1
|
Cao S, Pierson JT, Bond AH, Zhang S, Gold A, Zhang H, Zamary KM, Moats P, Teegarden MD, Peterson DG, Mo X, Zhu J, Bruno RS. Intestinal-level anti-inflammatory bioactivities of whole wheat: Rationale, design, and methods of a randomized, controlled, crossover dietary trial in adults with prediabetes. Nutr Res 2024; 131:83-95. [PMID: 39378659 DOI: 10.1016/j.nutres.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Randomized controlled trials (RCT) demonstrate that whole wheat consumption improves glycemia. However, substantial inter-individual variation is often observed, highlighting that dietary whole grain recommendations may not support the health of all persons. The objective of this report is to describe the rationale and design of a planned RCT aimed at establishing the gut microbiota and metabolome signatures that predict whole wheat-mediated improvements in glucose tolerance in adults with prediabetes. It is hypothesized that a controlled diet containing wheat bread (WHEAT; 160 g/day) compared with refined bread (WHITE) will improve glucose tolerance in a gut microbiota-mediated manner. Biospecimens will be collected before and after each 2-week study arm. Testing for oral glucose tolerance and gastrointestinal permeability will be performed post-intervention. Assessments will include oral glucose tolerance (primary outcome) and secondary outcomes including gut microbiota, targeted and untargeted metabolomics of fecal and plasma samples, intestinal and host inflammatory responses, and intestinal permeability. WHEAT is predicted to alleviate glucose intolerance by shifting microbiota composition to increase short-chain fatty acid-producing bacteria while reducing populations implicated in intestinal inflammation, barrier dysfunction, and systemic endotoxemia. Further, benefits from WHEAT are anticipated to correlate with gut-level and systemic metabolomic responses that can help to explain the expected inter-individual variability in glucose tolerance. Thus, knowledge gained from integrating multi-omic responses associating with glucose tolerance could help to establish a precision nutrition-based framework that can alleviate cardiometabolic risk. This framework could inform novel dietary whole grain recommendations by enhancing our understanding of inter-individual responsiveness to whole grain consumption.
Collapse
Affiliation(s)
- Sisi Cao
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Jillian T Pierson
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Ariana H Bond
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Shiqi Zhang
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Andrew Gold
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Huan Zhang
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Kaitlyn M Zamary
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Palmer Moats
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Matthew D Teegarden
- Foods for Health Research Initiative, The Ohio State University, Columbus, OH, USA
| | - Devin G Peterson
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Xiaokui Mo
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Jiangjiang Zhu
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Žukauskaitė K, Li M, Horvath A, Jarmalaitė S, Stadlbauer V. Cellular and Microbial In Vitro Modelling of Gastrointestinal Cancer. Cancers (Basel) 2024; 16:3113. [PMID: 39272971 PMCID: PMC11394127 DOI: 10.3390/cancers16173113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Human diseases are multifaceted, starting with alterations at the cellular level, damaging organs and their functions, and disturbing interactions and immune responses. In vitro systems offer clarity and standardisation, which are crucial for effectively modelling disease. These models aim not to replicate every disease aspect but to dissect specific ones with precision. Controlled environments allow researchers to isolate key variables, eliminate confounding factors and elucidate disease mechanisms more clearly. Technological progress has rapidly advanced model systems. Initially, 2D cell culture models explored fundamental cell interactions. The transition to 3D cell cultures and organoids enabled more life-like tissue architecture and enhanced intercellular interactions. Advanced bioreactor-based devices now recreate the physicochemical environments of specific organs, simulating features like perfusion and the gastrointestinal tract's mucus layer, enhancing physiological relevance. These systems have been simplified and adapted for high-throughput research, marking significant progress. This review focuses on in vitro systems for modelling gastrointestinal tract cancer and the side effects of cancer treatment. While cell cultures and in vivo models are invaluable, our main emphasis is on bioreactor-based in vitro modelling systems that include the gut microbiome.
Collapse
Affiliation(s)
- Kristina Žukauskaitė
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Melissa Li
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Biotech Campus Tulln, Fachhochschule Wiener Neustadt, 3430 Tulln, Austria
| | - Angela Horvath
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Center for Biomarker Research in Medicine (CBmed GmbH), 8010 Graz, Austria
| | - Sonata Jarmalaitė
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
- National Cancer Institute, 08406 Vilnius, Lithuania
| | - Vanessa Stadlbauer
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Center for Biomarker Research in Medicine (CBmed GmbH), 8010 Graz, Austria
| |
Collapse
|
3
|
Seong H, Han SH, Kim G, Han NS. Viability and probiotic activity of Lactiplantibacillus plantarum PMO08 in human gastrointestinal tract analyzed by in vitro gut model. Food Sci Biotechnol 2024; 33:2223-2231. [PMID: 39130653 PMCID: PMC11315860 DOI: 10.1007/s10068-024-01622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 08/13/2024] Open
Abstract
This study aimed to evaluate the survivability of Lactiplantibacillus plantarum PMO08 in the human gastrointestinal tract and its adaptability in the colon using in vitro models. After exposure to gastric and small intestinal conditions, the majority (92.70 ± 1.14%) of PMO08 was found to be damaged, as determined by confocal microscopy and flow cytometry. During in vitro colonic fermentation, PMO08 not only increased abundance up to 0.47 ± 0.04% compared with the control sample (0.00 ± 0.00%) at 24 h but also facilitated the growth of beneficial or commensal bacteria, thereby increasing the α-diversity indices. Additionally, PMO08 significantly elevated the levels of short-chain fatty acids (SCFAs) and various organic acids. Our results demonstrate that PMO08 possesses moderate viability under gastrointestinal conditions but exhibits superior probiotic activity in the colon.
Collapse
Affiliation(s)
- Hyunbin Seong
- Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk Republic of Korea
| | - Seung Hee Han
- Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk Republic of Korea
| | - Geonhee Kim
- Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk Republic of Korea
| | - Nam Soo Han
- Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Chungbuk Republic of Korea
| |
Collapse
|
4
|
Khan WA, Butt MS, Yasmin I, Wadood SA, Mahmood A, Gad HA. Protein-polysaccharide based double network microbeads improves stability of Bifidobacterium infantis ATCC 15697 in a gastro-Intestinal tract model (TIM-1). Int J Pharm 2024; 652:123804. [PMID: 38220120 DOI: 10.1016/j.ijpharm.2024.123804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Microencapsulation of probiotics is a main technique employed to improve cell survival in gastrointestinal tract (GIT). The present study investigated the impact of utilizing proteins i.e. Whey Protein Isolates (WPI), Pea Protein Isolates (PPI) or (WPI + PPI) complex based microbeads as encapsulating agents on the encapsulation efficiency (EE), diameter, morphology along with the survival and viability of Bifidobacterium infantis ATCC 15697. Results revealed that WPI + PPI combination had the highest EE% of the probiotics up to 94.09 % and the smoothest surface with less visible holes. WPI based beads revealed lower EE% and smaller size than PPI based ones. In addition, WPI based beads showed rough surface with visible signs of cracks, while PPI beads showed dense surfaces with pores and depressions. In contrast, the combination of the two proteins resulted in compact and smooth beads with less visible pores/wrinkles. The survival in gastrointestinal tract (GIT) was observed through TNO in-vitro gastrointestinal model (TIM-1) and results illustrated that all microbeads shrank in gastric phase while swelled in intestinal phase. In addition, in-vitro survival rate of free cells was very low in gastric phase (18.2 %) and intestinal phase (27.5 %). The free cells lost their viability after 28 days of storage (2.66 CFU/mL) with a maximum log reduction of 6.76, while all the encapsulated probiotic showed more than 106-7 log CFU/g viable cell. It was concluded that encapsulation improved the viability of probiotics in GIT and utilization of WPI + PPI in combination provided better protection to probiotics.
Collapse
Affiliation(s)
- Wahab Ali Khan
- Department of Food Science and Technology, University of Home Economics Lahore, 54660 Pakistan.
| | - Masood Sadiq Butt
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture Faisalabad, 38040 Pakistan.
| | - Iqra Yasmin
- Department of Human Nutrition and Dietetics, University of Chakwal, Chakwal, 48800 Pakistan.
| | - Syed Abdul Wadood
- Department of Food Science and Technology, University of Home Economics Lahore, 54660 Pakistan; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China.
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal 48800, Pakistan.
| | - Heba A Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| |
Collapse
|
5
|
Vorländer D, Schultz G, Hoffmann K, Rasch D, Dohnt K. PETR: A novel peristaltic mixed tubular bioreactor simulating human colonic conditions. Biotechnol Bioeng 2024; 121:1118-1143. [PMID: 38151924 DOI: 10.1002/bit.28636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/29/2023]
Abstract
A novel bioreactor simulating human colonic conditions for in vitro cultivation of intestinal microbiota is presented. The PEristaltic mixed Tubular bioReactor (PETR) is modular designed and periodically kneaded to simulate intestinal peristalsis. The reactor is introduced, characterized from a bioprocess engineer's perspective and discussed in its ability to mimic colon conditions. PETR provides physiological temperature and appropriate anaerobic conditions, simulates intestinal peristalsis, and has a mean residence time of 32.8 ± 0.8 h comparable to the adult human colon. The single-tube design enables a time-constant and longitudinally progressive pH gradient from 5.5 to 7.0. Using a dialysis liquid containing high molecular weight polyethylene glycol, the integrated dialysis system efficiently absorbs short chain fatty acids (up to 60%) and water (on average 850 mL d-1 ). Cultivation of a typical gut bacterium (Bifidobacterium animalis) was performed to demonstrate the applicability for controlled microbiota cultivation. PETR is unique in combining simulation of the entire colon, peristaltic mixing, dialytic water and metabolite absorption, and a progressive pH gradient in a single-tube design. PETR is a further step to precise replication of colonic conditions in vitro for reliable and reproducible microbiota research, such as studying the effect of food compounds, prebiotics or probiotics, or the development and treatment of infections with enteric pathogens, but also for further medical applications such as drug delivery studies or to study the effect of drugs on and their degradation by the microbiota.
Collapse
Affiliation(s)
- David Vorländer
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Gábor Schultz
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristin Hoffmann
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Detlev Rasch
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Katrin Dohnt
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
6
|
Mairal A, Mehrotra S, Kumar A, Maiwal R, Marsal J, Kumar A. Hyaluronic Acid-Conjugated Thermoresponsive Polymer-Based Bioformulation Enhanced Wound Healing and Gut Barrier Repair of a TNBS-Induced Colitis Injury Ex Vivo Model in a Dynamic Perfusion Device. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5382-5400. [PMID: 38266010 DOI: 10.1021/acsami.3c14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Impairment of intestinal epithelium is a typical feature of inflammatory bowel disease (IBD) that causes leakage of bacteria and antigens from the intestinal lumen and thus results in persistent immune activation. Hence, healing and regeneration of the damaged gut mucosa is a promising therapeutic approach to achieve deep remission in IBD. Currently, available systemic therapies have moderate effects and are often associated with numerous side effects and malignancies. In this study, we aimed to develop a topical therapy by chemically conjugating a temperature-responsive polymer, i.e., poly(N-isopropylacrylamide), along with hyaluronic acid to obtain a sprayable therapeutic formulation that upon colon instillation adheres to the damaged gut mucosa due to its temperature-induced phase transition and mucoadhesive properties. An ex vivo adhesion experiment demonstrates that this therapeutic formulation forms a thin physical coating on the mucosal lining at a physiological temperature within 5 min. Physicochemical characterization of (P(NIPAM-co-NTBAM)-HA) established this formulation to be biocompatible, hemo-compatible, and non-immunogenic. Prednisolone was encapsulated within the polymer formulation to achieve maximum therapeutic efficacy in the case of IBD-like conditions as assessed in a custom-fabricated perfusion-based ex vivo model system. Histological analysis suggests that the prednisolone-encapsulated polymer formulation nearly restored the mucosal architecture after 2,4,6-trinitrobenzenesulfonic acid-induced damage. Furthermore, a significant (p ≤ 0.001) increase in mRNA levels of Muc-2 and ZO-1 in treated groups further confirmed the mucosal epithelial barrier restoration.
