1
|
Wang X, Fan B, Li Y, Xiong Y, Fei C, Tong L, Huang Y, Wang F. Effects of germination on the digestibility of instant soybean powders based on an in vitro digestion model of the aged static gastrointestinal tract. Food Chem 2025; 474:143247. [PMID: 39933352 DOI: 10.1016/j.foodchem.2025.143247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2024] [Revised: 12/17/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Germination and heat processing can improve the digestibility of soybean protein, so for the elderly and people with gastrointestinal dysfunction, instant soybean powder is an ideal source for protein intake. In this study, the changes in protein and anti-nutritional factors in the instant germinating soybean powders were investigated systematically, and the aged gastrointestinal digestion model analyzed the digestive characteristics of instant germinating soybean powders. The results showed that during processing, particle size, disulfide bond, and β-sheets decreased, free sulfhydryl and α-helix increased. The change resulted in the decrease of proteolysis degree and particle size of gastrointestinal digestive products, and the increase of surface hydrophobic index. At the same time, anti-nutritional factors decreased by about 30 % to 60 %. The above reasons are combined with the protein digestibility of S72 5.88 % higher than Y0. This study proved that instant soybean powder is more conducive to the digestion and absorption of the elderly.
Collapse
Affiliation(s)
- Xinrui Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266000, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266000, China
| | - Yangyang Xiong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Chengxin Fei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Litao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266000, China.
| |
Collapse
|
2
|
Nadia J, Roy D, Montoya CA, Singh H, Acevedo-Fani A, Bornhorst GM. A proposed framework to establish in vitro- in vivo relationships using gastric digestion models for food research. Food Funct 2024; 15:10233-10261. [PMID: 39302221 DOI: 10.1039/d3fo05663e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/22/2024]
Abstract
In vitro digestion methods have been utilized in food research to reduce in vivo studies. Although previous studies have related in vitro and in vivo data, there is no consensus on how to establish an in vitro-in vivo relationship (IVIVR) for food digestion. A framework that serves as a tool to evaluate the utility and limitations of in vitro approaches in simulating in vivo processes is proposed to develop IVIVRs for food digestion, with a focus on the gastric phase as the main location of food structural breakdown during digestion. The IVIVR consists of three quantitative levels (A, B, and C) and a qualitative level (D), which relate gastric digestion kinetic data on a point-to-point basis, parameters derived from gastric digestion kinetic data, in vitro gastric digestion parameters with in vivo absorption or appearance parameters, and in vitro and in vivo trends, respectively. Level A, B, and C IVIVRs can be used to statistically determine the agreement between in vitro and in vivo data. Level A and B IVIVRs can be utilized further evaluate the accuracy of the in vitro approach to mimic in vivo processes. To exemplify the utilization of this framework, case studies are provided using previously published static and dynamic gastric in vitro digestion data and in vivo animal study data. Future food digestion studies designed to establish IVIVRs should be conducted to refine and improve the current framework, and to improve in vitro digestion approaches to better mimic in vivo phenomena.
Collapse
Affiliation(s)
- Joanna Nadia
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Debashree Roy
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Carlos A Montoya
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
- Smart Foods & Bioproducts, AgResearch, Te Ohu Rangahau Kai Facility, Palmerston North 4474, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | | - Gail M Bornhorst
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Ma W, Tang J, Cheng H, Tian J, Wu Z, Zhou J, Xu E, Chen J. High-Resistant Starch Based on Amylopectin Cluster via Extrusion: From the Perspective of Chain-Length Distribution and Structural Formation. Foods 2024; 13:2532. [PMID: 39200459 PMCID: PMC11353313 DOI: 10.3390/foods13162532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Resistant starch (RS) has the advantage of reshaping gut microbiota for human metabolism and health, like glycemic control, weight loss, etc. Among them, RS3 prepared from pure starch is green and safe, but it is hard to achieve structural control. Here, we regulate the crystal structure of starch with different chain-length distributions (CLDs) via extrusion at low/high shearing levels. The change in CLDs in extruded starch was obtained, and their effects on the fine structure (Dm, dBragg, dLorentz, degree of order and double helix, degree of crystal) of RS and its physicochemical properties were investigated by SAXS, FTIR, XRD and 13C NMR analyses. The results showed that the RS content under a 250 r/min extrusion condition was the highest at 61.52%. Furthermore, the crystalline system induced by high amylopectin (amylose ≤ 4.78%) and a small amount of amylose (amylose ≥ 27.97%) was favorable for obtaining a high content of RS3-modified products under the extruding environment. The control of the moderate proportion of the A chains (DP 6-12) in the starch matrix was beneficial to the formation of RS.
Collapse
Affiliation(s)
- Wen Ma
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.M.); (J.T.); (H.C.); (J.T.)
| | - Junyu Tang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.M.); (J.T.); (H.C.); (J.T.)
| | - Huan Cheng
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.M.); (J.T.); (H.C.); (J.T.)
