1
|
Williamson MJ, Tebbs EJ, Curnick DJ, Ferretti F, Carlisle AB, Chapple TK, Schallert RJ, Tickler DM, Block BA, Jacoby DMP. Environmental stress reduces shark residency to coral reefs. Commun Biol 2024; 7:1018. [PMID: 39251811 PMCID: PMC11385207 DOI: 10.1038/s42003-024-06707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Coral reef ecosystems are highly threatened and can be extremely sensitive to the effects of climate change. Multiple shark species rely on coral reefs as important habitat and, as such, play a number of significant ecological roles in these ecosystems. How environmental stress impacts routine, site-attached reef shark behavior, remains relatively unexplored. Here, we combine 8 years of acoustic tracking data (2013-2020) from grey reef sharks resident to the remote coral reefs of the Chagos Archipelago in the Central Indian Ocean, with a satellite-based index of coral reef environmental stress exposure. We show that on average across the region, increased stress on the reefs significantly reduces grey reef shark residency, promoting more diffuse space use and increasing time away from shallow forereefs. Importantly, this impact has a lagged effect for up to 16 months. This may have important physiological and conservation consequences for reef sharks, as well as broader implications for reef ecosystem functioning. As climate change is predicted to increase environmental stress on coral reef ecosystems, understanding how site-attached predators respond to stress will be crucial for forecasting the functional significance of altering predator behavior and the potential impacts on conservation for both reef sharks and coral reefs themselves.
Collapse
Affiliation(s)
- Michael J Williamson
- Institute of Zoology, Zoological Society of London, London, UK.
- Department of Geography, King's College London, London, UK.
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | - Emma J Tebbs
- Department of Geography, King's College London, London, UK
| | - David J Curnick
- Institute of Zoology, Zoological Society of London, London, UK
| | - Francesco Ferretti
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Aaron B Carlisle
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| | - Taylor K Chapple
- Hatfield Marine Science Center, Oregon State University, Newport, OR, USA
| | | | - David M Tickler
- Marine Futures Lab, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Barbara A Block
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - David M P Jacoby
- Institute of Zoology, Zoological Society of London, London, UK.
- Lancaster Environment Centre, Lancaster University, Lancaster, UK.
| |
Collapse
|
2
|
Bigal E, Livne L, Zemah-Shamir Z, Levy T, Shemesh E, Tchernov D, Scheinin A. Shark shuffle: segregated co-occurrence of multiple dusky and sandbar lineages at a human-altered habitat in the eastern Mediterranean Sea. Sci Rep 2024; 14:19924. [PMID: 39198577 PMCID: PMC11358537 DOI: 10.1038/s41598-024-69460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Requiem sharks (genus Carcharhinus) have previously been reported to form large aggregations around marine infrastructures in the eastern Mediterranean Sea. While this behaviour may offer fitness advantages at the individual level, the implications of extended residency at human-altered habitats for population persistence have yet to be assessed. In this work, we investigated the phylogeographic and demographic composition of sharks near a coal-fired power and desalination station in Israel. Our aim was to infer habitat use and the mechanisms underlying the aggregation behaviour, and to highlight potential conservation impacts. We sampled, measured, and released 70 individuals between 2016 and 2022 to assess genetic variability within the cytochrome C oxidase I (COI) region and to analyse the aggregation's structure based on the sharks' size and sex distribution. In addition, we performed meristic counts on a reference specimen collected dead at another power station in Israel to supplement species identification using the abovementioned techniques. Our findings indicate size-based sex segregation of adult female dusky and male sandbar sharks (Carcharhinus obscurus and Carcharhinus plumbeus, respectively), with each species comprising two COI haplotypes. In the dusky shark, one haplotype corresponded to an Indo-Pacific lineage, and the other matched an Atlantic lineage. In the sandbar shark, we observed a haplotype previously sampled in the Mediterranean Sea, the Red Sea, the Northwest Indian Ocean, and South Africa, and another haplotype that was unique to our study site and genetically closer to the former than to sequences sampled in other ocean basins. This study provides the first indication of sympatric aggregation amongst phylogeographically distinct dusky and sandbar shark lineages, suggesting that human-altered habitats in the eastern Mediterranean Sea may influence the distribution of these species. Based on the observed segregation pattern, we conclude that the site does not function as a nursery, parturition, or mating area, and discuss other plausible explanations that warrant further research. Finally, we highlight important directions for future research and the implications of our findings for management and conservation.