Collapse
Affiliation(s)
- Ayushi Mairal
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Shreya Mehrotra
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Anupam Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi 110070, Delhi, India
| | - Rakhi Maiwal
- Department of Hepatology, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi 110070, Delhi, India
| | - Jan Marsal
- Department of Clinical Sciences, Lund University and Skåne University Hospital, SE-22185 Lund, Sweden
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre of Excellence for Orthopedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| |
Collapse
|
7
|
Sands C, Hedin KA, Vazquez-Uribe R, Sommer MOA. Saccharomyces boulardii promoters for control of gene expression in vivo. Microb Cell Fact 2024; 23:16. [PMID: 38185666 PMCID: PMC10771652 DOI: 10.1186/s12934-023-02288-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Interest in the use of engineered microbes to deliver therapeutic activities has increased in recent years. The probiotic yeast Saccharomyces boulardii has been investigated for production of therapeutics in the gastrointestinal tract. Well-characterised promoters are a prerequisite for robust therapeutic expression in the gut; however, S. boulardii promoters have not yet been thoroughly characterised in vitro and in vivo. RESULTS We present a thorough characterisation of the expression activities of 12 S. boulardii promoters in vitro in glucose, fructose, sucrose, inulin and acetate, under both aerobic and anaerobic conditions, as well as in the murine gastrointestinal tract. Green fluorescent protein was used to report on promoter activity. Promoter expression was found to be carbon-source dependent, with inulin emerging as a favourable carbon source. Furthermore, relative promoter expression in vivo was highly correlated with expression in sucrose (R = 0.99). CONCLUSIONS These findings provide insights into S. boulardii promoter activity and aid in promoter selection in future studies utilising S. boulardii to produce therapeutics in the gut.
Collapse
Affiliation(s)
- Carmen Sands
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Karl Alex Hedin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| | - Morten Otto Alexander Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
8
|
Macedo GA, Caria CREP, Barbosa PDPM, Mazine MR, Gambero A. Bioaccessibility Evaluation of Soymilk Isoflavones with Biotransformation Processing. Foods 2023; 12:3401. [PMID: 37761112 PMCID: PMC10529168 DOI: 10.3390/foods12183401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Soy isoflavones are considered important sources of bioactive compounds, but they are poorly absorbable, due to their large hydrophilic structures. Some biotransformation strategies have been used to convert the glycosidic form into aglycones, making them available for absorption. This study evaluated the potential of enzymatic and/or microbial fermentation combined bioprocesses in a soymilk extract before and after gastrointestinal in vitro digestion. Commercial β-glucosidase (ET) and a mix of commercial probiotics (F) containing Lactobacillus acidophilus, Lactobacillus casei, Lactococcus lactis, Bifidobacterium bifidum, and Bifidobacterium lactis were used to biotransform the soymilk phenolic extract. An isoflavone profile was identified using HPLC-DAD, total phenolic content was identified using the Folin-Ciocalteu test, and antioxidant capacity was identified using ORAC and FRAP. Soymilk enzymatically treated (ET) followed by microbial fermentation (ET + T) resulted in better conversion of glycosylated isoflavones (6-fold lower than control for daidzin and 2-fold for genistin) to aglycones (18-fold greater than control for dadzein and genistein). The total phenolic content was increased (3.48 mg/mL for control and 4.48 mg/mL for ET + T) and the antioxidant capacity was improved with treatments of ET + T (120 mg/mL for control and 151 mg/mL with ORAC) and with FRAP (285 µL/mL for control and 317 µL/mL). After the in vitro digestion, ET + T samples resulted in a higher content of genistein (two-fold higher than control); also, increases in the total phenolic content (2.81 mg/mL for control and 4.03 mg/mL for ET + T) and antioxidant capacity measured with ORAC were greater compared to undigested samples. In addition, the isolated microbial fermentation process also resulted in positive effects, but the combination of both treatments presented a synergistic effect on soy-based products.
Collapse
Affiliation(s)
- Gabriela Alves Macedo
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Cíntia Rabelo e Paiva Caria
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Paula de Paula Menezes Barbosa
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Marina Rodrigues Mazine
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Alessandra Gambero
- Life Science Center, Pontifical Catholic University of Campinas (PUCCAMP), Campinas 13060-904, SP, Brazil
| |
Collapse
|
9
|
Gut microbial modulation by culinary herbs and spices. Food Chem 2023; 409:135286. [PMID: 36599291 DOI: 10.1016/j.foodchem.2022.135286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Culinary herbs and spices have previously been recognised for their potential impact on health through antioxidant and antimicrobial properties. They may also be promotors of positive microbial modulation by stimulating beneficial gut bacteria during fermentation, increasing the production of short chain fatty acids and thereby exhibiting a prebiotic effect. In the present paper, current literature around herb and spice consumption, gut microbiota modulation and prospective health benefits were reviewed. Herb and spice consumption can positively modulate gut microbes and possibly play an important role in inflammation related afflictions such as obesity. Current literature indicates that few human studies have been conducted to confirm the impact of herb and spice consumption on gut microbiota in connection with prospective health outcomes and inconsistencies in conclusions therefore remain.
Collapse
|
10
|
Navez M, Antoine C, Laforêt F, Goya-Jorge E, Douny C, Scippo ML, Vermeersch M, Duprez JN, Daube G, Mainil J, Taminiau B, Delcenserie V, Thiry D. In Vitro Effect on Piglet Gut Microbiota and In Vivo Assessment of Newly Isolated Bacteriophages against F18 Enterotoxigenic Escherichia coli (ETEC). Viruses 2023; 15:v15051053. [PMID: 37243139 DOI: 10.3390/v15051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) causing post-weaning diarrhea (PWD) in piglets have a detrimental impact on animal health and economy in pig production. ETEC strains can adhere to the host's small intestinal epithelial cells using fimbriae such as F4 and F18. Phage therapy could represent an interesting alternative to antimicrobial resistance against ETEC infections. In this study, four bacteriophages, named vB_EcoS_ULIM2, vB_EcoM_ULIM3, vB_EcoM_ULIM8 and vB_EcoM_ULIM9, were isolated against an O8:F18 E. coli strain (A-I-210) and selected based on their host range. These phages were characterized in vitro, showing a lytic activity over a pH (4-10) and temperature (25-45 °C) range. According to genomic analysis, these bacteriophages belong to the Caudoviricetes class. No gene related to lysogeny was identified. The in vivo Galleria mellonella larvae model suggested the therapeutic potential of one selected phage, vB_EcoS_ULIM2, with a statistically significant increase in survival compared to non-treated larvae. To assess the effect of this phage on the piglet gut microbiota, vB_EcoS_ULIM2 was inoculated in a static model simulating the piglet intestinal microbial ecosystem for 72 h. This study shows that this phage replicates efficiently both in vitro and in vivo in a Galleria mellonella model and reveals the safety of the phage-based treatment on the piglet microbiota.
Collapse
Affiliation(s)
- Margaux Navez
- Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
- Unit of Cardiovascular Sciences, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), University of Liege, 4000 Liege, Belgium
| | - Céline Antoine
- Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
- Laboratory of Food Quality Management, Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| | - Fanny Laforêt
- Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
- Laboratory of Food Quality Management, Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| | - Elizabeth Goya-Jorge
- Laboratory of Food Quality Management, Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| | - Caroline Douny
- Laboratory of Food Analysis, Department of Food Sciences, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Sciences, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging, Electron Microscopy Laboratory, ULB, 6041 Gosselies, Belgium
| | - Jean-Noël Duprez
- Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Georges Daube
- Laboratory of Food Microbiology, Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Jacques Mainil
- Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Bernard Taminiau
- Laboratory of Food Microbiology, Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Sciences, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Véronique Delcenserie
- Laboratory of Food Quality Management, Food Science Department, FARAH and Faculty of Veterinary Medicine, University of Liège, 4000 Liege, Belgium
| | - Damien Thiry
- Laboratory of Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| |
Collapse
|
11
|
Impact Assessment of vB_KpnP_K1-ULIP33 Bacteriophage on the Human Gut Microbiota Using a Dynamic In Vitro Model. Viruses 2023; 15:v15030719. [PMID: 36992428 PMCID: PMC10057081 DOI: 10.3390/v15030719] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
New control methods are needed to counter antimicrobial resistances and the use of bacteriophages as an alternative treatment seems promising. To that end, the effect of the phage vB_KpnP_K1-ULIP33, whose host is the hypervirulent Klebsiella pneumoniae SA12 (ST23 and capsular type K1), was assessed on intestinal microbiota, using an in vitro model: the SHIME® system (Simulator of the Human Intestinal Microbial Ecosystem). After stabilization of the system, the phage was inoculated for 7 days and its persistence in the different colons was studied until its disappearance from the system. The concentration of short chain fatty acids in the colons showed good colonization of the bioreactors by the microbiota and no significant effect related to the phage treatment. Diversity (α and β), the relative abundance of bacteria, and qPCR analysis targeting different genera of interest showed no significant variation following phage administration. Even if further in vitro studies are needed to assess the efficacy of this phage against its bacterial host within the human intestinal ecosystem, the phage ULIP33 exerted no significant change on the global colonic microbiota.
Collapse
|
12
|
Kim HJ, Mo SJ, Kim J, Nam B, Park S, Sim J, Sim J, Lee J. Organic vegetable juice supplement alleviates hyperlipidemia in diet-induced obese mice and modulates microbial community in continuous colon simulation system. Food Sci Nutr 2023; 11:1531-1543. [PMID: 36911823 PMCID: PMC10002948 DOI: 10.1002/fsn3.3193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023] Open
Abstract
In this study, we investigated the effects of organic vegetable juice (OVJ) supplementation on modulating the microbial community, and how its consumption ameliorated blood-lipid profiles in diet-induced obese mice. Here, we studied the alleviating effect of hyperlipidemia via animal experiments using diet-induced obese mice and analyzed the effect of OVJ on the microbial community in continuous colon simulation system. OVJ consumption did not have a significant effect on weight loss but helped reduce the weight of the epididymis fat tissue and adipocytes. Additionally, blood-lipid profiles, such as triglyceride, high-density lipoprotein, and glucose, were improved in the OVJ-fed group. Expression levels of genes related to lipid synthesis, including SREBP-1, PPARγ, C/EBPα, and FAS, were significantly decreased. In addition, OVJ treatment significantly reduced inflammatory cytokines and oxidative stress. OVJ supplement influenced intestinal bacterial composition from phylum to genus level, including decreased Proteobacteria in the ascending colon in the phylum. At the family level, Akkermansia, which are associated with obesity, were significantly augmented in the transverse colon and descending colon compared to the control juice group. In addition, treatment with OVJ affected predicted lipid-metabolism-function genes related to lipid synthesis. These results suggest that OVJ supplementation may modulate gut microbial community and reduce the potential symptom of hyperlipidemia in diet-obese mice.