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China;
| | - Jinhu Tian
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.M.); (J.T.); (H.C.); (J.T.)
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China;
| | - Jianwei Zhou
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China;
| | - Enbo Xu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.M.); (J.T.); (H.C.); (J.T.)
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China;
| | - Jianchu Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.M.); (J.T.); (H.C.); (J.T.)
| |
Collapse
|
4
|
McClements DJ. Designing healthier and more sustainable ultraprocessed foods. Compr Rev Food Sci Food Saf 2024; 23:e13331. [PMID: 38517032 DOI: 10.1111/1541-4337.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
The food industry has been extremely successful in creating a broad range of delicious, affordable, convenient, and safe food and beverage products. However, many of these products are considered to be ultraprocessed foods (UPFs) that contain ingredients and are processed in a manner that may cause adverse health effects. This review article introduces the concept of UPFs and briefly discusses food products that fall into this category, including beverages, baked goods, snacks, confectionary, prepared meals, dressings, sauces, spreads, and processed meat and meat analogs. It then discusses correlations between consumption levels of UPFs and diet-related chronic diseases, such as obesity and diabetes. The different reasons for the proposed ability of UPFs to increase the risk of these chronic diseases are then critically assessed, including displacement of whole foods, high energy densities, missing phytochemicals, contamination with packaging chemicals, hyperpalatability, harmful additives, rapid ingestion and digestion, and toxic reaction products. Then, potential strategies to overcome the current problems with UPFs are presented, including reducing energy density, balancing nutritional profile, fortification, increasing satiety response, modulating mastication and digestion, reengineering food structure, and precision processing. The central argument is that it may be possible to reformulate and reengineer many UPFs to improve their healthiness and sustainability, although this still needs to be proved using rigorous scientific studies.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
5
|
Zink JI, Zeneli L, Windhab EJ. Micro-foaming of plant protein based meat analogues for tailored textural properties. Curr Res Food Sci 2023; 7:100580. [PMID: 37811484 PMCID: PMC10551840 DOI: 10.1016/j.crfs.2023.100580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Meat-like foods based on plant protein sources are supposed to be a solution for a more sustainable sustenance of the world population while also having a great potential to reduce the impact on climate change. However, the transition from animal-based products to more climate-friendly alternatives can only be accomplished when consumers' acceptance of plant-based alternatives is high. This article introduces a novel micro-foaming process for texturized High-Moisture Meat Analogues (HMMA) conferring enhanced structural properties and a new way to tailor the mechanical, appearance and textural characteristics of such products. First, the impact of nitrogen injection and subsequent foaming on processing pressures, temperatures and mechanical energy were assessed using soy protein concentrate and injecting nitrogen fractions in a controlled manner in the range of 0 wt% to 0.3 wt% into the hot protein melt. Direct relationships between related extrusion parameters and properties of extruded HMMAs were established. Furthermore, optimized processing parameters for stable manufacturing conditions were identified. Secondly, so produced HMMA foams were systematically analyzed using colourimetry, texture analysis, X-ray micro-tomography (XRT) and by performing water and Preprint submitted to Innovative Food Science and Emerging Technologies June 17, 2023 oil absorption tests. These measurements revealed that perceived lightness, textural hardness, cohesiveness and overrun can be tailored by adapting the injected N2 concentrations provided that the gas holding capacity of the protein matrix is high enough. Moreover, the liquid absorption properties of the foamed HMMA were greatly optimized. XRT measurements showed that the porosity at the center of the extrudate strands was the highest. The largest porosity of 53% was achieved with 0.2 wt% N2 injection, whilst 0.3 wt% N2 lead to destructuration of the HMMA foam structure through limited gas dispersion and wall slip layer formation. The latter can, nonetheless, be improved by adapting the processing parameters. All in all, this novel extrusion microfoaming process opens new possibilities to enhance the structural properties of plant-based HMMA and ultimately, consumers' acceptance.
