartoň D, Blabolil P, Kolařík T, Kubečka J, Sajdlová Z, Souza AT, Brabec M. Diverse environmental cues drive the size of reproductive aggregation in a rheophilic fish. MOVEMENT ECOLOGY 2023; 11:16. [PMID: 36949527 PMCID: PMC10035167 DOI: 10.1186/s40462-023-00379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Animal migrations are periodic and relatively predictable events, and their precise timing is essential to the reproductive success. Despite large scientific effort in monitoring animal reproductive phenology, identification of complex environmental cues that determine the timing of reproductive migrations and temporal changes in the size of reproductive aggregations in relation to environmental variables is relatively rare in the current scientific literature. METHODS We tagged and tracked 1702 individuals of asp (Leuciscus aspius), a large minnow species, and monitored with a resolution of one hour the size of their reproductive aggregations (counts of sexes present at the breeding grounds standardized by the sum of individuals in the season) over seven breeding seasons using passive integrated transponder tag systems. We examined the size of reproductive aggregations in relation to environmental cues of day number within a reproductive season (intra-year seasonality), water temperature, discharge, hour in a day (intra-day pattern), temperature difference between water and air, precipitation, atmospheric pressure, wind speed and lunar phase. A generalized additive model integrating evidence from seven breeding seasons and providing typical dynamics of reproductive aggregations was constructed. RESULTS We demonstrated that all environmental cues considered contributed to the changes in the size of reproductive aggregations during breeding season, and that some effects varied during breeding season. Our model explained approximately 50% of the variability in the data and the effects were sex-dependent (models of the same structure were fitted to each sex separately, so that we effectively stratified on sex). The size of reproductive aggregations increased unimodally in response to day in season, correlated positively with water temperature and wind speed, was highest before and after the full moon, and highest at night (interacting with day in a season). Males responded negatively and females positively to increase in atmospheric pressure. CONCLUSION The data demonstrate complex utilization of available environmental cues to time reproductive aggregations in freshwater fish and their interactions during the reproductive season. The study highlights the need to acquire diverse data sets consisting of many environmental cues to achieve high accuracy of interpretation of reproductive timing.
Collapse
Affiliation(s)
- Marek Šmejkal
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Daniel Bartoň
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Petr Blabolil
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Tomáš Kolařík
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jan Kubečka
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Zuzana Sajdlová
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Allan T Souza
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Institute for Atmospheric and Earth System Research INAR, Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Marek Brabec
- Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
17
|
Laforge MP, Webber QMR, Vander Wal E. Plasticity and repeatability in spring migration and parturition dates with implications for annual reproductive success. J Anim Ecol 2023; 92:1042-1054. [PMID: 36871141 DOI: 10.1111/1365-2656.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
In seasonal environments, animals should be adapted to match important life-history traits to when environmental conditions are optimal. Most animal populations therefore reproduce when resource abundance is highest to increase annual reproductive success. When facing variable, and changing, environments animals can display behavioural plasticity to acclimate to changing conditions. Behaviours can further be repeatable. For example, timing of behaviours and life history traits such as timing of reproduction may indicate phenotypic variation. Such variation may buffer animal populations against the consequences of variation and change. Our goal was to quantify plasticity and repeatability in migration and parturition timing in response to timing of snowmelt and green-up in a migratory herbivore (caribou, Rangifer tarandus, n = 132 ID-years) and their effect on reproductive success. We used behavioural reaction norms to quantify repeatability in timing of migration and timing of parturition in caribou and their plasticity to timing of spring events, while also quantifying phenotypic covariance between behavioural and life-history traits. Timing of migration for individual caribou was positively correlated with timing of snowmelt. The timing of parturition for individual caribou varied as a function of inter-annual variation in timing of snowmelt and green-up. Repeatability for migration timing was moderate, but low for timing of parturition. Plasticity did not affect reproductive success. We also did not detect any evidence of phenotypic covariance among any traits examined-timing of migration was not correlated with timing of parturition, and neither was there a correlation in the plasticity of these traits. Repeatability in migration timing suggests the possibility that the timing of migration in migratory herbivores could evolve if the repeatability detected in this study has a genetic or otherwise heritable basis, but observed plasticity may obviate the need for an evolutionary response. Our results also suggest that observed shifts in caribou parturition timing are due to plasticity as opposed to an evolutionary response to changing conditions. While this provides some evidence that populations may be buffered from the consequences of climate change via plasticity, a lack of repeatability in parturition timing could impede adaptation as warming increases.