Collapse
Affiliation(s)
| | | | - Jisoo Kim
- R&BD Center, hy Co., Ltd.Yongin‐siKorea
| | - Bora Nam
- R&BD Center, hy Co., Ltd.Yongin‐siKorea
| | | | | | | | | |
Collapse
|
13
|
González F, Carelli A, Komarcheuski A, Uana M, do Prado RM, Rossoni D, Gomes M, Vasconcellos R. Yeast Cell Wall Compounds on The Formation of Fermentation Products and Fecal Microbiota in Cats: An In Vivo and In Vitro Approach. Animals (Basel) 2023; 13:637. [PMID: 36830424 PMCID: PMC9951743 DOI: 10.3390/ani13040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 02/15/2023] Open
Abstract
The effects of yeast cell wall compounds (YCWs) being added to cat food on hindgut fermentation metabolites and fecal microbiota were assessed in in vivo Experiment 1 (Exp. 1) and in vitro Experiments 2 and 3 (Exp. 2 and 3). In Exp. 1, the cats' diets were supplemented with two dietary concentrations (46.2 and 92.4 ppm) of YCWs (YCW-15 and YCW-30, respectively), and a negative control diet with no compound in three groups (six cats per group) was used to assess the fecal score, pH, digestibility, fermentation products, and microbiota. In Exp. 2, feces from the cats that were not supplemented with YCWs (control) were used as an inoculum. A blend of pectin, amino acids, and cellulose was used as a substrate, and the YCW compound was added at two levels (5 and 10 mg). In Exp. 3, feces from cats fed YCWs were used as an inoculum to test three different substrates (pectin, amino acids, and cellulose). In Exp. 2 and 3, the gas production, pH, and fermentation products (ammonia, SCFAs, and BCFAs) were assessed. YCW-30 resulted in a higher digestibility coefficient of the crude protein, organic matter (OM) (p < 0.05), and energy of the diet (p < 0.10). Regarding the fermentation products, YCW-15 showed a trend toward higher concentrations of propionate, acetate, lactate, ammonia, isobutyrate, and valerate, while YCW-30 showed a trend (p < 0.10) toward higher levels of butyrate and pH values. The bacteroidia class and the genus Prevotella were increased by using YCW-30 and the control. At the gender level, decreased (p < 0.01) Megasphaera was observed with YCW inclusion. The microbiota differed (p < 0.01) among the groups in their Shannon indexes. For beta diversity, YCW-30 showed higher indexes (p = 0.008) than the control. The microbiota metabolic profile differed in the pathway CENTFERM-PWY; it was more expressed in YCW-30 compared to the control. In Exp. 2, the YCWs showed a higher ratio (p = 0.006) of the fermentation products in the treatments with additives with a trend towards a high dose of the additive (10 mg). In Exp. 3, the effects of the substrates (p < 0.001), but not of the YCWs, on the fermentation products were observed, perhaps due to the low dietary concentrations we used. However, the marked responses of the fermentation products to the substrates validated the methodology. We could conclude that the YCWs, even at low dietary concentrations, affected fecal SCFA production, reduced the fecal pH, and modulated the fecal microbiota in the cats. These responses were more pronounced under in vitro conditions.
Collapse
Affiliation(s)
- Fernando González
- Department of Internal Medicine, College of Veterinary Medicine and Animal Science, University of São Paulo (USP)—São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo 13690-970, Brazil
| | - Amanda Carelli
- Department of Animal Science, State University of Maringá, Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Alina Komarcheuski
- Department of Animal Science, State University of Maringá, Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Mayara Uana
- Department of Animal Science, State University of Maringá, Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Rodolpho Martin do Prado
- Department of Animal Science, State University of Maringá, Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Diogo Rossoni
- Department of Animal Science, State University of Maringá, Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Márcia Gomes
- Department of Internal Medicine, College of Veterinary Medicine and Animal Science, University of São Paulo (USP)—São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo 13690-970, Brazil
| | - Ricardo Vasconcellos
- Department of Animal Science, State University of Maringá, Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| |
Collapse
|
14
|
Li C, Zhang X. Current in Vitro and Animal Models for Understanding Foods: Human Gut-Microbiota Interactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12733-12745. [PMID: 36166347 DOI: 10.1021/acs.jafc.2c04238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The food-gut microbiota interaction is an important regulator of human health. Numerous in vitro and animal models have thus been developed in order to simulate the specific food-gut microbiota and/or host-gut microbiota interactions in the human colon. This review summarizes the design principles of each model and discusses their advantages and weaknesses in terms of studying food-gut microbiota interactions. In vitro fermentation models appear to be reliable methods to investigate various aspects involved in the food-gut microbiota interactions in humans. However, many physiological perspectives lack appreciation of these models, such as peristaltic movement, biochemical conditions, and gastrointestinal anatomy. Animal models provide more physiological relevance to human trials compared to in vitro models. However, they may have gastrointestinal tract aspects that are distinct from human subjects. This review contains important information that can help the development of more advanced models to study food-gut microbiota interactions in humans.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
15
|
Lawrence GW, McCarthy N, Walsh CJ, Kunyoshi TM, Lawton EM, O’Connor PM, Begley M, Cotter PD, Guinane CM. Effect of a bacteriocin-producing Streptococcus salivarius on the pathogen Fusobacterium nucleatum in a model of the human distal colon. Gut Microbes 2022; 14:2100203. [PMID: 35877697 PMCID: PMC9318236 DOI: 10.1080/19490976.2022.2100203] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome is a vast reservoir of microbes, some of which produce antimicrobial peptides called bacteriocins that may inhibit specific bacteria associated with disease. Fusobacterium nucleatum is an emerging human bacterial pathogen associated with gastrointestinal diseases including colorectal cancer (CRC). In this study, fecal samples of healthy donors were screened for potential bacteriocin-producing probiotics with antimicrobial activity against F. nucleatum. A novel isolate, designated as Streptococcus salivarius DPC6993 demonstrated a narrow-spectrum of antimicrobial activity against F. nucleatum in vitro. In silico analysis of the S. salivarius DPC6993 genome revealed the presence of genes involved in the production of the bacteriocins salivaricin A5 and salivaricin B. After 6 h in a colon fermentation model, there was a significant drop in the number of F. nucleatum in samples that had been simultaneously inoculated with S. salivarius DPC6993 + F. nucleatum DSM15643 compared to those inoculated with F. nucleatum DSM15643 alone (mean ± SD: 9243.3 ± 3408.4 vs 29688.9 ± 4993.9 copies/μl). Furthermore, 16S rRNA amplicon analysis revealed a significant difference in the mean relative abundances of Fusobacterium between samples inoculated with both S. salivarius DPC6993 and F. nucleatum DSM15643 (0.05%) and F. nucleatum DSM15643 only (0.32%). Diversity analysis indicated minimal impact exerted by S. salivarius DPC6993 on the surrounding microbiota. Overall, this study highlights the ability of a natural gut bacterium to target a bacterial pathogen associated with CRC. The specific targeting of CRC-associated pathogens by biotherapeutics may ultimately reduce the risk of CRC development and positively impact CRC outcomes.
Collapse
Affiliation(s)
- Garreth W. Lawrence
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Niamh McCarthy
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Calum J. Walsh
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland,VistaMilk SFI Research Centre, Moorepark, Fermoy, Cork, Ireland
| | | | | | - Paula M. O’Connor
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland,VistaMilk SFI Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Paul D. Cotter
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland,VistaMilk SFI Research Centre, Moorepark, Fermoy, Cork, Ireland,Paul D. Cotter Food Biosciences, Teagasc Food Research Centre Moorepark, APC Microbiome Ireland, Cork, Ireland
| | - Caitriona M. Guinane
- Department of Biological Sciences, Munster Technological University, Cork, Ireland,CONTACT Caitriona M. Guinane Department of Biological Sciences, Munster Technological University, Cork, Ireland
| |
Collapse
|
16
|
Hobson CA, Vigue L, Naimi S, Chassaing B, Magnan M, Bonacorsi S, Gachet B, El Meouche I, Birgy A, Tenaillon O. MiniBioReactor Array (MBRA) in vitro gut model: a reliable system to study microbiota-dependent response to antibiotic treatment. JAC Antimicrob Resist 2022; 4:dlac077. [PMID: 35795241 PMCID: PMC9252984 DOI: 10.1093/jacamr/dlac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Antimicrobial drugs are mostly studied for their impact on emergence of bacterial antibiotic resistance, but their impact on the gut microbiota is also of tremendous interest. In vitro gut models are important tools to study such complex drug–microbiota interactions in humans. Methods The MiniBioReactor Array (MBRA) in vitro microbiota system; a single-stage continuous flow culture model, hosted in an anaerobic chamber; was used to evaluate the impact of three concentrations of a third-generation cephalosporin (ceftriaxone) on faecal microbiota from two healthy donors (treatment versus control: three replicates per condition). We conducted 16S microbiome profiling and analysed microbial richness, diversity and taxonomic changes. β-Lactamase activities were evaluated and correlated with the effects observed in the MBRA in vitro system. Results The MBRA preserved each donor’s specificities, and differences between the donors were maintained through time. Before treatment, all faecal cultures belonging to the same donor were comparable in composition, richness, and diversity. Treatment with ceftriaxone was associated with a decrease in α-diversity, and an increase in β-diversity index, in a concentration-dependent manner. The maximum effect on diversity was observed after 72 h of treatment. Importantly, one donor had a stronger microbiota β-lactamase activity that was associated with a reduced impact of ceftriaxone on microbiota composition. Conclusions MBRA can reliably mimic the intestinal microbiota and its modifications under antibiotic selective pressure. The impact of the treatment was donor- and concentration-dependent. We hypothesize these results could be explained, at least in part, by the differences in β-lactamase activity of the microbiota itself. Our results support the relevance and promise of the MBRA system to study drug–microbiota interactions.
Collapse
Affiliation(s)
- C A Hobson
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - L Vigue
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - S Naimi
- INSERM U1016, Team ‘Mucosal Microbiota in Chronic Inflammatory diseases’, CNRS UMR 8104, Université de Paris , Paris , France
| | - B Chassaing
- INSERM U1016, Team ‘Mucosal Microbiota in Chronic Inflammatory diseases’, CNRS UMR 8104, Université de Paris , Paris , France
| | - M Magnan
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - S Bonacorsi
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
- Laboratoire de Microbiologie, Hôpital Robert Debré, AP-HP , 75019 Paris , France
| | - B Gachet
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - I El Meouche
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| | - A Birgy
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
- Laboratoire de Microbiologie, Hôpital Robert Debré, AP-HP , 75019 Paris , France
| | - O Tenaillon
- IAME, UMR 1137, INSERM, Université de Paris, AP-HP , Paris , France
| |
Collapse
|
17
|
Gibbons SM, Gurry T, Lampe JW, Chakrabarti A, Dam V, Everard A, Goas A, Gross G, Kleerebezem M, Lane J, Maukonen J, Penna ALB, Pot B, Valdes AM, Walton G, Weiss A, Zanzer YC, Venlet NV, Miani M. Perspective: Leveraging the Gut Microbiota to Predict Personalized Responses to Dietary, Prebiotic, and Probiotic Interventions. Adv Nutr 2022; 13:1450-1461. [PMID: 35776947 PMCID: PMC9526856 DOI: 10.1093/advances/nmac075] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023] Open
Abstract
Humans often show variable responses to dietary, prebiotic, and probiotic interventions. Emerging evidence indicates that the gut microbiota is a key determinant for this population heterogeneity. Here, we provide an overview of some of the major computational and experimental tools being applied to critical questions of microbiota-mediated personalized nutrition and health. First, we discuss the latest advances in in silico modeling of the microbiota-nutrition-health axis, including the application of statistical, mechanistic, and hybrid artificial intelligence models. Second, we address high-throughput in vitro techniques for assessing interindividual heterogeneity, from ex vivo batch culturing of stool and continuous culturing in anaerobic bioreactors, to more sophisticated organ-on-a-chip models that integrate both host and microbial compartments. Third, we explore in vivo approaches for better understanding of personalized, microbiota-mediated responses to diet, prebiotics, and probiotics, from nonhuman animal models and human observational studies, to human feeding trials and crossover interventions. We highlight examples of existing, consumer-facing precision nutrition platforms that are currently leveraging the gut microbiota. Furthermore, we discuss how the integration of a broader set of the tools and techniques described in this piece can generate the data necessary to support a greater diversity of precision nutrition strategies. Finally, we present a vision of a precision nutrition and healthcare future, which leverages the gut microbiota to design effective, individual-specific interventions.