Collapse
Affiliation(s)
- Joël I. Zink
- Laboratory of Food Process Engineering, Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, Zurich, 8092, Switzerland
| | - Liridon Zeneli
- Laboratory of Food Process Engineering, Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, Zurich, 8092, Switzerland
| | - Erich J. Windhab
- Laboratory of Food Process Engineering, Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, Zurich, 8092, Switzerland
| |
Collapse
|
6
|
Bayrak M, Mata J, Conn C, Floury J, Logan A. Application of small angle scattering (SAS) in structural characterisation of casein and casein-based products during digestion. Food Res Int 2023; 169:112810. [PMID: 37254386 DOI: 10.1016/j.foodres.2023.112810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2022] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
In recent years, small and ultra-small angle scattering techniques, collectively known as small angle scattering (SAS) have been used to study various food structures during the digestion process. These techniques play an important role in structural characterisation due to the non-destructive nature (especially when using neutrons), various in situ capabilities and a large length scale (of 1 nm to ∼20 μm) they cover. The application of these techniques in the structural characterisation of dairy products has expanded significantly in recent years. Casein, a major dairy protein, forms the basis of a wide range of gel structures at different length scales. These gel structures have been extensively researched utilising scattering techniques to obtain structural information at the nano and micron scale that complements electron and confocal microscopy. Especially, neutrons have provided opportunity to study these gels in their natural environment by using various in situ options. One such example is understanding changes in casein gel structures during digestion in the gastrointestinal tract, which is essential for designing personalised food structures for a wide range of food-related diseases and improve health outcomes. In this review, we present an overview of casein gels investigated using small angle and ultra-small angle scattering techniques. We also reviewed their digestion using newly built setups recently employed in various research. To gain a greater understanding of micro and nano-scale structural changes during digestion, such as the effect of digestive juices and mechanical breakdown on structure, new setups for semi-solid food materials are needed to be optimised.
Collapse
Affiliation(s)
- Meltem Bayrak
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia; School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | - Jitendra Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia.
| | - Charlotte Conn
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | | | - Amy Logan
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia.
| |
Collapse
|
7
|
Lesmes U. In vitro digestion models for the design of safe and nutritious foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:179-203. [PMID: 37236731 DOI: 10.1016/bs.afnr.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/28/2023]
Abstract
Responsible development of future foods requires in depth understanding of food digestion in the human body based on robust research models, ranging from in vitro models to randomized controlled human trials. This chapter overviews fundamental aspects of food digestion, namely bioaccessibility and bioavailability, and models mirroring gastric, intestinal, and colonic conditions. Second, the chapter demonstrates the potential of in vitro digestion models to help screen adverse effects of food additives, such as Titanium dioxide or carrageenan, or underpin the determinants of macro- and micronutrient digestion in different strata of the population, for example digestion of emulsions. Such efforts support rationalized design of functional foods, such as infant formulae, cheese, cereals and biscuits which are validated in vivo or in randomized controlled trials.
Collapse
Affiliation(s)
- Uri Lesmes
- Faculty of Biotechnology and Food Engineering, Technion, Israel.
| |
Collapse
|
8
|
Li C, Hu Y, Li S, Yi X, Shao S, Yu W, Li E. Biological factors controlling starch digestibility in human digestive system. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
|
9
|
Yaregal Z, Baye K, Solomon WK. The influence of dough kneading time and flour particle size distribution on white bread structure, glycemic response and aspects of appetite. Clin Nutr ESPEN 2022; 52:68-77. [PMID: 36513488 DOI: 10.1016/j.clnesp.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS White bread is widely consumed in many countries despite being a high-glycemic index (GI) food. It has been shown that the "food matrix effect" may help with diabetes and obesity management through lowering GI and appetite. This study aimed at investigating the effects of dough kneading time and flour particle size on white bread structure, glycemic response, and aspects of appetite. METHODS A two-phase randomized cross-over design was used in 10 healthy subjects over the course of 2 h. In phase 1, Texture Profile Analysis (TPA) attributes, Scanning Electron Microscope (SEM) image, glycemic response, and appetite aspects of white bread made with a 15-min dough kneading time (K15) were compared with white bread made with a 10-min dough kneading time (K10). In phase 2, TPA, SEM image, glycemic response, and satiety score of white bread made with coarse flour (CF) were compared to white bread made with fine flour (FF). RESULT With increasing hardness (force required to compress a food between the molars to a given deformation), total blood glucose IAUC in K15 (IAUC = 119 ± 12; GI = 66) was significantly (p < 0.05) lower than in K10 (IAUC = 154 ± 10; GI = 81). No marked difference was observed between K15 and K10 on aspects of appetite except for hunger. There was no significant (p > 0.05) difference in glycemic response between CF (IAUC = 126 ± 18; GI = 64) and FF (IAUC = 147 ± 12; GI = 81). Similarly, no discernible difference in satiety between CF and FF. CONCLUSION Changes in processing conditions can improve blood glucose response relalated to white bread consumption.