Collapse
Affiliation(s)
- Michel P Laforge
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Quinn M R Webber
- Cognitive and Behavioural Ecology, Memorial University, St. John's, Newfoundland and Labrador, Canada.,Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Eric Vander Wal
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,Cognitive and Behavioural Ecology, Memorial University, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
18
|
Xu W, Gigliotti LC, Royauté R, Sawyer H, Middleton AD. Fencing amplifies individual differences in movement with implications on survival for two migratory ungulates. J Anim Ecol 2023; 92:677-689. [PMID: 36598334 DOI: 10.1111/1365-2656.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023]
Abstract
Fences have recently been recognized as one of the most prominent linear infrastructures on earth. As animals traverse fenced landscapes, they adjust movement behaviours to optimize resource access while minimizing energetic costs of coping with fences. Examining individual responses is key for connecting localized fence effects with population dynamics. We investigated the multi-scale effects of fencing on animal movements, space use and survival of 61 pronghorn and 96 mule deer on a gradient of fence density in Wyoming, USA. Taking advantage of the recently developed Barrier Behaviour Analysis, we classified individual movement responses upon encountering fences (i.e. barrier behaviours). We adopted the reaction norm framework to jointly quantify individual plasticity and behavioural types of barrier behaviours, as well as behaviour syndromes between barrier behaviours and animal space use. We also assessed whether barrier behaviours affect individual survival. Our results highlighted a high-level individual plasticity encompassing differences in the degree and direction of barrier behaviours for both pronghorn and mule deer. Additionally, these individual differences were greater at higher fence densities. For mule deer, fence density determined the correlation between barrier behaviours and space use and was negatively associated with individual survival. However, these relationships were not statistically significant for pronghorn. By integrating approaches from movement ecology and behavioural ecology with the emerging field of fence ecology, this study provides new evidence that an extraordinarily widespread linear infrastructure uniquely impacts animals at the individual level. Managing landscape for lower fence densities may help prevent irreversible behavioural shifts for wide-ranging animals in fenced landscapes.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| | - Laura C Gigliotti
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| | - Raphaël Royauté
- French National Institute for Agriculture, Food, and Environment (INRAE), Versailles cedex, France
| | - Hall Sawyer
- Western Ecosystems Technology, Inc., Laramie, Wyoming, USA
| | - Arthur D Middleton
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
19
|
Eacker DR, Jakes AF, Jones PF. Spatiotemporal risk factors predict landscape‐scale survivorship for a northern ungulate. Ecosphere 2023. [DOI: 10.1002/ecs2.4341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Affiliation(s)
| | - Andrew F. Jakes
- Smithsonian's National Zoo and Conservation Biology Institute Missoula Montana USA
- National Wildlife Federation Missoula Montana USA
| | - Paul F. Jones
- Alberta Conservation Association Lethbridge Alberta Canada
| |
Collapse
|
20
|
Dong J, Anderson LJ. Predicted impacts of global change on bottom-up trophic interactions in the plant-ungulate-wolf food chain in boreal forests. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Kleppel GS, Frank DA. Structure and functioning of wild and agricultural grazing ecosystems: A comparative review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.945514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
For more than 10 million years, large, herd forming ruminants have thrived as parts of sustainable grazing ecosystems. Conversely, since their domestication 8,000–11,000 years ago, cattle, sheep, and goats have often exhibited dysfunctional relationships with the ecosystems they inhabit. A considerable literature, developed over decades, documents the negative impacts of animal agriculture and associated activities (e.g., feed production) on grassland ecosystems. Coincident with the accumulating data documenting the impacts of “conventional” animal agriculture, has been a growing interest in restoring functionality to agricultural grazing ecosystems. These “regenerative” protocols often seek to mimic the structure and functions of wild grazing ecosystems. The objectives of this paper were two-fold: First to review the literature describing the structure and some key functional attributes of wild and agricultural grazing ecosystems; and second, to examine these attributes in conventionally and regeneratively managed grazing ecosystems and, assuming the wild condition to be the standard for sustainable grazer-environment relationships, to ascertain whether similar relationships exist in conventionally or regeneratively managed agricultural grazing ecosystems. Not unexpectedly our review revealed the complexity of both wild and agricultural grazing ecosystems and the interconnectedness of biological, chemical, and physical factors and processes within these systems. Grazers may increase or decrease system functionality, depending upon environmental conditions (e.g., moisture levels). Our review revealed that biodiversity, nitrogen cycling, and carbon storage in regenerative grazing systems more closely resemble wild grazing ecosystems than do conventional grazing systems. We also found multiple points of disagreement in the literature, particularly with respect to aboveground primary production (ANPP). Finally, we acknowledge that, while much has been accomplished in understanding grazing ecosystems, much remains to be done. In particular, some of the variability in the results of studies, especially of meta-analyses, might be reduced if datasets included greater detail on grazing protocols, and a common definition of the term, “grazing intensity.”