Collapse
Affiliation(s)
| | - Thomas Gurry
- Pharmaceutical Biochemistry group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (PSI-WS), University of Geneva/University of Lausanne, Geneva, Switzerland
| | - Johanna W Lampe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Veerle Dam
- Sensus BV (Royal Cosun), Roosendaal, The Netherlands
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Almudena Goas
- Department of Food, Nutrition, and Exercise Sciences, University of Surrey, Guildford, United Kingdom
| | - Gabriele Gross
- Medical and Scientific Affairs, Reckitt| Mead Johnson Nutrition Institute, Nijmegen, The Netherlands
| | - Michiel Kleerebezem
- Host Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Jonathan Lane
- Health and Happiness Group, H&H Research, Cork, Ireland
| | | | - Ana Lucia Barretto Penna
- Department of Food Engineering and Technology, São Paulo State University, São José do Rio Preto, Brazil
| | - Bruno Pot
- Yakult Europe BV, Almere, The Netherlands
| | - Ana M Valdes
- Nottingham NIHR Biomedical Research Centre at the School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Gemma Walton
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Adrienne Weiss
- Yili Innovation Center Europe, Wageningen, The Netherlands
| | | | - Naomi V Venlet
- International Life Sciences Institute, European Branch, Brussels, Belgium
| | - Michela Miani
- International Life Sciences Institute, European Branch, Brussels, Belgium
| |
Collapse
|
18
|
Fundamentals and Applications of Artificial Neural Network Modelling of Continuous Bifidobacteria Monoculture at a Low Flow Rate. DATA 2022. [DOI: 10.3390/data7050058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The application of artificial neural networks (ANNs) to mathematical modelling in microbiology and biotechnology has been a promising and convenient tool for over 30 years because ANNs make it possible to predict complex multiparametric dependencies. This article is devoted to the investigation and justification of ANN choice for modelling the growth of a probiotic strain of Bifidobacterium adolescentis in a continuous monoculture, at low flow rates, under different oligofructose (OF) concentrations, as a preliminary study for a predictive model of the behaviour of intestinal microbiota. We considered the possibility and effectiveness of various classes of ANN. Taking into account the specifics of the experimental data, we proposed two-layer perceptrons as a mathematical modelling tool trained on the basis of the error backpropagation algorithm. We proposed and tested the mechanisms for training, testing and tuning the perceptron on the basis of both the standard ratio between the training and test sample volumes and under the condition of limited training data, due to the high cost, duration and the complexity of the experiments. We developed and tested the specific ANN models (class, structure, training settings, weight coefficients) with new data. The validity of the model was confirmed using RMSE, which was from 4.24 to 980% for different concentrations. The results showed the high efficiency of ANNs in general and bilayer perceptrons in particular in solving modelling tasks in microbiology and biotechnology, making it possible to recommend this tool for further wider applications.
Collapse
|
19
|
The interplay between anticancer challenges and the microbial communities from the gut. Eur J Clin Microbiol Infect Dis 2022; 41:691-711. [PMID: 35353280 DOI: 10.1007/s10096-022-04435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/15/2022] [Indexed: 11/03/2022]
Abstract
Cancer being an increasing burden on human health, the use of anticancer drugs has risen over the last decades. The physiological effects of these drugs are not only perceived by the host's cells but also by the microbial cells it harbors as commensals, notably the gut microbiota. Since the early '50 s, the cytotoxicity of anticancer chemotherapy was evaluated on bacteria revealing some antimicrobial activities that result in an established perturbation of the gut microbiota. This perturbation can affect the host's health through dysbiosis, which can lead to multiple complications, but has also been shown to have a direct effect on the treatment efficiency.We, therefore, conducted a review of literature focusing on this triangular relationship involving the microbial communities from the gut, the host's disease, and the anticancer treatment. We focused specifically on the antimicrobial effects of anticancer chemotherapy, their impact on mutagenesis in bacteria, and the perspectives of using bacteria-based tools to help in the diagnostic and treatment of cancer.
Collapse
|
20
|
A Study and Modeling of Bifidobacterium and Bacillus Coculture Continuous Fermentation under Distal Intestine Simulated Conditions. Microorganisms 2022; 10:microorganisms10050929. [PMID: 35630373 PMCID: PMC9147766 DOI: 10.3390/microorganisms10050929] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
The diversity and the stability of the microbial community are associated with microecological interactions between its members. Antagonism is one type of interaction, which particularly determines the benefits that probiotics bring to host health by suppressing opportunistic pathogens and microbial contaminants in food. Mathematical models allow for quantitatively predicting intrapopulation relationships. The aim of this study was to create predictive models for bacterial contamination outcomes depending on the probiotic antagonism and prebiotic concentration. This should allow an improvement in the screening of synbiotic composition for preventing gut microbial infections. The functional model (fermentation) was based on a three-stage continuous system, and the distal colon section (N2, pH 6.8, flow rate 0.04 h–1) was simulated. The strains Bifidobacterium adolescentis ATCC 15703 and Bacillus cereus ATCC 9634 were chosen as the model probiotic and pathogen. Oligofructose Orafti P95 (OF) was used as the prebiotic at concentrations of 2, 5, 7, 10, 12, and 15 g/L of the medium. In the first stage, the system was inoculated with Bifidobacterium, and a dynamic equilibrium (Bifidobacterium count, lactic, and acetic acids) was achieved. Then, the system was contaminated with a 3-day Bacillus suspension (spores). The microbial count, as well as the concentration of acids and residual carbohydrates, was measured. A Bacillus monoculture was studied as a control. The stationary count of Bacillus in monoculture was markedly higher. An increase (up to 8 h) in the lag phase was observed for higher prebiotic concentrations. The specific growth rate in the exponential phase varied at different OF concentrations. Thus, the OF concentration influenced two key events of bacterial infection, which together determine when the maximal pathogen count will be reached. The mathematical models were developed, and their accuracies were acceptable for Bifidobacterium (relative errors ranging from 1.00% to 2.58%) and Bacillus (relative errors ranging from 0.74% to 2.78%) count prediction.
Collapse
|
21
|
Hong L, Salentinig S. Functional food colloids: studying structure and interactions during digestion. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Hernalsteens S, Huang S, Cong HH, Chen XD. The final fate of food: On the establishment of in vitro colon models. Food Res Int 2021; 150:110743. [PMID: 34865762 DOI: 10.1016/j.foodres.2021.110743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
The search for life/health quality has driven the search for a better understanding of food components on the overall individual health, which turns to be intrinsically related to the digestive system. In vitro digestion models are considered an alternative for the in vivo studies for a variety of practical reasons, but further research is still needed concerning the colon model establishment. An effective in vitro colon model should consider all unit operations and transport phenomena, together with chemical and biochemical reactions, material handling and reactor design. Due to the different techniques and dependence on the donor microbiota, it is difficult to obtain a standard protocol with results reproductible in time and space. Furthermore, the colon model should be fed with a representative substrate, thus what happens in upper digestion tract and absorption prior to colon is also of crucial importance. Essentially, there are two ways to think about how to achieve a good and useful in vitro colon model: a complex biomimetic system that provides results comparable with the in vivo studies or a simple system, that despite the fact it could not give physiologically relevant data, it is sufficient to understand the fate of some specific components.
Collapse
Affiliation(s)
- Saartje Hernalsteens
- College of Chemistry, Chemical Engineering and Materials Science - Soochow University, China.
| | | | - Hai Hua Cong
- College of Food Science and Engineering - Dalian Ocean University, China
| | - Xiao Dong Chen
- College of Chemistry, Chemical Engineering and Materials Science - Soochow University, China.
| |
Collapse
|
23
|
Wang Y, Liu Y, Ivusic Polic I, Chandran Matheyambath A, LaPointe G. Modulation of human gut microbiota composition and metabolites by arabinogalactan and Bifidobacterium longum subsp. longum BB536 in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
24
|
Liu Y, Chandran Matheyambath A, Ivusic Polic I, LaPointe G. Differential fermentation of raw and processed high-amylose and waxy maize starches in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
25
|
Garcia-Gutierrez E, Cotter PD. Relevance of organ(s)-on-a-chip systems to the investigation of food-gut microbiota-host interactions. Crit Rev Microbiol 2021; 48:463-488. [PMID: 34591726 DOI: 10.1080/1040841x.2021.1979933] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ever greater understanding of the composition and function of the gut microbiome has provided new opportunities with respect to understanding and treating human disease. However, the models employed for in vitro and in vivo animal studies do not always provide the required insights. As a result, one such alternative in vitro cell culture based system, organ-on-a-chip technology, has recently attracted attention as a means of obtaining data that is representative of responses in humans. Organ-on-a-chip systems are designed to mimic the interactions of different tissue elements that were missing from traditional two-dimensional tissue culture. While they do not traditionally include a microbiota component, organ-on-a-chip systems provide a potentially valuable means of characterising the interactions between the microbiome and human tissues with a view to providing even greater accuracy. From a dietary perspective, these microbiota-organ-on-a-chip combinations can help researchers to predict how the consumption of specific foods and ingredients can impact on human health and disease. We provide an overview of the relevance and interactions of the gut microbiota and the diet in human health, we summarise the components involved in the organ-on-a-chip systems, how these systems have been employed for microbiota based studies and their potential relevance to study the interplay between food-gut microbiota-host interactions.
Collapse
Affiliation(s)
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,VistaMilk SFI Research Centre, Moorepark, Ireland
| |
Collapse
|
26
|
Shannon E, Conlon M, Hayes M. Seaweed Components as Potential Modulators of the Gut Microbiota. Mar Drugs 2021; 19:358. [PMID: 34201794 PMCID: PMC8303941 DOI: 10.3390/md19070358] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022] Open
Abstract
Macroalgae, or seaweeds, are a rich source of components which may exert beneficial effects on the mammalian gut microbiota through the enhancement of bacterial diversity and abundance. An imbalance of gut bacteria has been linked to the development of disorders such as inflammatory bowel disease, immunodeficiency, hypertension, type-2-diabetes, obesity, and cancer. This review outlines current knowledge from in vitro and in vivo studies concerning the potential therapeutic application of seaweed-derived polysaccharides, polyphenols and peptides to modulate the gut microbiota through diet. Polysaccharides such as fucoidan, laminarin, alginate, ulvan and porphyran are unique to seaweeds. Several studies have shown their potential to act as prebiotics and to positively modulate the gut microbiota. Prebiotics enhance bacterial populations and often their production of short chain fatty acids, which are the energy source for gastrointestinal epithelial cells, provide protection against pathogens, influence immunomodulation, and induce apoptosis of colon cancer cells. The oral bioaccessibility and bioavailability of seaweed components is also discussed, including the advantages and limitations of static and dynamic in vitro gastrointestinal models versus ex vivo and in vivo methods. Seaweed bioactives show potential for use in prevention and, in some instances, treatment of human disease. However, it is also necessary to confirm these potential, therapeutic effects in large-scale clinical trials. Where possible, we have cited information concerning these trials.