Collapse
Affiliation(s)
- Zemenu Yaregal
- College of Natural and Computational Sciences, Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Kaleab Baye
- College of Natural and Computational Sciences, Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia.
| | - W K Solomon
- Department of Food and Nutrition Sciences, Faculty of Consumer Sciences, University of Eswatini, Eswatini.
| |
Collapse
|
10
|
Spatial-temporal mapping of the intra-gastric pepsin concentration and proteolysis in pigs fed egg white gels. Food Chem 2022; 389:133132. [PMID: 35526282 DOI: 10.1016/j.foodchem.2022.133132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2022] [Revised: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 11/21/2022]
Abstract
While there is a consensus that food structure affects food digestion, the underlying mechanisms remain poorly understood. A previous experiment in pigs fed egg white gels of same composition but different structures evidenced such effect on food gastric disintegration. In this study, we detailed the consequences on intra-gastric pH, pepsin concentration and proteolysis by sampling throughout the stomach over 6 h digestion. Subsequent amino acid absorption was investigated as well by blood sampling. While acidification was almost homogeneous after 6 h digestion regardless of the gel, pepsin distribution never became uniform. Pepsin started to accumulate in the pylorus/antrum region before concentrating in the body stomach beyond 4 h, time from which proteolysis really started. Interestingly, the more acidic and soft gel resulted in a soon (60 min) increase in proteolysis, an earlier and more intense peak of plasmatic amino acids, and a final pepsin concentration three times higher than with the other gels.
Collapse
|
11
|
Zhang K, Dai M, Yang C, Nishinari K, Fang Y, Ni X, Huang W, Dou Z. An agar structured fluid prepared by pipe wall shear as dysphagia diet. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
|
12
|
Soy protein-based delivery systems as carriers of trans-resveratrol: bioaccessibility using different in vitro digestion models. Food Res Int 2022; 161:111837. [DOI: 10.1016/j.foodres.2022.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2022] [Revised: 08/14/2022] [Accepted: 08/21/2022] [Indexed: 11/19/2022]
|
13
|
Calligaris S, Moretton M, Melchior S, Mosca AC, Pellegrini N, Anese M. Designing food for the elderly: the critical impact of food structure. Food Funct 2022; 13:6467-6483. [PMID: 35678510 DOI: 10.1039/d2fo00099g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Ageing is an unavoidable progressive process causing many changes of the individual life. However, if faced in an efficient way, living longer in a healthy status could be an opportunity for all. In this context, food consumption and dietary patterns are pivotal factors in promoting active and healthy ageing. The development of food products tailored for the specific needs of the elderly might favour the fulfilment of nutritionally balanced diets, while reducing the consequences of malnutrition. To this aim, the application of a food structure design approach could be particularly profitable, being food structure responsible to the final functionalities of food products. In this narrative review, the physiological changes associated to food consumption occurring during ageing were firstly discussed. Then, the focus shifted to the possible role of food structure in delivering target functionalities, considering food acceptability, digestion of the nutrients, bioactive molecules and probiotic bacteria.
Collapse
Affiliation(s)
- Sonia Calligaris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Martina Moretton
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Sofia Melchior
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Ana Carolina Mosca
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma, Italy
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Monica Anese
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| |
Collapse
|
14
|
Rearranged supramolecular structure of resistant starch with polymorphic microcrystals prepared in high-solid enzymatic system. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
|
15
|
|
16
|
|
17
|
Kanyuck K, Mills T, Norton I, Norton-Welch A. Release of glucose and maltodextrin DE 2 from gellan gum gels and the impacts of gel structure. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
|
18
|
Salelles L, Floury J, Le Feunteun S. Pepsin activity as a function of pH and digestion time on caseins and egg white proteins under static in vitro conditions. Food Funct 2021; 12:12468-12478. [PMID: 34788782 DOI: 10.1039/d1fo02453a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Abstract
The activity of pepsin, the gastric protease, is generally considered to be negligible for pH ≥ 4, based on the results obtained with a few purified globular proteins. The present study aimed at studying the activity of porcine pepsin on egg white proteins (EWP) and casein micelle micro-aggregates (CA) over a broad range of pH (from 1 to 7) for short (3 min) and long (2 h) digestion times. For a short time, the results confirmed a tendency for a higher rate of hydrolysis with decreasing pH, but with different pH activity profiles for both the substrates. More remarkably, the degree of hydrolysis of CA after 2 h of digestion was constant from pH 1 to pH 5, and was only reduced by half at pH 6. This finding demonstrates that pepsin can hydrolyse caseins from the very beginning of gastric digestion. Interestingly, the trend of the reaction kinetics over 2 h appeared to be rather characteristic of the type of the substrate and was largely independent in terms of pH. Most hydrolysis profiles could be accurately fitted by a power law, an empirical model that was then successfully applied to the static in vitro gastric proteolysis of 6 other food matrices. Overall, our results support the idea that pepsin activity under weakly acidic conditions (pH ≥ 4) should not always be neglected, in particular, for milk caseins, and that pepsin reaction kinetics during static in vitro gastric digestion seems to evolve proportionally to the power of the digestion time.