Collapse
Affiliation(s)
- Eyal Bigal
- Morris Kahn Marine Research Station, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel.
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA.
| | - Leigh Livne
- Morris Kahn Marine Research Station, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Ziv Zemah-Shamir
- Morris Kahn Marine Research Station, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Tom Levy
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Eli Shemesh
- Morris Kahn Marine Research Station, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Aviad Scheinin
- Morris Kahn Marine Research Station, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
3
|
Goetze JS, Heithaus MR, MacNeil MA, Harvey E, Simpfendorfer CA, Heupel MR, Meekan M, Wilson S, Bond ME, Speed CW, Currey-Randall LM, Fisher R, Sherman CS, Kiszka JJ, Rees MJ, Udyawer V, Flowers KI, Clementi GM, Asher J, Beaufort O, Bernard ATF, Berumen ML, Bierwagen SL, Boslogo T, Brooks EJ, Brown JJ, Buddo D, Cáceres C, Casareto S, Charloo V, Cinner JE, Clua EEG, Cochran JEM, Cook N, D'Alberto BM, de Graaf M, Dornhege-Lazaroff MC, Fanovich L, Farabaugh NF, Fernando D, Ferreira CEL, Fields CYA, Flam AL, Floros C, Fourqurean V, Barcia LG, Garla R, Gastrich K, George L, Graham R, Hagan V, Hardenstine RS, Heck SM, Heithaus P, Henderson AC, Hertler H, Hueter RE, Johnson M, Jupiter SD, Kaimuddin M, Kasana D, Kelley M, Kessel ST, Kiilu B, Kyne F, Langlois T, Lawe J, Lédée EJI, Lindfield S, Maggs JQ, Manjaji-Matsumoto BM, Marshall A, Matich P, McCombs E, McLean D, Meggs L, Moore S, Mukherji S, Murray R, Newman SJ, O'Shea OR, Osuka KE, Papastamatiou YP, Perera N, Peterson BJ, Pina-Amargós F, Ponzo A, Prasetyo A, Quamar LMS, Quinlan JR, Razafindrakoto CF, Rolim FA, Ruiz-Abierno A, Ruiz H, Samoilys MA, Sala E, Sample WR, Schärer-Umpierre M, Schoen SN, Schlaff AM, Smith ANH, Sparks L, Stoffers T, Tanna A, Torres R, Travers MJ, Valentin-Albanese J, Warren JD, Watts AM, Wen CK, Whitman ER, Wirsing AJ, Zarza-González E, Chapman DD. Directed conservation of the world's reef sharks and rays. Nat Ecol Evol 2024; 8:1118-1128. [PMID: 38769434 DOI: 10.1038/s41559-024-02386-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 03/03/2024] [Indexed: 05/22/2024]
Abstract
Many shark populations are in decline around the world, with severe ecological and economic consequences. Fisheries management and marine protected areas (MPAs) have both been heralded as solutions. However, the effectiveness of MPAs alone is questionable, particularly for globally threatened sharks and rays ('elasmobranchs'), with little known about how fisheries management and MPAs interact to conserve these species. Here we use a dedicated global survey of coral reef elasmobranchs to assess 66 fully protected areas embedded within a range of fisheries management regimes across 36 countries. We show that conservation benefits were primarily for reef-associated sharks, which were twice as abundant in fully protected areas compared with areas open to fishing. Conservation benefits were greatest in large protected areas that incorporate distinct reefs. However, the same benefits were not evident for rays or wide-ranging sharks that are both economically and ecologically important while also threatened with extinction. We show that conservation benefits from fully protected areas are close to doubled when embedded within areas of effective fisheries management, highlighting the importance of a mixed management approach of both effective fisheries management and well-designed fully protected areas to conserve tropical elasmobranch assemblages globally.
Collapse
Affiliation(s)
- Jordan S Goetze
- Marine Science Program, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Perth, Western Australia, Australia.