Collapse
Affiliation(s)
- Emer Shannon
- Food Biosciences, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
- CSIRO Health and Biosecurity, Kintore Avenue, Adelaide, SA 5000, Australia;
| | - Michael Conlon
- CSIRO Health and Biosecurity, Kintore Avenue, Adelaide, SA 5000, Australia;
| | - Maria Hayes
- Food Biosciences, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
| |
Collapse
|
27
|
Roupar D, Berni P, Martins JT, Caetano AC, Teixeira JA, Nobre C. Bioengineering approaches to simulate human colon microbiome ecosystem. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
3D Bioprinting for fabrication of tissue models of COVID-19 infection. Essays Biochem 2021; 65:503-518. [PMID: 34028514 DOI: 10.1042/ebc20200129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
Over the last few decades, the world has witnessed multiple viral pandemics, the current severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) pandemic being the worst and most devastating one, claiming millions of lives worldwide. Physicians, scientists, and engineers worldwide have joined hands in dealing with the current situation at an impressive speed and efficiency. One of the major reasons for the delay in response is our limited understanding of the mechanism of action and individual effects of the virus on different tissues and organs. Advances in 3D bioprinting have opened up a whole new area to explore and utilize the technology in fabricating models of these tissues and organs, recapitulating in vivo environment. These biomimetic models can not only be utilized in learning the infection pathways and drug toxicology studies but also minimize the need for animal models and shorten the time span for human clinical trials. The current review aims to integrate the existing developments in bioprinting techniques, and their implementation to develop tissue models, which has implications for SARS-CoV-2 infection. Future translation of these models has also been discussed with respect to the pandemic.
Collapse
|
29
|
Durmusoglu D, Al’Abri IS, Collins SP, Cheng J, Eroglu A, Beisel CL, Crook N. In Situ Biomanufacturing of Small Molecules in the Mammalian Gut by Probiotic Saccharomyces boulardii. ACS Synth Biol 2021; 10:1039-1052. [PMID: 33843197 DOI: 10.1021/acssynbio.0c00562] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Saccharomyces boulardii is a probiotic yeast that exhibits rapid growth at 37 °C, is easy to transform, and can produce therapeutic proteins in the gut. To establish its ability to produce small molecules encoded by multigene pathways, we measured the amount and variance in protein expression enabled by promoters, terminators, selective markers, and copy number control elements. We next demonstrated efficient (>95%) CRISPR-mediated genome editing in this strain, allowing us to probe engineered gene expression across different genomic sites. We leveraged these strategies to assemble pathways enabling a wide range of vitamin precursor (β-carotene) and drug (violacein) titers. We found that S. boulardii colonizes germ-free mice stably for over 30 days and competes for niche space with commensal microbes, exhibiting short (1-2 day) gut residence times in conventional and antibiotic-treated mice. Using these tools, we enabled β-carotene synthesis (194 μg total) in the germ-free mouse gut over 14 days, estimating that the total mass of additional β-carotene recovered in feces was 56-fold higher than the β-carotene present in the initial probiotic dose. This work quantifies heterologous small molecule production titers by S. boulardii living in the mammalian gut and provides a set of tools for modulating these titers.
Collapse
Affiliation(s)
- Deniz Durmusoglu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ibrahim S. Al’Abri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Scott P. Collins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Junrui Cheng
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Room 3204, Kannapolis, North Carolina 28081, United States
| | - Abdulkerim Eroglu
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Room 3204, Kannapolis, North Carolina 28081, United States
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, 120 Broughton Drive, Room 351, Raleigh, North Carolina 27695-7622, United States
| | - Chase L. Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg 97080, Germany
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
30
|
An In Vitro Pilot Fermentation Study on the Impact of Chlorella pyrenoidosa on Gut Microbiome Composition and Metabolites in Healthy and Coeliac Subjects. Molecules 2021; 26:molecules26082330. [PMID: 33923841 PMCID: PMC8072933 DOI: 10.3390/molecules26082330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/25/2022] Open
Abstract
The response of a coeliac and a healthy gut microbiota to the green algae Chlorella pyrenoidosa was evaluated using an in vitro continuous, pH controlled, gut model system, which simulated the human colon. The effect of C. pyrenoidosa on the microbial structure was determined by 16S rRNA gene sequencing and inferred metagenomics, whereas the metabolic activitywas determined by1H-nuclear magnetic resonancespectroscopic analysis. The addition of C. pyrenoidosa significantly increased the abundance of the genera Prevotella, Ruminococcus and Faecalibacterium in the healthy donor, while an increase in Faecalibacterium, Bifidobacterium and Megasphaera and a decrease in Enterobacteriaceae were observed in the coeliac donor. C. pyrenoidosa also altered several microbial pathways including those involved in short-chain fatty acid (SCFA) production. At the metabolic level, a significant increase from baseline was seen in butyrate and propionate (p < 0.0001) in the healthy donor, especially in vessels 2 and 3. While acetate was significantly higher in the healthy donor at baseline in vessel 3 (p < 0.001) compared to the coeliac donor, this was markedly decreased after in vitro fermentation with C. pyrenoidosa. This is the first in vitro fermentation study of C. pyrenoidosa and human gut microbiota, however, further in vivo studies are needed to prove its efficacy.
Collapse
|
31
|
Novel and emerging prebiotics: Advances and opportunities. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 95:41-95. [PMID: 33745516 DOI: 10.1016/bs.afnr.2020.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Consumers are conscientiously changing their eating preferences toward healthier options, such as functional foods enriched with pre- and probiotics. Prebiotics are attractive bioactive compounds with multidimensional beneficial action on both human and animal health, namely on the gastrointestinal tract, cardiometabolism, bones or mental health. Conventionally, prebiotics are non-digestible carbohydrates which generally present favorable organoleptic properties, temperature and acidic stability, and are considered interesting food ingredients. However, according to the current definition of prebiotics, application categories other than food are accepted, as well as non-carbohydrate substrates and bioactivity at extra-intestinal sites. Regulatory issues are considered a major concern for prebiotics since a clear understanding and application of these compounds among the consumers, regulators, scientists, suppliers or manufacturers, health-care providers and standards or recommendation-setting organizations are of utmost importance. Prebiotics can be divided in several categories according to their development and regulatory status. Inulin, galactooligosaccharides, fructooligosaccharides and lactulose are generally classified as well established prebiotics. Xylooligosaccharides, isomaltooligosaccharides, chitooligosaccharides and lactosucrose are classified as "emerging" prebiotics, while raffinose, neoagaro-oligosaccharides and epilactose are "under development." Other substances, such as human milk oligosaccharides, polyphenols, polyunsaturated fatty acids, proteins, protein hydrolysates and peptides are considered "new candidates." This chapter will encompass actual information about the non-established prebiotics, mainly their physicochemical properties, market, legislation, biological activity and possible applications. Generally, there is a lack of clear demonstrations about the effective health benefits associated with all the non-established prebiotics. Overcoming this limitation will undoubtedly increase the demand for these compounds and their market size will follow the consumer's trend.
Collapse
|
32
|
Xiang S, Ye K, Li M, Ying J, Wang H, Han J, Shi L, Xiao J, Shen Y, Feng X, Bao X, Zheng Y, Ge Y, Zhang Y, Liu C, Chen J, Chen Y, Tian S, Zhu X. Xylitol enhances synthesis of propionate in the colon via cross-feeding of gut microbiota. MICROBIOME 2021; 9:62. [PMID: 33736704 PMCID: PMC7977168 DOI: 10.1186/s40168-021-01029-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/05/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Xylitol, a white or transparent polyol or sugar alcohol, is digestible by colonic microorganisms and promotes the proliferation of beneficial bacteria and the production of short-chain fatty acids (SCFAs), but the mechanism underlying these effects remains unknown. We studied mice fed with 0%, 2% (2.17 g/kg/day), or 5% (5.42 g/kg/day) (weight/weight) xylitol in their chow for 3 months. In addition to the in vivo digestion experiments in mice, 3% (weight/volume) (0.27 g/kg/day for a human being) xylitol was added to a colon simulation system (CDMN) for 7 days. We performed 16S rRNA sequencing, beneficial metabolism biomarker quantification, metabolome, and metatranscriptome analyses to investigate the prebiotic mechanism of xylitol. The representative bacteria related to xylitol digestion were selected for single cultivation and co-culture of two and three bacteria to explore the microbial digestion and utilization of xylitol in media with glucose, xylitol, mixed carbon sources, or no-carbon sources. Besides, the mechanisms underlying the shift in the microbial composition and SCFAs were explored in molecular contexts. RESULTS In both in vivo and in vitro experiments, we found that xylitol did not significantly influence the structure of the gut microbiome. However, it increased all SCFAs, especially propionate in the lumen and butyrate in the mucosa, with a shift in its corresponding bacteria in vitro. Cross-feeding, a relationship in which one organism consumes metabolites excreted by the other, was observed among Lactobacillus reuteri, Bacteroides fragilis, and Escherichia coli in the utilization of xylitol. At the molecular level, we revealed that xylitol dehydrogenase (EC 1.1.1.14), xylulokinase (EC 2.7.1.17), and xylulose phosphate isomerase (EC 5.1.3.1) were key enzymes in xylitol metabolism and were present in Bacteroides and Lachnospiraceae. Therefore, they are considered keystone bacteria in xylitol digestion. Also, xylitol affected the metabolic pathway of propionate, significantly promoting the transcription of phosphate acetyltransferase (EC 2.3.1.8) in Bifidobacterium and increasing the production of propionate. CONCLUSIONS Our results revealed that those key enzymes for xylitol digestion from different bacteria can together support the growth of micro-ecology, but they also enhanced the concentration of propionate, which lowered pH to restrict relative amounts of Escherichia and Staphylococcus. Based on the cross-feeding and competition among those bacteria, xylitol can dynamically balance proportions of the gut microbiome to promote enzymes related to xylitol metabolism and SCFAs. Video Abstract.