Collapse
Affiliation(s)
- Léa Salelles
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - Juliane Floury
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - Steven Le Feunteun
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| |
Collapse
|
19
|
Tormási J, Abrankó L. Assessment of Fatty Acid-Specific Lipolysis by In Vitro Digestion and GC-FID. Nutrients 2021; 13:nu13113889. [PMID: 34836142 PMCID: PMC8623358 DOI: 10.3390/nu13113889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/03/2023] Open
Abstract
The nutritional relevance of food compositional data could be improved by taking the bioaccessibility of these constituents into account. A lack of routine methods to assess the bioaccessibility of fatty acids (FAs) in food is one of the limiting factors of doing so. An analytical protocol is proposed for routine assessment of the extent of lipolysis via in vitro digestion simulation methods in food products. The established method provides specific information on each FA individually. Steps of the protocol including the Bligh and Dyer chloroform/methanol/water extraction of esterified and free FAs from in vitro digesta, methyl ester derivatization, and GC-FID analysis were specifically tailored to help routine work and were harmonized with the Infogest in vitro digestion simulation protocol (both v1.0 and v2.0). The method was applied to assess the degree of FA-specific lipolysis in a baked fish (carp) meal and the results showed that the FA composition of the original food significantly differed from that of the distribution of FFAs in the digesta. The use of gastric lipase (in Infogest v2.0 protocol) increased total FA release by 9.5% and its specific impact on palmitic acid was the most prominent.
Collapse
|
20
|
Lillford P, Hermansson AM. Global missions and the critical needs of food science and technology. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
|
21
|
Nadia J, Olenskyj AG, Stroebinger N, Hodgkinson SM, Estevez TG, Subramanian P, Singh H, Singh RP, Bornhorst GM. Tracking physical breakdown of rice- and wheat-based foods with varying structures during gastric digestion and its influence on gastric emptying in a growing pig model. Food Funct 2021; 12:4349-4372. [PMID: 33884384 DOI: 10.1039/d0fo02917c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
There is currently a limited understanding of the effect of food structure on physical breakdown and gastric emptying of solid starch-based foods during gastric digestion. Moisture uptake, pH, particle size, rheological, and textural properties of six solid starch-based diets from different sources (Durum wheat and high amylose white rice) and of different macrostructures (porridge, native grain, agglomerate/couscous, and noodle) were monitored during 240 min of gastric digestion in a growing pig model. Changes in the physical properties of the gastric digesta were attributed to the influence of gastric secretions and gastric emptying, which were both dependent on the buffering capacity and initial macrostructure of the diets. Differences between the proximal and distal stomach regions were found in the intragastric pH and texture of the gastric digesta. For example, rice couscous, which had the smallest particle size and highest buffering capacity among the rice-based diets, had the shortest gastric emptying half-time and no significant differences between proximal and distal stomach digesta physical properties. Additionally, a relationship between gastric breakdown rate, expressed as gastric softening half-time from texture analysis, and gastric emptying half-time of dry matter was also observed. These findings provide new insights into the breakdown processes of starch-based solid foods in the stomach, which can be beneficial for the development of food structures with controlled rates of breakdown and gastric emptying during digestion.
Collapse
Affiliation(s)
- Joanna Nadia
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bayrak M, Mata J, Raynes JK, Greaves M, White J, Conn CE, Floury J, Logan A. Investigating casein gel structure during gastric digestion using ultra-small and small-angle neutron scattering. J Colloid Interface Sci 2021; 594:561-574. [PMID: 33780761 DOI: 10.1016/j.jcis.2021.03.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2020] [Revised: 02/24/2021] [Accepted: 03/15/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to understand the structural devolution of 10% w/w rennet-induced (RG) and transglutaminase-induced acid (TG) gels in H2O and D2O under in vitro gastric conditions with and without pepsin. The real-time devolution of structure at a nano- (e.g. colloidal calcium phosphate (CCP) and micelle) and micro- (gel network) level was determined using ultra-small (USANS) and small-angle neutron scattering (SANS) with electron microscopy. Results demonstrate that gel firmness or elasticity determines disintegration behaviour during simulated mastication and consequently the particle size entering the stomach. Shear of mixing in the stomach, pH, and enzyme activity will also affect the digestion process. Our results suggest that shear of mixing primarily results in erosion at the particle surface and governs gel disintegration behaviour during the early stages of digestion. Pepsin diffusivity, and hence action, occur more readily in the latter stages of gastric digestion via access to the particle interior. This occurs via the progressively larger pores of the looser gel network and channels created within the larger, less dense casein micelles of the RG gels. Gel firmness and brittleness were greater in the D2O samples compared to H2O, facilitating gel disintegration. Despite the higher strength and elasticity of RG compared to TG, the protein network strands of the RG gels become more compact when exposed to the acidic gastric environment with comparatively larger pores observed through SEM imaging. This led to a higher degree of digestibility in RG gels compared to TG gels. This is the first study to examine casein gel structure during simulated gastric digestion using scattering and highlights the benefits of neutron scattering to monitor structural changes during digestion at multiple length scales.