Collapse
|
22
|
Hering R, Hauptfleisch M, Kramer-Schadt S, Stiegler J, Blaum N. Effects of fences and fence gaps on the movement behavior of three southern African antelope species. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.959423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Globally, migratory ungulates are affected by fences. While field observational studies reveal the amount of animal–fence interactions across taxa, GPS tracking-based studies uncover fence effects on movement patterns and habitat selection. However, studies on the direct effects of fences and fence gaps on movement behavior, especially based on high-frequency tracking data, are scarce. We used GPS tracking on three common African antelopes (Tragelaphus strepsiceros, Antidorcas marsupialis, and T. oryx) with movement strategies ranging from range residency to nomadism in a semi-arid, Namibian savanna traversed by wildlife-proof fences that elephants have regularly breached. We classified major forms of ungulate–fence interaction types on a seasonal and a daily scale. Furthermore, we recorded the distances and times spent at fences regarding the total individual space use. Based on this, we analyzed the direct effects of fences and fence gaps on the animals’ movement behavior for the previously defined types of animal–fence interactions. Antelope-fence interactions peaked during the early hours of the day and during seasonal transitions when the limiting resource changed between water and forage. Major types of ungulate–fence interactions were quick, trace-like, or marked by halts. We found that the amount of time spent at fences was highest for nomadic eland. Migratory springbok adjusted their space use concerning fence gap positions. If the small home ranges of sedentary kudu included a fence, they frequently interacted with this fence. For springbok and eland, distance traveled along a fence declined with increasing utilization of a fence gap. All species reduced their speed in the proximity of a fence but often increased their speed when encountering the fence. Crossing a fence led to increased speeds for all species. We demonstrate that fence effects mainly occur during crucial foraging times (seasonal scale) and during times of directed movements (daily scale). Importantly, we provide evidence that fences directly alter antelope movement behaviors with negative implications for energy budgets and that persistent fence gaps can reduce the intensity of such alterations. Our findings help to guide future animal–fence studies and provide insights for wildlife fencing and fence gap planning.
Collapse
|
23
|
MacDonald AM, Jones PF, Hanlon JA, Martin BH, Jakes AF. How did the deer cross the fence: An evaluation of wildlife-friendlier fence modifications to facilitate deer movement. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.991765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Fences are a common feature throughout the landscape of North America’s Great Plains region. Knowledge surrounding the harmful implication that fences have on the movement of wildlife, specifically ungulates, is expanding. Across the region, it is accepted that there is a need to mitigate the impacts of barbed wire fencing and that “wildlife-friendlier” fence designs are emerging as a practical tool to meet these goals. Here we evaluate the response of sympatric deer species to the implementation of two fence modifications, fastening the top two wires together using clips and the installation of polyvinyl chloride (PVC) pipe to encompass the top two wires. We also aim to determine the optimal top wire height to allow for successful crossing by deer, with the goal to provide a more robust understanding of effective wildlife-friendlier fence standards. We used remote trail cameras to capture crossing events and recorded responses for mule deer (Odocoileus hemionus) and white-tailed deer (Odocoileus virginianus). Using generalized linear mixed modelling, we tested the influence modifications had on crossing success and decisions prior to and after the modifications were installed compared to control sites. We found that these modifications had little impact on deer crossing behavior. We determined that wire height had the greatest impact on the permeability of fences, but that deer permeability was strongly influenced by species and sex. We found that the current maximum recommended top wire height of 102 cm (40 inches) is adequate to allow individuals of both deer species to cross over the fence, with the exception of female mule deer. Our results also indicate as the top wire height reaches 110 cm (43 inches) or higher, that the probability of successfully jumping over the fence dramatically drops off, with the exception for male mule deer. We recommend the installation of clips as a cost-effective method to lower top wire height and PVC pipe to improve fence visibility and potentially reduce entanglement events, all while effectively keeping livestock in intended pastures.