Collapse
Affiliation(s)
- Shasha Xiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Kun Ye
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua, 324302 China
| | - Jian Ying
- Nutrition and Health Research Institute, COFCO Ltd., Beijing, 102209 China
| | - Huanhuan Wang
- School of Medicine, Hangzhou Normal University, Hangzhou, 310018 China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121 China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Lihua Shi
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua, 324302 China
| | - Jie Xiao
- Nutrition and Health Research Institute, COFCO Ltd., Beijing, 102209 China
| | - Yubiao Shen
- Yangtze Delta Institute of Tsinghua University, Jiaxing, 314000 China
| | - Xiao Feng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Xuan Bao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Yiqing Zheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Yin Ge
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Yalin Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Chang Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Jie Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Yuewen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Shiyi Tian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Xuan Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| |
Collapse
|
33
|
Chen J, Pi X, Liu W, Ding Q, Wang X, Jia W, Zhu L. Age-related changes of microbiota in midlife associated with reduced saccharolytic potential: an in vitro study. BMC Microbiol 2021; 21:47. [PMID: 33588748 PMCID: PMC7885556 DOI: 10.1186/s12866-021-02103-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gut microbiota is critical in maintaining human health, of which diversity and abundance are subject to significantly reduce in seniors. Gut microbiota is reported to be stable across the long adulthood in general, but lack of careful examination, especially for the midlife people. RESULTS To characterize the gut microbiota in midlife, we investigated the faecal microbiota between two groups of healthy people, young, 20-39 years old, n = 15; and midlife, 40-60 years old, n = 15. Metabolic responses of the microbiota were studied through in vitro batch fermentation model. Although no difference was observed in the diversity indices between the two age groups, a wide range taxonomic changes were found in the faecal microbiota. Furthermore, substantial Bifidobacterium reduction was also found in both faecal and fermented samples. The faecal SCFAs are similar in both groups, as well as starch fermentation broth. However, after inulin fermentation, the acetate concentration and inulin degradation rate decreased while the gas production increased in midlife group, suggesting a deficiency of saccharolytic potential in midlife, especially for non-digestible carbohydrate. CONCLUSIONS Our data demonstrate that gut microbiota begins to change as early as in midlife. The reduction in Bifidobacterium dominates the change of the microbiota composition in midlife resulting in attenuated saccharolytic capacity of inulin, possibly leading to insufficient acetate production which might be associated with healthy problems in this transition period from young to elderly.
Collapse
Affiliation(s)
- Junkui Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Xionge Pi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Wei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Qunfang Ding
- The Center of Gerontology and Geriatrics, National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Weiguo Jia
- The Center of Gerontology and Geriatrics, National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu, P. R. China.
| | - Liying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China.
| |
Collapse
|
34
|
Nogacka AM, de Los Reyes-Gavilán CG, Arboleya S, Ruas-Madiedo P, Martínez-Faedo C, Suarez A, He F, Harata G, Endo A, Salazar N, Gueimonde M. In vitro Selection of Probiotics for Microbiota Modulation in Normal-Weight and Severely Obese Individuals: Focus on Gas Production and Interaction With Intestinal Epithelial Cells. Front Microbiol 2021; 12:630572. [PMID: 33633711 PMCID: PMC7899977 DOI: 10.3389/fmicb.2021.630572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
The intestinal microbiota plays important roles in the maintenance of health. Strategies aiming at its modulation, such as probiotics, have received a deal of attention. Several strains have been studied in different in vitro models; however, the correlation of results obtained with the in vivo data has been limited. This questions the usefulness of such in vitro selection models, traditionally relying on over-simplified tests, not considering the influence of the accompanying microbiota or focusing on microbiota composition without considering functional traits. Here we assess the potential of six Bifidobacterium, Lactobacillus and Lacticaseibacillus strains in an in vitro model to determine their impact on the microbiota not just in terms of composition but also of functionality. Moreover, we compared the responses obtained in two different population groups: normal-weight and severely obese subjects. Fecal cultures were conducted to evaluate the impact of the strains on specific intestinal microbial groups, on the production of short-chain fatty acids, and on two functional responses: the production of gas and the interaction with human intestinal epithelial cells. The response to the different probiotics differed between both human groups. The addition of the probiotic strains did not induce major changes on the microbiota composition, with significant increases detected almost exclusively for the species added. Higher levels of gas production were observed in cultures from normal-weight subjects than in the obese population, with some strains being able to significantly reduce gas production in the latter group. Moreover, in obese subjects all the Bifidobacterium strains tested and Lacticaseibacillus rhamnosus GG were able to modify the response of the intestinal cells, restoring values similar to those obtained with the microbiotas of normal-weight subjects. Our results underline the need for the screening and selection of probiotics in a target-population specific manner by using appropriate in vitro models before enrolling in clinical intervention trials.
Collapse
Affiliation(s)
- Alicja Maria Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Functionality and Ecology of Beneficial Microorganisms, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Ceferino Martínez-Faedo
- Endocrinology and Nutrition Service, Central University Hospital of Asturias (HUCA), Oviedo, Spain.,Endocrinology, Nutrition, Diabetes and Obesity Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Adolfo Suarez
- Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain.,Digestive Service, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Fang He
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama, Japan
| | - Gaku Harata
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama, Japan
| | - Akihito Endo
- Department of Food and Cosmetic Science, Tokyo University of Agriculture, Abashiri, Japan
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
35
|
Agarwal T, Onesto V, Lamboni L, Ansari A, Maiti TK, Makvandi P, Vosough M, Yang G. Engineering biomimetic intestinal topological features in 3D tissue models: retrospects and prospects. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00120-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Mabwi HA, Kim E, Song DG, Yoon HS, Pan CH, Komba E, Ko G, Cha KH. Synthetic gut microbiome: Advances and challenges. Comput Struct Biotechnol J 2020; 19:363-371. [PMID: 33489006 PMCID: PMC7787941 DOI: 10.1016/j.csbj.2020.12.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
An exponential rise in studies regarding the association among human gut microbial communities, human health, and diseases is currently attracting the attention of researchers to focus on human gut microbiome research. However, even with the ever-growing number of studies on the human gut microbiome, translation into improved health is progressing slowly. This hampering is due to the complexities of the human gut microbiome, which is composed of >1,000 species of microorganisms, such as bacteria, archaea, viruses, and fungi. To overcome this complexity, it is necessary to reduce the gut microbiome, which can help simplify experimental variables to an extent, such that they can be deliberately manipulated and controlled. Reconstruction of synthetic or established gut microbial communities would make it easier to understand the structure, stability, and functional activities of the complex microbial community of the human gut. Here, we provide an overview of the developments and challenges of the synthetic human gut microbiome, and propose the incorporation of multi-omics and mathematical methods in a better synthetic gut ecosystem design, for easy translation of microbiome information to therapies.
Collapse
Affiliation(s)
- Humphrey A. Mabwi
- KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
- SACIDS Foundation for One Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - Eunjung Kim
- KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Dae-Geun Song
- KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Hyo Shin Yoon
- KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Cheol-Ho Pan
- KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Erick.V.G. Komba
- SACIDS Foundation for One Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - GwangPyo Ko
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Center for Human and Environmental Microbiome, Seoul National University, Seoul 08826, Republic of Korea
- KoBioLabs, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kwang Hyun Cha
- KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| |
Collapse
|
37
|
Bondue P, Lebrun S, Taminiau B, Everaert N, LaPointe G, Hendrick C, Gaillez J, Crèvecoeur S, Daube G, Delcenserie V. Effect of Bifidobacterium crudilactis and 3′-sialyllactose on the toddler microbiota using the SHIME® model. Food Res Int 2020; 138:109755. [DOI: 10.1016/j.foodres.2020.109755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022]
|
38
|
Xu M, Yang K, Zhu J. Monitoring the Diversity and Metabolic Shift of Gut Microbes during Green Tea Feeding in an In Vitro Human Colonic Model. Molecules 2020; 25:E5101. [PMID: 33153091 PMCID: PMC7663002 DOI: 10.3390/molecules25215101] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
The human gut microbiome plays an important role in human health, and many factors such as environment, host genetics, age, and diet have been found to influence the microbial composition. Tea, as one of the widely consumed beverages, has been known for centuries to have antioxidant, anti-inflammatory, and anticancer effects. To investigate the impact of green tea polyphenol on the diversity and metabolic functions of human gut microbes, we applied an in vitro human colonic model (HCM) in this study to mimic a short-term green tea ingestion event and investigate its related changes to gut microbial composition and their metabolic functions. The pH, temperature, anaerobic environment, feeding nutrient, and time point in each compartment of the HCM were tightly controlled to simulate the intestinal system, and pooled human fecal samples of two healthy volunteers were used for the colon microbiota inoculation within the colonic model. By adding green tea extract (GTE) to the growth medium, the detailed impacts of GTE polyphenol on gut microbial population/diversity, gut microbial metabolites, metabolic pathways, and their associations were investigated via 16 S ribosomal DNA sequencing and liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) analyses. Our data indicated that the treatment of green tea extract applied to gut microbiota can induce a significant decrease in the abundance of Firmicutes and a slight decrease in the abundance of Bacteroidetes, and these changes result in a decreased Firmicutes/Bacteroidetes ratio, which can be an effective indicator for successful GTE intervention, which may generate beneficial health effect to human. Meanwhile, the relative abundances of many detected bacteria genera among three HCM vessels changed through the GTE intervention. The overall effects of GTE on gut microbial beta-diversity were observed by multivariate statistical analyses, and the differences in metabolic profiles from different GTE treatment stages were detected. Moreover, we identified several associations between microbial population and microbial metabolites, which may assist us in establishing new hypotheses for future related studies. In summary, our study suggested that the microbial compositional changes induced by GTE also changed their metabolic functions, and consequentially, may change the host metabolism and impact human health.
Collapse
Affiliation(s)
- Mengyang Xu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (M.X.); (K.Y.)
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (M.X.); (K.Y.)
| | - Jiangjiang Zhu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
39
|
Screening dietary fibres for fermentation characteristics and metabolic profiles using a rapid in vitro approach: implications for irritable bowel syndrome. Br J Nutr 2020; 126:208-218. [PMID: 33028442 DOI: 10.1017/s0007114520003943] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The therapeutic value of specific fibres is partly dependent on their fermentation characteristics. Some fibres are rapidly degraded with the generation of gases that induce symptoms in patients with irritable bowel syndrome (IBS), while more slowly or non-fermentable fibres may be more suitable. More work is needed to profile a comprehensive range of fibres to determine suitability for IBS. Using a rapid in vitro fermentation model, gas production and metabolite profiles of a range of established and novel fibres were compared. Fibre substrates (n 15) were added to faecal slurries from three healthy donors for 4 h with gas production measured using real-time headspace sampling. Concentrations of SCFA and ammonia were analysed using GC and enzymatic assay, respectively. Gas production followed three patterns: rapid (≥60 ml/g over 4 h) for fructans, carrot fibre and maize-derived xylo-oligosaccharide (XOS); mild (30-60 ml/g) for partially hydrolysed guar gum, almond shell-derived XOS and one type of high-amylose resistant starch 2 (RS2) and minimal (no differences with blank controls) for methylcellulose, another high-amylose RS2, acetylated or butyrylated RS2, RS4, acacia gum and sugarcane bagasse. Gas production correlated positively with total SCFA (r 0·80, P < 0·001) and negatively with ammonia concentrations (r -0·68, P < 0·001). Proportions of specific SCFA varied: fermentation of carrot fibre, XOS and acetylated RS2 favoured acetate, while fructans favoured butyrate. Gas production and metabolite profiles differed between fibre types and within fibre classes over a physiologically relevant 4-h time course. Several fibres resisted rapid fermentation and may be candidates for clinical trials in IBS patients.