Collapse
Affiliation(s)
- Meltem Bayrak
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia; School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | - Jitendra Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia.
| | - Jared K Raynes
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia.
| | - Mark Greaves
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia.
| | - Jacinta White
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia.
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| | | | - Amy Logan
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia.
| |
Collapse
|
23
|
Feeney EL, Lamichhane P, Sheehan JJ. The cheese matrix: Understanding the impact of cheese structure on aspects of cardiovascular health – A food science and a human nutrition perspective. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12755] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Affiliation(s)
- Emma L Feeney
- Institute of Food and Health University College Dublin 2.16a Science Centre South Dublin 4Ireland
- Food for Health Ireland (FHI) S2.09 Science Centre South Belfield, Dublin 4Ireland
| | - Prabin Lamichhane
- Teagasc Food Research Centre Moorepark Fermoy, Cork P61 C996 Ireland
| | - Jeremiah J Sheehan
- Food for Health Ireland (FHI) S2.09 Science Centre South Belfield, Dublin 4Ireland
- Teagasc Food Research Centre Moorepark Fermoy, Cork P61 C996 Ireland
| |
Collapse
|
24
|
Blanquet-Diot S, François O, Denis S, Hennequin M, Peyron M. Importance of oral phase in in vitro starch digestibility related to wholegrain versus refined pastas and mastication impairment. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
|
25
|
Hao L, Gao X, Zhou T, Cao J, Sun Y, Dang Y, Pan D. Angiotensin I-Converting Enzyme (ACE) Inhibitory and Antioxidant Activity of Umami Peptides after In Vitro Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8232-8241. [PMID: 32662986 DOI: 10.1021/acs.jafc.0c02797] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2023]
Abstract
Umami peptides can help reduce the salt content in foods while still maintaining a savory taste. Few studies have reported the bioactivity of umami peptides after consumption. We studied the bioactivities of 12 umami peptides after gastrointestinal digestion. Three umami peptides exhibited angiotensin I-converting enzyme (ACE) inhibitory and antioxidant activity after digestion. Six novel peptides were identified from digestion solutions of the peptides by HPLC-MS/MS. Among them, CC, CCNK, and HCHT had both ACE inhibitory activity (IC50 values were 9.81, 9.00, and 114.99 μM, respectively) and antioxidant activity (strong 1,1-Diphenyl-2-pycryl-hydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) free radical scavenging activities). AHSVRF had strong ACE inhibitory activity. These peptides increased the nitric oxide concentration and decreased the content of endothelin-1 in a medium of human umbilical vein endothelial cells in a dose-dependent manner. Experiments with damaged HepG2 cells showed that peptides CC, CCNK, and HCHT had antioxidant activity through their cytoprotective effects and by reducing the reactive oxygen species content. The results indicated that umami peptides may provide many health benefits after consumption.
Collapse
Affiliation(s)
- Li Hao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Xinchang Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Tingyi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
26
|
Li C, Yu W, Wu P, Chen XD. Current in vitro digestion systems for understanding food digestion in human upper gastrointestinal tract. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
|
27
|
Olenskyj AG, Donis-González IR, Bornhorst GM. Nondestructive characterization of structural changes during in vitro gastric digestion of apples using 3D time-series micro-computed tomography. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
|
28
|
Meijer GW, Lähteenmäki L, Stadler RH, Weiss J. Issues surrounding consumer trust and acceptance of existing and emerging food processing technologies. Crit Rev Food Sci Nutr 2020; 61:97-115. [PMID: 32003225 DOI: 10.1080/10408398.2020.1718597] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023]
Abstract
The purpose of food processing today is to make food safer, more nutritious and tastier, and to increase storage life. Consumers have a lack of trust in the way food is produced, formulated and processed, particularly with possible contaminants or chemical residues from production. Food manufacturers are not seen as being highly trusted sources. This may partly result from manufacturers' reluctance to share all information and to protect intellectual property via patents and thus maintain a competitive edge. There is a need to inform the consumer better about what operations the involved ingredients are subjected to and why. Various ways of food processing are reviewed. New food processing technologies face challenges when introduced and factors influencing consumers' and other stakeholders' acceptance should be part of decision-making process when adopting new technologies. Consumers' perception of risks is not the same as the risk assessment made by experts. A few specific cases are being discussed to further highlight the multiplicity of factors that may contribute to the development of a certain consumer perception about a product or a class of products. This is also linked to the emergence of certain terminologies that are associated with an increasingly negative perception of the processing of foods. We recommend more transparency on food formulation and food processing to restore consumer trust, which enables to take the advantage of the benefits different processing methods offer. Food manufacturers must make an effort to let consumers know how their food is being processed within the walls of the factory and highlight the benefits vis-à-vis preparing foods in a domestic environment.