- School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia.
| | - Michael R Heithaus
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - M Aaron MacNeil
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Euan Harvey
- School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Colin A Simpfendorfer
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Michelle R Heupel
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Mark Meekan
- The UWA Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Shaun Wilson
- Marine Science Program, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Perth, Western Australia, Australia
- The UWA Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Mark E Bond
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Conrad W Speed
- Australian Institute of Marine Science, Perth, Western Australia, Australia
| | | | - Rebecca Fisher
- The UWA Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- Australian Institute of Marine Science, Perth, Western Australia, Australia
| | - C Samantha Sherman
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Jeremy J Kiszka
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Matthew J Rees
- Australian Institute of Marine Science, Perth, Western Australia, Australia
- Centre for Sustainable Ecosystems Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Vinay Udyawer
- Australian Institute of Marine Science, Darwin, Northern Territory, Australia
| | - Kathryn I Flowers
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
- Ray Biology and Conservation Program, Mote Marine Laboratory, Sarasota, FL, USA
| | - Gina M Clementi
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Jacob Asher
- Department of Environmental Protection and Regeneration, Red Sea Global, AlRaidah Digital City, Riyadh, Saudi Arabia
| | | | - Anthony T F Bernard
- South African Institute for Aquatic Biodiversity, National Research Foundation, Makhanda, South Africa
- Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Stacy L Bierwagen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Tracey Boslogo
- Papua New Guinea Wildlife Conservation Society, Kavieng, New Ireland Province, Papua New Guinea
| | - Edward J Brooks
- Cape Eleuthera Institute, Cape Eleuthera, Eleuthera, Bahamas
| | - J Jed Brown
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Dayne Buddo
- Georgia Aquarium - Research and Conservation, Atlanta, GA, USA
| | - Camila Cáceres
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Sara Casareto
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | | | - Joshua E Cinner
- Thriving Oceans Research Hub, School of Geosciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Eric E G Clua
- Paris Sciences Lettres, Centre de Recherche Insulaire et Observatoire de l'Environnement Opunohu Bay, Papetoai, French Polynesia
- LABEX CORAIL, Ecole Pratique des Hautes Etudes, Perpignan, France
| | - Jesse E M Cochran
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Neil Cook
- School of Biosciences, Cardiff University, Cardiff, UK
- Environmental Research Institute Charlotteville, Charlotteville, Trinidad and Tobago
| | - Brooke M D'Alberto
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Oceans and Atmosphere, CSIRO, Hobart, Tasmania, Australia
| | - Martin de Graaf
- Wageningen Marine Research, Wageningen University and Research, IJmuiden, the Netherlands
| | | | - Lanya Fanovich
- Environmental Research Institute Charlotteville, Charlotteville, Trinidad and Tobago
| | - Naomi F Farabaugh
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | | | - Carlos Eduardo Leite Ferreira
- Reef Systems Ecology and Conservation Lab, Departamento de Biologia Marinha, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Candace Y A Fields
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
- Cape Eleuthera Institute, Cape Eleuthera, Eleuthera, Bahamas
| | - Anna L Flam
- Marine Megafauna Foundation, Palm Beach, CA, USA
| | - Camilla Floros
- Oceanographic Research Institute, Durban, South Africa
- TRAFFIC International, Cambridge, UK
- Science Department, Georgia Jones-Ayers Middle School, Miami, FL, USA
| | - Virginia Fourqurean
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Laura García Barcia
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Ricardo Garla
- Centro de Biociências, Departmento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal-RN, Brazil
- Beacon Development Department, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kirk Gastrich
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Lachlan George
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Valerie Hagan
- Sharks and Rays Conservation Program, Mote Marine Laboratory, Sarasota, FL, USA
| | - Royale S Hardenstine
- Department of Environmental Protection and Regeneration, Red Sea Global, AlRaidah Digital City, Riyadh, Saudi Arabia
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Stephen M Heck
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Patricia Heithaus
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Aaron C Henderson