Collapse
|
24
|
Vettorazzi M, Mogensen N, Kaelo B, Broekhuis F. Understanding the effects of seasonal variation in prey availability on prey switching by large carnivores. J Zool (1987) 2022. [DOI: 10.1111/jzo.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- M. Vettorazzi
- Wildlife Ecology and Conservation Group Wageningen University and Research Wageningen The Netherlands
| | - N. Mogensen
- Mara Predator Conservation Programme Kenya Wildlife Trust Nairobi Kenya
| | - B. Kaelo
- Mara Predator Conservation Programme Kenya Wildlife Trust Nairobi Kenya
| | - F. Broekhuis
- Wildlife Ecology and Conservation Group Wageningen University and Research Wageningen The Netherlands
| |
Collapse
|
25
|
Roque DV, Macandza VA, Zeller U, Starik N, Göttert T. Historical and current distribution and movement patterns of large herbivores in the Limpopo National Park, Mozambique. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.978397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study provides a first attempt to describe the historical distribution and movement patterns of selected large herbivore (LH) species in Limpopo National Park (LNP), an area in Mozambique today connected to a network of transboundary conservation areas. Between 1976 and the early 2000s, most LH species were absent in this area following the civil war in Mozambique followed by intense poaching due to weak law enforcement capacity. Through the reconstruction of the historical and current distribution and movement patterns of seven LH species in five periods, we investigate possible changes in distribution and movement patterns over time. Data collection is based on a systematic literature search, censuses reports, online databases, dung count transects, and camera trap surveys. We mapped all LH observations and movements using ArcGIS 10.1. Our results reveal a dramatic collapse of LH populations between the peak of the colonial period and the post-colonial/civil war period (1800–2001), followed by a slight recovery from the post-proclamation of Great Limpopo Transfrontier Park to the current period (2002–2021). While LH population decline applied to all seven species, there are species-specific differences in the process of restoration: African elephant (Loxodonta africana), African buffalo (Syncerus caffer), and plains zebra (Equus quagga) appear to recover to a greater extent than giraffe (Giraffa camelopardalis), eland (Tragelaphus oryx), blue wildebeest (Connochaetes taurinus), and white rhino (Ceratotherium simum). We found evidence of the functioning of proposed wildlife corridors in the LNP. The results give reason to assume that restoration of populations of LH is still in a very early and vulnerable state and that further efforts are necessary to strengthen the slowly increasing populations of LH. Our results highlight the importance of combining past and current data as a guide for the restoration of threatened species in African savannas impacted by human activities.
Collapse
|
26
|
Xu W, Liu W, Ma W, Wang M, Xu F, Yang W, Walzer C, Kaczensky P. Current status and future challenges for khulan (Equus hemionus) conservation in China. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
27
|
Hering R, Hauptfleisch M, Jago M, Smith T, Kramer-Schadt S, Stiegler J, Blaum N. Don't stop me now: Managed fence gaps could allow migratory ungulates to track dynamic resources and reduce fence related energy loss. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.907079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In semi-arid environments characterized by erratic rainfall and scattered primary production, migratory movements are a key survival strategy of large herbivores to track resources over vast areas. Veterinary Cordon Fences (VCFs), intended to reduce wildlife-livestock disease transmission, fragment large parts of southern Africa and have limited the movements of large wild mammals for over 60 years. Consequently, wildlife-fence interactions are frequent and often result in perforations of the fence, mainly caused by elephants. Yet, we lack knowledge about at which times fences act as barriers, how fences directly alter the energy expenditure of native herbivores, and what the consequences of impermeability are. We studied 2-year ungulate movements in three common antelopes (springbok, kudu, eland) across a perforated part of Namibia's VCF separating a wildlife reserve and Etosha National Park using GPS telemetry, accelerometer measurements, and satellite imagery. We identified 2905 fence interaction events which we used to evaluate critical times of encounters and direct fence effects on energy expenditure. Using vegetation type-specific greenness dynamics, we quantified what animals gained in terms of high quality food resources from crossing the VCF. Our results show that the perforation of the VCF sustains herbivore-vegetation interactions in the savanna with its scattered resources. Fence permeability led to peaks in crossing numbers during the first flush of woody plants before the rain started. Kudu and eland often showed increased energy expenditure when crossing the fence. Energy expenditure was lowered during the frequent interactions of ungulates standing at the fence. We found no alteration of energy expenditure when springbok immediately found and crossed fence breaches. Our results indicate that constantly open gaps did not affect energy expenditure, while gaps with obstacles increased motion. Closing gaps may have confused ungulates and modified their intended movements. While browsing, sedentary kudu's use of space was less affected by the VCF; migratory, mixed-feeding springbok, and eland benefited from gaps by gaining forage quality and quantity after crossing. This highlights the importance of access to vast areas to allow ungulates to track vital vegetation patches.