Collapse
Affiliation(s)
- Gert W Meijer
- Research & Development, Société des Produits Nestlé S.A, Vevey, Switzerland.,Faculty of Life and Health Sciences, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | | - Richard H Stadler
- Research & Development, Société des Produits Nestlé S.A, Vevey, Switzerland
| | - Jochen Weiss
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
29
|
Gong B, Cheng L, Gilbert RG, Li C. Distribution of short to medium amylose chains are major controllers of in vitro digestion of retrograded rice starch. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.06.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
|
30
|
Tripodi E, Lazidis A, Norton IT, Spyropoulos F. Food Structure Development in Emulsion Systems. HANDBOOK OF FOOD STRUCTURE DEVELOPMENT 2019. [DOI: 10.1039/9781788016155-00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023]
Abstract
A number of food products exist, in part or entirely, as emulsions, while others are present in an emulsified state at some point during their production/formation. Mayonnaise, butter, margarine, salad dressing, whipped cream, and ice cream represent some of the typical examples of emulsion-based foods. Controlled by both formulation and processing aspects, the emulsion architecture that is formed ultimately determines many of the attributes of the final food product. This chapter initially provides an overview of the basic constituents of emulsions and their influence on the microstructure and stability of conventional as well as more complex systems. The available spectrum of processing routes and characterization techniques currently utilized (or emerging) within the area of emulsions is then discussed. The chapter concludes with a concise outline of the relationship between food emulsion microstructure design and its performance (textural, rheological, sensorial, etc.).
Collapse
Affiliation(s)
- Ernesto Tripodi
- Chemical Engineering Department, University of Birmingham UK
| | - Aris Lazidis
- Chemical Engineering Department, University of Birmingham UK
- Nestlé Product Technology Centre, York UK
| | - Ian T. Norton
- Chemical Engineering Department, University of Birmingham UK
| | | |
Collapse
|
31
|
Spatial-temporal changes in pH, structure and rheology of the gastric chyme in pigs as influenced by egg white gel properties. Food Chem 2019; 280:210-220. [DOI: 10.1016/j.foodchem.2018.12.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2018] [Revised: 11/27/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022]
|
32
|
Whey-based cheese provides more postprandial plasma leucine than casein-based cheese: A pig study. Food Chem 2019; 277:63-69. [DOI: 10.1016/j.foodchem.2018.10.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 11/22/2022]
|
33
|
Ozvural EB, Bornhorst GM. Chemical and structural characteristics of frankfurters during in vitro gastric digestion as influenced by cooking method and severity. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
|
34
|
Floury J, Bianchi T, Thévenot J, Dupont D, Jamme F, Lutton E, Panouillé M, Boué F, Le Feunteun S. Exploring the breakdown of dairy protein gels during in vitro gastric digestion using time-lapse synchrotron deep-UV fluorescence microscopy. Food Chem 2018; 239:898-910. [DOI: 10.1016/j.foodchem.2017.07.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 12/01/2022]
|
35
|
Mat DJ, Cattenoz T, Souchon I, Michon C, Le Feunteun S. Monitoring protein hydrolysis by pepsin using pH-stat: In vitro gastric digestions in static and dynamic pH conditions. Food Chem 2018; 239:268-275. [DOI: 10.1016/j.foodchem.2017.06.115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2017] [Revised: 06/13/2017] [Accepted: 06/20/2017] [Indexed: 12/29/2022]
|
36
|
The Role of Food Antioxidants, Benefits of Functional Foods, and Influence of Feeding Habits on the Health of the Older Person: An Overview. Antioxidants (Basel) 2017; 6:antiox6040081. [PMID: 29143759 PMCID: PMC5745491 DOI: 10.3390/antiox6040081] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023] Open
Abstract
This overview was directed towards understanding the relationship of brain functions with dietary choices mainly by older humans. This included food color, flavor, and aroma, as they relate to dietary sufficiency or the association of antioxidants with neurodegenerative diseases such as dementia and Alzheimer’s disease. Impairment of olfactory and gustatory function in relation to these diseases was also explored. The role of functional foods was considered as a potential treatment of dementia and Alzheimer’s disease through inhibition of acetylcholinesterase as well as similar treatments based on herbs, spices and antioxidants therein. The importance of antioxidants for maintaining the physiological functions of liver, kidney, digestive system, and prevention of cardiovascular diseases and cancer has also been highlighted. Detailed discussion was focused on health promotion of the older person through the frequency and patterns of dietary intake, and a human ecology framework to estimate adverse risk factors for health. Finally, the role of the food industry, mass media, and apps were explored for today’s new older person generation.