- The School for Field Studies, Center for Marine Resource Studies, South Caicos, Turks and Caicos Islands
| | - Heidi Hertler
- The School for Field Studies, Center for Marine Resource Studies, South Caicos, Turks and Caicos Islands
| | - Robert E Hueter
- Sharks and Rays Conservation Program, Mote Marine Laboratory, Sarasota, FL, USA
- OCEARCH, Park City, UT, USA
| | | | - Stacy D Jupiter
- Melanesia Program, Wildlife Conservation Society, Suva, Fiji
| | - Muslimin Kaimuddin
- Operation Wallacea, Spilsby, Lincolnshire, UK
- Wasage Divers, Wakatobi and Buton, Southeast Sulawesi, Indonesia
| | - Devanshi Kasana
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Megan Kelley
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Steven T Kessel
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, USA
| | | | - Fabian Kyne
- University of the West Indies, Kingston, Jamaica
| | - Tim Langlois
- The UWA Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Jaedon Lawe
- Yardie Environmental Conservationists Limited, Kingston, Jamaica
| | - Elodie J I Lédée
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | | | - Jade Q Maggs
- National Institute of Water and Atmospheric Research, Auckland, New Zealand
| | | | - Andrea Marshall
- Marine Megafauna Foundation, West Palm, FL, USA
- Depto. Ecología e Hidrología, Universidad de Murcia, Murcia, Spain
| | | | | | - Dianne McLean
- The UWA Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- Australian Institute of Marine Science, Perth, Western Australia, Australia
| | - Llewelyn Meggs
- Yardie Environmental Conservationists Limited, Kingston, Jamaica
| | - Stephen Moore
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Sushmita Mukherji
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Ryan Murray
- Large Marine Vertebrates Research Institute Philippines, Puerto Princesa City, Palawan, Philippines
- Met Eireann, Dublin, Ireland
| | - Stephen J Newman
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, Hillarys, Western Australia, Australia
| | - Owen R O'Shea
- Cape Eleuthera Institute, Cape Eleuthera, Eleuthera, Bahamas
- Centre for Ocean Research and Education, Gregory Town, Eleuthera, Bahamas
| | - Kennedy E Osuka
- CORDIO East Africa, Mombasa, Kenya
- Department of Earth, Oceans and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Yannis P Papastamatiou
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | | | - Bradley J Peterson
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Fabián Pina-Amargós
- Blue Sanctuary-Avalon, Jardines de la Reina, Cuba
- Centro de Investigaciones Marinas, Universidad de La Habana, Habana, Cuba
| | - Alessandro Ponzo
- Large Marine Vertebrates Research Institute Philippines, Puerto Princesa City, Palawan, Philippines
| | - Andhika Prasetyo
- Center for Fisheries Research, Ministry for Marine Affairs and Fisheries, Jakarta Utara, Indonesia
- Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency, Bogor, Indonesia
| | - L M Sjamsul Quamar
- Fisheries Department, Universitas Dayanu Ikhsanuddin, Bau Bau, Southeast Sulawesi, Indonesia
| | - Jessica R Quinlan
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | | | - Fernanda A Rolim
- Marine Ecology and Conservation Laboratory, Universidade Federal de Sao Paulo, Santos, São Paulo, Brazil
| | | | | | - Melita A Samoilys
- CORDIO East Africa, Mombasa, Kenya
- Department of Biology, University of Oxford, Oxford, UK
| | - Enric Sala
- Pristine Seas, National Geographic Society, Washington, DC, USA
| | - William R Sample
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | | | - Sara N Schoen
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Audrey M Schlaff
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Adam N H Smith
- School of Mathematical and Computational Sciences, Massey University, Auckland, New Zealand
| | | | - Twan Stoffers
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, the Netherlands
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | | | - Rubén Torres
- Reef Check Dominican Republic, Santo Domingo, Dominican Republic
| | - Michael J Travers
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, Hillarys, Western Australia, Australia
| | - Jasmine Valentin-Albanese
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
- Bergen County Technical Schools, Bergen County, NJ, USA
| | - Joseph D Warren
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Alexandra M Watts
- Marine Megafauna Foundation, Truckee, CA, USA
- Department of Natural Sciences, Faculty of Science Engineering, Manchester Metropolitan University, Manchester, UK
| | - Colin K Wen
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Elizabeth R Whitman
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Aaron J Wirsing
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Esteban Zarza-González
- GIBEAM Research Group, Universidad del Sinú, Cartagena, Colombia
- Corales del Rosario and San Bernardo National Natural Park, Bolivar, Colombia
| | - Demian D Chapman
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