Collapse
|
40
|
Hurtado-Romero A, Del Toro-Barbosa M, Garcia-Amezquita LE, García-Cayuela T. Innovative technologies for the production of food ingredients with prebiotic potential: Modifications, applications, and validation methods. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Harris HC, Morrison DJ, Edwards CA. Impact of the source of fermentable carbohydrate on SCFA production by human gut microbiota in vitro - a systematic scoping review and secondary analysis. Crit Rev Food Sci Nutr 2020; 61:3892-3903. [PMID: 32865002 DOI: 10.1080/10408398.2020.1809991] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Short chain fatty acids (SCFA) are produced by bacterial fermentation of non-digestible carbohydrates (NDC) and have many potential tissue and SCFA specific actions, from providing fuel for colonic cells to appetite regulation. Many studies have described the fermentation of different carbohydrates, often using in vitro batch culture. As evidence-based critical evaluation of substrates selectively promoting production of individual SCFA is lacking, we performed a systematic scoping literature review. Databases were searched to identify relevant papers published between 1900 and 12/06/2016. Search terms included In vitro batch fermentation and In vitro short chain fatty acid production. Articles were considered for essential criteria allowing equivalent comparison of SCFA between NDC. Seventy seven articles were included in the final analysis examining 29 different carbohydrates. After 24-hour fermentation, galacto-oligosaccharide ranked highest for butyrate and total SCFA production and second for acetate production. Rhamnose ranked highest for propionate production. The lowest SCFA production was observed for kiwi fiber, polydextrose, and cellulose. This review demonstrates that choosing a substrate to selectively enhance a specific SCFA is difficult, and the molar proportion of each SCFA produced by individual substrates may be misleading. Instead the rate and ratio of SCFA production should be evaluated in parallel.
Collapse
Affiliation(s)
- Hannah C Harris
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow, UK
| | - Douglas J Morrison
- Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow, UK
| | - Christine A Edwards
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
42
|
Shpichka A, Bikmulina P, Peshkova M, Kosheleva N, Zurina I, Zahmatkesh E, Khoshdel-Rad N, Lipina M, Golubeva E, Butnaru D, Svistunov A, Vosough M, Timashev P. Engineering a Model to Study Viral Infections: Bioprinting, Microfluidics, and Organoids to Defeat Coronavirus Disease 2019 (COVID-19). Int J Bioprint 2020; 6:302. [PMID: 33089000 PMCID: PMC7557357 DOI: 10.18063/ijb.v6i4.302] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
While the number of studies related to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is constantly growing, it is essential to provide a framework of modeling viral infections. Therefore, this review aims to describe the background presented by earlier used models for viral studies and an approach to design an "ideal" tissue model for SARS-CoV-2 infection. Due to the previous successful achievements in antiviral research and tissue engineering, combining the emerging techniques such as bioprinting, microfluidics, and organoid formation are considered to be one of the best approaches to form in vitro tissue models. The fabrication of an integrated multi-tissue bioprinted platform tailored for SARS-CoV-2 infection can be a great breakthrough that can help defeat coronavirus disease in 2019.
Collapse
Affiliation(s)
- Anastasia Shpichka
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Polina Bikmulina
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Maria Peshkova
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Nastasia Kosheleva
- Department of Molecular and Cell Pathophysiology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
- Department of Embryology, Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Irina Zurina
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Department of Molecular and Cell Pathophysiology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Ensieh Zahmatkesh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel-Rad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marina Lipina
- Department of Traumatology, Orthopedics and Disaster Surgery, Sechenov University, Moscow, Russia
| | - Elena Golubeva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Denis Butnaru
- Rector’s Office, Sechenov University, Moscow, Russia
| | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Department of Polymers and Composites, NN Semenov Institute of Chemical Physics, Moscow, Russia
| |
Collapse
|
43
|
Bondue P, Lebrun S, Taminiau B, Everaert N, LaPointe G, Crevecoeur S, Daube G, Delcenserie V. A toddler SHIME® model to study microbiota of young children. FEMS Microbiol Lett 2020; 367:5896948. [DOI: 10.1093/femsle/fnaa135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT
The ‘first 1000 days of life’ determine the gut microbiota composition and can have long-term health consequences. In this study, the simulator of the human intestinal microbial ecosystem (SHIME®) model, which represents the main functional sections of the digestive tract, was chosen to study the microbiota of young children. The aim of this study was to reproduce the digestive process of toddlers and their specific colonic environment. The ascending, transverse and descending colons of SHIME® model were inoculated with feces from three donors aged between 1 and 2 years-old, in three separate runs. For each run, samples from colon vessels were collected at days 14, 21 and 28 after microbiota stabilization period. Short chain fatty acid concentrations determined by HPLC showed that microbiota obtained in SHIME® model shared characteristics between adults and infants. In addition, microbial diversity and bacterial populations determined by 16S rRNA amplicon sequencing were specific to each colon vessel. In conclusion, the SHIME® model developed in this study seemed well adapted to evaluate prebiotic and probiotic impact on the specific microbiota of toddlers, or medicine and endocrine disruptor metabolism. Moreover, this study is the first to highlight some biofilm development in in vitro gastrointestinal modelling systems.
Collapse
Affiliation(s)
- Pauline Bondue
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 10, 4000 Liège, Belgium
| | - Sarah Lebrun
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 10, 4000 Liège, Belgium
| | - Bernard Taminiau
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 10, 4000 Liège, Belgium
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés 2, 5030 Gembloux, Belgium
| | - Gisele LaPointe
- Canadian Research institute for Food safety, University of Guelph, N1G 2W1Guelph, Canada
| | - Sebastien Crevecoeur
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 10, 4000 Liège, Belgium
| | - Georges Daube
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 10, 4000 Liège, Belgium
| | - Veronique Delcenserie
- Department of Food Science, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 10, 4000 Liège, Belgium
| |
Collapse
|
44
|
Yu L, Duan H, Kellingray L, Cen S, Tian F, Zhao J, Zhang H, Gall GL, Mayer MJ, Zhai Q, Chen W, Narbad A. Lactobacillus plantarum-Mediated Regulation of Dietary Aluminum Induces Changes in the Human Gut Microbiota: an In Vitro Colonic Fermentation Study. Probiotics Antimicrob Proteins 2020; 13:398-412. [PMID: 32712897 DOI: 10.1007/s12602-020-09677-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The gut microbiota has been identified as a target of toxic metals and a potentially crucial mediator of the bioavailability and toxicity of these metals. In this study, we show that aluminum (Al) exposure, even at low dose, affected the growth of representative strains from the human intestine via pure culture experiments. In vitro, Lactobacillus plantarum CCFM639 could bind Al on its cell surface as shown by electron microscopy and energy dispersive X-ray analysis. The potential of L. plantarum CCFM639 to reverse changes in human intestine microbiota induced by low-dose dietary Al exposure was investigated using an in vitro colonic fermentation model. Batch fermenters were inoculated with fresh stool samples from healthy adult donors and supplemented with 86 mg/L Al and/or 109 CFU of L. plantarum CCFM639. Al exposure significantly increased the relative abundances of Bacteroidetes (Prevotella), Proteobacteria (Escherichia), Actinobacteria (Collinsella), Euryarchaeota (Methanobrevibacter), and Verrucomicrobiaceae and decreased Firmicutes (Streptococcus, Roseburia, Ruminococcus, Dialister, Coprobacillus). Some changes were reversed by the inclusion of L. plantarum CCFM639. Alterations in gut microbiota induced by Al and L. plantarum CCFM639 inevitably led to changes in metabolite levels. The short-chain fatty acid (SCFAs) contents were reduced after Al exposure, but L. plantarum CCFM639 could elevate their levels. SCFAs had positive correlations with beneficial bacteria, such as Dialister, Streptococcus, Roseburia, and negative correlations with Erwinia, Escherichia, and Serratia. Therefore, dietary Al exposure altered the composition and structure of the human gut microbiota, and this was partially mitigated by L. plantarum CCFM639. This probiotic supplementation is potentially a promising and safe approach to alleviate the harmful effects of dietary Al exposure.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, 214122, China
| | - Hui Duan
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Lee Kellingray
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Shi Cen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, China
| | - Gwénaëlle Le Gall
- Department of Medicine, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Melinda J Mayer
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. .,International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, 100048, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, 214122, China.,Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| |
Collapse
|
45
|
Duquenoy A, Bellais S, Gasc C, Schwintner C, Dore J, Thomas V. Assessment of Gram- and Viability-Staining Methods for Quantifying Bacterial Community Dynamics Using Flow Cytometry. Front Microbiol 2020; 11:1469. [PMID: 32676069 PMCID: PMC7333439 DOI: 10.3389/fmicb.2020.01469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/04/2020] [Indexed: 01/06/2023] Open
Abstract
Over the past years, gut microbiota became a major field of interest with increasing reports suggesting its association with a large number of human diseases. In this context, there is a major interest to develop analysis tools allowing simple and cost-effective population pattern analysis of these complex ecosystems to follow changes over time. Whereas sequence-based metagenomics profiling is widely used for microbial ecosystems characterization, it still requires time and specific expertise for analysis. Flow cytometry overcomes these disadvantages, providing key information on communities within hours. In addition, it can potentially be used to select, isolate and cultivate specific bacteria of interest. In this study, we evaluated the culturability of strictly anaerobic bacteria that were stained with a classical Live/Dead staining, and then sorted using flow cytometry under anaerobic conditions. This sorting of “viable” fraction demonstrated that 10–80% of identified “viable” cells of pure cultures of strictly anaerobic bacteria were culturable. In addition, we tested the use of a combination of labeled vancomycin and Wheat Germ Agglutinin (WGA) lectin to discriminate Gram-positive from Gram-negative bacteria in complex ecosystems. After validation on both aerobic/anaerobic facultative and strictly anaerobic bacteria, the staining methods were applied on complex ecosystems, revealing differences between culture conditions and demonstrating that minor pH variations have strong impacts on microbial community structure, which was confirmed by 16S rRNA gene sequencing. This combination of staining methods makes it possible to follow-up evolutions of complex microbial communities, supporting its future use as a rapid analysis tool in various applications. The flow cytometry staining method that was developed has the potential to facilitate the analysis of complex ecosystems by highlighting changes in bacterial communities’ dynamics. It is assumed to be applicable as an efficient and fast approach to improve the control of processes linked to a wide range of ecosystems or known communities of bacterial species in both research and industrial contexts.
Collapse
Affiliation(s)
| | - Samuel Bellais
- Bioaster, Institut de Recherche Technologique, Paris, France
| | | | | | - Joël Dore
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - Vincent Thomas
- Bioaster, Institut de Recherche Technologique, Paris, France
| |
Collapse
|
46
|
Nogacka AM, Salazar N, Arboleya S, Ruas-Madiedo P, Mancabelli L, Suarez A, Martinez-Faedo C, Ventura M, Tochio T, Hirano K, Endo A, G. de los Reyes-Gavilán C, Gueimonde M. In Vitro Evaluation of Different Prebiotics on the Modulation of Gut Microbiota Composition and Function in Morbid Obese and Normal-Weight Subjects. Int J Mol Sci 2020; 21:E906. [PMID: 32019174 PMCID: PMC7038051 DOI: 10.3390/ijms21030906] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota remains relatively stable during adulthood; however, certain intrinsic and environmental factors can lead to microbiota dysbiosis. Its restoration towards a healthy condition using best-suited prebiotics requires previous development of in vitro models for evaluating their functionality. Herein, we carried out fecal cultures with microbiota from healthy normal-weight and morbid obese adults. Cultures were supplemented with different inulin-type fructans (1-kestose, Actilight, P95, Synergy1 and Inulin) and a galactooligosaccharide. Their impact on the gut microbiota was assessed by monitoring gas production and evaluating changes in the microbiota composition (qPCR and 16S rRNA gene profiling) and metabolic activity (gas chromatography). Additionally, the effect on the bifidobacterial species was assessed (ITS-sequencing). Moreover, the functionality of the microbiota before and after prebiotic-modulation was determined in an in vitro model of interaction with an intestinal cell line. In general, 1-kestose was the compound showing the largest effects. The modulation with prebiotics led to significant increases in the Bacteroides group and Faecalibacterium in obese subjects, whereas in normal-weight individuals, substantial rises in Bifidobacterium and Faecalibacterium were appreciated. Notably, the results obtained showed differences in the responses among the tested compounds but also among the studied human populations, indicating the need for developing population-specific products.