Collapse
|
37
|
Kuo W, Lee Y. Descriptive and Temporal Saltiness Perception Properties of Model Solid Lipoproteic Colloid Foods—Implications for Sodium Reduction. J Food Sci 2017; 82:1702-1712. [DOI: 10.1111/1750-3841.13769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2017] [Revised: 04/11/2017] [Accepted: 04/30/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Wan‐Yuan Kuo
- Dept. of Food Science and Human Nutrition Univ. of Illinois at Urbana‐Champaign 382K, Agricultural Engineering and Sciences Building, 1304 W. Pennsylvania Ave. Urbana IL 61801 U.S.A
| | - Youngsoo Lee
- Dept. of Food Science and Human Nutrition Univ. of Illinois at Urbana‐Champaign 382K, Agricultural Engineering and Sciences Building, 1304 W. Pennsylvania Ave. Urbana IL 61801 U.S.A
| |
Collapse
|
38
|
|
39
|
|
40
|
|
41
|
Mat DJ, Le Feunteun S, Michon C, Souchon I. In vitro digestion of foods using pH-stat and the INFOGEST protocol: Impact of matrix structure on digestion kinetics of macronutrients, proteins and lipids. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.12.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
|
42
|
|
43
|
Boland M. Human digestion--a processing perspective. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2275-2283. [PMID: 26711173 DOI: 10.1002/jsfa.7601] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/16/2015] [Revised: 11/14/2015] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
The human digestive system is reviewed in the context of a process with four major unit operations: oral processing to reduce particle size and produce a bolus; gastric processing to initiate chemical and enzymatic breakdown; small intestinal processing to break down macromolecules and absorb nutrients; and fermentation and water removal in the colon. Topics are highlighted about which we need to know more, including effects of aging and dentition on particle size in the bolus, effects of different patterns of food and beverage intake on nutrition, changes in saliva production and composition, mechanical effects of gastric processing, distribution of pH in the stomach, physicochemical and enzymatic effects on nutrient availability and uptake in the small intestine, and the composition, effects of and changes in the microbiota of the colon. Current topics of interest including food synergy, gut-brain interactions, nutritional phenotype and digestion in the elderly are considered. Finally, opportunities for food design based on an understanding of digestive processing are discussed.
Collapse
Affiliation(s)
- Mike Boland
- Riddet Institute, Palmerston North, New Zealand
| |
Collapse
|
44
|
Gopirajah R, Anandharamakrishnan C. Advancement of Imaging and Modeling Techniques for Understanding Gastric Physical Forces on Food. FOOD ENGINEERING REVIEWS 2016. [DOI: 10.1007/s12393-016-9140-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
|
45
|
Norton JE, Gonzalez Espinosa Y, Watson RL, Spyropoulos F, Norton IT. Functional food microstructures for macronutrient release and delivery. Food Funct 2016; 6:663-78. [PMID: 25553863 DOI: 10.1039/c4fo00965g] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
There is a need to understand the role of fat, protein and carbohydrate in human health, and also how foods containing and/or structured using these macronutrients can be designed so that they can have a positive impact on health. This may include a reduction in fat, salt or sugar, the protection and targeted release of micronutrients or active ingredients from/to particular parts of the digestive system, improvement of gastrointestinal health or satiety enhancing properties. Such foods can be designed with various macro- and microstructures that will impact on macronutrient release and delivery. These include simple and double emulsions, the use of Pickering particles and shells, nanoparticles, liposomes, gelled networks, fluid gels and gel particles, foams, self-assembled structures, and encapsulated systems. In order to design foods that deliver these benefits understanding of how these structures behave in the gastrointestinal tract is also required, which should involve utilising both in vitro and in vivo studies. This review aims to draw together research in these areas, by focusing on the current state of the art, but also exciting possibilities for future research and food development.
Collapse
Affiliation(s)
- J E Norton
- University of Birmingham, Birmingham, West Midlands, UK.
| | | | | | | | | |
Collapse
|
46
|
Abstract
The current knowledge on how food structures relate to perception is discussed.
Collapse
|
47
|
Ferrua MJ, Singh RP. Computational modelling of gastric digestion: current challenges and future directions. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2015.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022]
|
48
|
Fardet A. A shift toward a new holistic paradigm will help to preserve and better process grain products’ food structure for improving their health effects. Food Funct 2015; 6:363-82. [DOI: 10.1039/c4fo00477a] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
A holistic approach to grain products will help preserve their food structure and nutrient density and thus their health potential.
Collapse
Affiliation(s)
- Anthony Fardet
- INRA
- UMR 1019
- UNH
- CRNH Auvergne
- F-63000 Clermont-Ferrand & Clermont Université
| |
Collapse
|
49
|
Abstract
Bioactives which are isolated from different sources like plants, animals, etc. are known to be ideal candidates to treat and prevent chronic health problems such as obesity, hypertension, cardiovascular diseases, cancer, etc.
Collapse
Affiliation(s)
- N. P. Aditya
- Department of Food Science and Technology
- Sejong University
- Seoul 143-747
- Korea
| | - Sanghoon Ko
- Department of Food Science and Technology
- Sejong University
- Seoul 143-747
- Korea
| |
Collapse
|