Collapse
|
28
|
Viewing animal migration through a social lens. Trends Ecol Evol 2022; 37:985-996. [PMID: 35931583 DOI: 10.1016/j.tree.2022.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022]
Abstract
Evidence of social learning is growing across the animal kingdom. Researchers have long hypothesized that social interactions play a key role in many animal migrations, but strong empirical support is scarce except in a few unique systems and species. In this review, we aim to catalyze advances in the study of social migrations by synthesizing research across disciplines and providing a framework for understanding when, how, and why social influences shape the decisions animals make during migration. Integrating research across the fields of social learning and migration ecology will advance our understanding of the complex behavioral phenomena of animal migration and help to inform conservation of animal migrations in a changing world.
Collapse
|
29
|
Spatial patterns in ecological systems: from microbial colonies to landscapes. Emerg Top Life Sci 2022; 6:245-258. [PMID: 35678374 DOI: 10.1042/etls20210282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022]
Abstract
Self-organized spatial patterns are ubiquitous in ecological systems and allow populations to adopt non-trivial spatial distributions starting from disordered configurations. These patterns form due to diverse nonlinear interactions among organisms and between organisms and their environment, and lead to the emergence of new (eco)system-level properties unique to self-organized systems. Such pattern consequences include higher resilience and resistance to environmental changes, abrupt ecosystem collapse, hysteresis loops, and reversal of competitive exclusion. Here, we review ecological systems exhibiting self-organized patterns. We establish two broad pattern categories depending on whether the self-organizing process is primarily driven by nonlinear density-dependent demographic rates or by nonlinear density-dependent movement. Using this organization, we examine a wide range of observational scales, from microbial colonies to whole ecosystems, and discuss the mechanisms hypothesized to underlie observed patterns and their system-level consequences. For each example, we review both the empirical evidence and the existing theoretical frameworks developed to identify the causes and consequences of patterning. Finally, we trace qualitative similarities across systems and propose possible ways of developing a more quantitative understanding of how self-organization operates across systems and observational scales in ecology.
Collapse
|
30
|
Evolutionary causes and consequences of ungulate migration. Nat Ecol Evol 2022; 6:998-1006. [PMID: 35513579 DOI: 10.1038/s41559-022-01749-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/22/2022] [Indexed: 02/04/2023]
Abstract
Ungulate migrations are crucial for maintaining abundant populations and functional ecosystems. However, little is known about how or why migratory behaviour evolved in ungulates. To investigate the evolutionary origins of ungulate migration, we employed phylogenetic path analysis using a comprehensive species-level phylogeny of mammals. We found that 95 of 207 extant ungulate species are at least partially migratory, with migratory behaviour originating independently in 17 lineages. The evolution of migratory behaviour is associated with reliance on grass forage and living at higher latitudes wherein seasonal resource waves are most prevalent. Indeed, originations coincide with mid-Miocene cooling and the subsequent rise of C4 grasslands. Also, evolving migratory behaviour supported the evolution of larger bodies, allowing ungulates to exploit new ecological space. Reconstructions of migratory behaviour further revealed that seven of ten recently extinct species were probably migratory, suggesting that contemporary migrations are important models for understanding the ecology of the past.
Collapse
|