Collapse
Affiliation(s)
- Alicja M. Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (N.S.); (S.A.); (P.R.-M.); (C.G.d.l.R.-G.); (M.G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain;
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (N.S.); (S.A.); (P.R.-M.); (C.G.d.l.R.-G.); (M.G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain;
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (N.S.); (S.A.); (P.R.-M.); (C.G.d.l.R.-G.); (M.G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain;
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (N.S.); (S.A.); (P.R.-M.); (C.G.d.l.R.-G.); (M.G.)
- Functionality and Ecology of Beneficial Microorganisms, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, 43121 Parma, Italy; (L.M.); (M.V.)
| | - Adolfo Suarez
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain;
- Digestive Service, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Asturias, Spain
| | - Ceferino Martinez-Faedo
- Endocrinology and Nutrition Service, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Asturias, Spain;
- Endocrinology, Nutrition, Diabetes and Obesity Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, 43121 Parma, Italy; (L.M.); (M.V.)
| | - Takumi Tochio
- β-Food Sciences Co., Chita 478-0046, Japan; (T.T.); (K.H.)
| | | | - Akihito Endo
- Department of Food and Cosmetic Science, Tokyo University of Agriculture, Abashiri 099-2493, Japan;
| | - Clara G. de los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (N.S.); (S.A.); (P.R.-M.); (C.G.d.l.R.-G.); (M.G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain;
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (N.S.); (S.A.); (P.R.-M.); (C.G.d.l.R.-G.); (M.G.)
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Spain;
| |
Collapse
|
47
|
Baydoun M, Treizeibré A, Follet J, Benamrouz Vanneste S, Creusy C, Dercourt L, Delaire B, Mouray A, Viscogliosi E, Certad G, Senez V. An Interphase Microfluidic Culture System for the Study of Ex Vivo Intestinal Tissue. MICROMACHINES 2020; 11:E150. [PMID: 32019215 PMCID: PMC7074597 DOI: 10.3390/mi11020150] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 11/22/2022]
Abstract
Ex vivo explant culture models offer unique properties to study complex mechanisms underlying tissue growth, renewal, and disease. A major weakness is the short viability depending on the biopsy origin and preparation protocol. We describe an interphase microfluidic culture system to cultivate full thickness murine colon explants which keeps morphological structures of the tissue up to 192 h. The system was composed of a central well on top of a porous membrane supported by a microchannel structure. The microfluidic perfusion allowed bathing the serosal side while preventing immersion of the villi. After eight days, up to 33% of the samples displayed no histological abnormalities. Numerical simulation of the transport of oxygen and glucose provided technical solutions to improve the functionality of the microdevice.
Collapse
Affiliation(s)
- Martha Baydoun
- Univ. Lille, CNRS, ISEN-YNCREA, UMR 8520-IEMN, F-59000 Lille, France
- ISA-YNCREA Hauts de France, F-59000 Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9107-CIIL-Centre d’Infection et d’Immunité de Lille, F-59019 Lille, France
| | | | - Jérôme Follet
- Univ. Lille, CNRS, ISEN-YNCREA, UMR 8520-IEMN, F-59000 Lille, France
- ISA-YNCREA Hauts de France, F-59000 Lille, France
| | - Sadia Benamrouz Vanneste
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9107-CIIL-Centre d’Infection et d’Immunité de Lille, F-59019 Lille, France
- Laboratoire Ecologie et Biodiversité, Unité de Recherche Smart and Sustainable Cities, Faculté de Gestion Economie et Sciences, Institut Catholique de Lille, F-59800 Lille, France
| | - Colette Creusy
- Service d’Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l’Université Catholique de Lille, 59000 Lille, France
| | - Lucie Dercourt
- CNRS, Univ. Tokyo, UMI 2820 — LIMMS, F-59000 Lille, France
| | - Baptiste Delaire
- Service d’Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l’Université Catholique de Lille, 59000 Lille, France
| | - Anthony Mouray
- Plateforme d’Expérimentations et de Hautes Technologies Animales, Institut Pasteur de Lille Lille, 59019 Lille, France
| | - Eric Viscogliosi
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9107-CIIL-Centre d’Infection et d’Immunité de Lille, F-59019 Lille, France
| | - Gabriela Certad
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9107-CIIL-Centre d’Infection et d’Immunité de Lille, F-59019 Lille, France
- Délégation à la Recherche Clinique et à l’Innovation, Groupement des Hôpitaux de l’Institut Catholique de Lille (GHICL), Faculté de Médecine et Maïeutique, Université Catholique de Lille, 59800 Lille, France
| | - Vincent Senez
- Univ. Lille, CNRS, ISEN-YNCREA, UMR 8520-IEMN, F-59000 Lille, France
- CNRS, Univ. Tokyo, UMI 2820 — LIMMS, F-59000 Lille, France
| |
Collapse
|
48
|
Modelling the Effects of Antibiotics on Gut Flora Using a Nonlinear Compartment Model with Uncertain Parameters. LECTURE NOTES IN COMPUTER SCIENCE 2020. [PMCID: PMC7302274 DOI: 10.1007/978-3-030-50371-0_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Gerasimidis K, Bryden K, Chen X, Papachristou E, Verney A, Roig M, Hansen R, Nichols B, Papadopoulou R, Parrett A. The impact of food additives, artificial sweeteners and domestic hygiene products on the human gut microbiome and its fibre fermentation capacity. Eur J Nutr 2019; 59:3213-3230. [PMID: 31853641 PMCID: PMC7501109 DOI: 10.1007/s00394-019-02161-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Purpose This study investigated the effect of food additives, artificial sweeteners and domestic hygiene products on the gut microbiome and fibre fermentation capacity. Methods Faecal samples from 13 healthy volunteers were fermented in batch cultures with food additives (maltodextrin, carboxymethyl cellulose, polysorbate-80, carrageenan-kappa, cinnamaldehyde, sodium benzoate, sodium sulphite, titanium dioxide), sweeteners (aspartame-based sweetener, sucralose, stevia) and domestic hygiene products (toothpaste and dishwashing detergent). Short-chain fatty acid production was measured with gas chromatography. Microbiome composition was characterised with 16S rRNA sequencing and quantitative polymerase chain reaction (qPCR). Results Acetic acid increased in the presence of maltodextrin and the aspartame-based sweetener and decreased with dishwashing detergent or sodium sulphite. Propionic acid increased with maltodextrin, aspartame-based sweetener, sodium sulphite and polysorbate-80 and butyrate decreased dramatically with cinnamaldehyde and dishwashing detergent. Branched-chain fatty acids decreased with maltodextrin, aspartame-based sweetener, cinnamaldehyde, sodium benzoate and dishwashing detergent. Microbiome Shannon α-diversity increased with stevia and decreased with dishwashing detergent and cinnamaldehyde. Sucralose, cinnamaldehyde, titanium dioxide, polysorbate-80 and dishwashing detergent shifted microbiome community structure; the effects were most profound with dishwashing detergent (R2 = 43.9%, p = 0.008) followed by cinnamaldehyde (R2 = 12.8%, p = 0.016). Addition of dishwashing detergent and cinnamaldehyde increased the abundance of operational taxonomic unit (OTUs) belonging to Escherichia/Shigella and Klebsiella and decreased members of Firmicutes, including OTUs of Faecalibacterium and Subdoligranulum. Addition of sucralose and carrageenan-kappa also increased the abundance of Escherichia/Shigella and sucralose, sodium sulphite and polysorbate-80 did likewise to Bilophila. Polysorbate-80 decreased the abundance of OTUs of Faecalibacterium and Subdoligranulum. Similar effects were observed with the concentration of major bacterial groups using qPCR. In addition, maltodextrin, aspartame-based sweetener and sodium benzoate promoted the growth of Bifidobacterium whereas sodium sulphite, carrageenan-kappa, polysorbate-80 and dishwashing detergent had an inhibitory effect. Conclusions This study improves understanding of how additives might affect the gut microbiota composition and its fibre metabolic activity with many possible implications for human health. Electronic supplementary material The online version of this article (10.1007/s00394-019-02161-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, G31 2ER, UK.
| | - Katie Bryden
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, G31 2ER, UK
| | - Xiufen Chen
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, G31 2ER, UK
| | - Eleftheria Papachristou
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, G31 2ER, UK
| | - Anais Verney
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, G31 2ER, UK
| | - Marine Roig
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, G31 2ER, UK
| | - Richard Hansen
- Paediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children, 1345 Govan Road, Glasgow, G51 4TF, UK
| | - Ben Nichols
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, G31 2ER, UK
| | - Rodanthi Papadopoulou
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, G31 2ER, UK
| | - Alison Parrett
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow, G31 2ER, UK
| |
Collapse
|
50
|
Xiang S, Fu J, Ye K, Zheng Y, Zhu X, Chen J, Chen Y. Effect of Lactobacillus gasseri PA3 on gut microbiota in an in vitro colonic simulation. Food Sci Nutr 2019; 7:3883-3891. [PMID: 31890166 PMCID: PMC6924308 DOI: 10.1002/fsn3.1236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
It has been reported that Lactobacillus gasseri PA3 has an ability to absorb exogenous purines in the intestine to reduce a risk of gout and hyperuricemia. However, influences of this strain on gut microbiota and their metabolisms remain unclear. Herein, we aimed to investigate the effect of L. gasseri PA3 on microbiota composition and metabolisms. L. gasseri PA3 was isolated from yogurt and supplemented into a single-stage colonic fermentation in a culture volume of 30 ml and subjected to in vitro colonic simulation for 8 days. Microbiota composition was determined with 16S rRNA (V3 + V4) sequencing, and their metabolisms were predicted by PICRUSt. Short-chain fatty acids were measured by GC-MS. We found that L. gasseri PA3 reduced the diversity of microbiota, increased the relative abundances of Lactobacillus (73.5%) and Escherichia (36.5%), and decreased Bacterioides and Phascolarctobacterium. Total amount of short-chain fatty acids was found to decline. Fundamental metabolisms, especially nucleotide, was significantly higher after intervention with L. gasseri PA3, but the purine metabolism was lower, which means that PA3 might reduce uric acid concentrations by weakening purine metabolism. Our results indicated that L. gasseri PA3 can survive and play a role in the ascending colon environment. Therefore, the evaluation of the effect of L. gasseri PA3 on intestinal microbes and their metabolisms has great guiding significance for the development of treatment to prevent gout.
Collapse
Affiliation(s)
- Shasha Xiang
- School of Food Science and BioengineeringZhejiang Gongshang UniversityHangzhouChina
| | - Jian Fu
- Eurofins Technology Service Qingdao Co., LtdQingdaoChina
| | - Kun Ye
- School of Food Science and BioengineeringZhejiang Gongshang UniversityHangzhouChina
| | - Yiqing Zheng
- School of Food Science and BioengineeringZhejiang Gongshang UniversityHangzhouChina
| | - Xuan Zhu
- School of Food Science and BioengineeringZhejiang Gongshang UniversityHangzhouChina
| | - Jie Chen
- School of Food Science and BioengineeringZhejiang Gongshang UniversityHangzhouChina
| | - Yuewen Chen
- School of Food Science and BioengineeringZhejiang Gongshang UniversityHangzhouChina
| |
Collapse
|