- Sharks and Rays Conservation Program, Mote Marine Laboratory, Sarasota, FL, USA
| |
Collapse
|
4
|
Elston C, Murray TS, Rogers T, Parkinson MC, Mann BQ, Daly R, Filmalter JD, Cowley PD. Diamond Gymnura natalensis and duckbill Aetomylaeus bovinus rays undertake nationwide coastal migrations. JOURNAL OF FISH BIOLOGY 2024. [PMID: 38533638 DOI: 10.1111/jfb.15728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Migration is a critical aspect of ocean ecosystems, and understanding this phenomenon answers ecological and management questions. Given the difficulty in tracking ocean animals across large distances, the extent to which different ray species perform long-distance movements, such as migrations, remains unknown. This study used passive acoustic telemetry to track the movements of endemic diamond Gymnura natalensis and critically endangered duckbill Aetomylaeus bovinus rays along the South African coastline using a collaborative nationwide network of coastal acoustic receivers for up to 7 years. Duckbill rays were detected significantly more frequently than diamond rays, but both species moved between the south and east coasts of South Africa (traveling up to 1167 km). Tagged individuals were detected significantly more often in their tagging locations during summer months but traveled significantly further distances during winter months. Furthermore, movement models fitted to individual duckbill rays' annual net-squared displacement identified most individual annual movements as migratory. This evidence suggests that both diamond and duckbill rays make eastward winter migrations and return to specific areas along the coastline during the summer months. The exceptions to this were diamond rays tagged on the east coast that were not found to migrate seasonally, which supports previous research that there is intraspecific variability in migrations for ray species. These findings have implications for understanding ray migration not only on a global scale but also locally for spatial management interventions and population delineation.
Collapse
Affiliation(s)
- Chantel Elston
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
| | - Taryn S Murray
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
| | - Toby Rogers
- Institute for Communities and Wildlife in Africa (iCWild), University of Cape Town, Cape Town, South Africa
- Shark Spotters, Cape Town, South Africa
| | | | - Bruce Q Mann
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
- Oceanographic Research Institute, Durban, South Africa
| | - Ryan Daly
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- Oceanographic Research Institute, Durban, South Africa
| | - John D Filmalter
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| | - Paul D Cowley
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| |
Collapse
|
5
|
Fontes J, Schouten M, Afonso P, Macena B. The return of Scarface: Philopatry in an ocean wandering shark? Ecology 2024; 105:e4234. [PMID: 38228407 DOI: 10.1002/ecy.4234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 01/18/2024]
Affiliation(s)
- Jorge Fontes
- Institute of Marine Sciences - Okeanos, University of the Azores, Horta, Portugal
| | | | - Pedro Afonso
- Institute of Marine Sciences - Okeanos, University of the Azores, Horta, Portugal
| | - Bruno Macena
- Institute of Marine Sciences - Okeanos, University of the Azores, Horta, Portugal
| |
Collapse
|
6
|
Kohler J, Gore M, Ormond R, Johnson B, Austin T. Individual residency behaviours and seasonal long-distance movements in acoustically tagged Caribbean reef sharks in the Cayman Islands. PLoS One 2023; 18:e0293884. [PMID: 38011196 PMCID: PMC10681323 DOI: 10.1371/journal.pone.0293884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023] Open
Abstract
Understanding how reef-associated sharks use coastal waters through their ontogeny is important for their effective conservation and management. This study used the horizontal movements of acoustically tagged Caribbean reef sharks (Carcharhinus perezi) to examine their use of coastal space around the Cayman Islands between 2009 and 2019. A total of 39 (59.1%) tagged sharks (male = 22, female = 17, immature = 18, mature = 21) were detected on the islands wide network of acoustic receivers. The detection data were used to calculate values of Residency Index (RI), Site-Fidelity Index (SFI) and minimum linear displacement (MLD), as well as for network analysis of individual shark movements to test for differences between demographics, seasons, and diel periods. Sharks were detected for up to 1,598 days post-tagging and some individuals showed resident behaviour but the majority of tagged individuals appear to have been one-off or only occasional transient visitors to the area. Generally, individuals showed strong site-fidelity to different areas displaying linear home ranges of < 20 km. The evidence indicates that there was no pattern of diel behaviour. Tagged sharks generally showed increased movements within and between islands during the summer (April-September), which may be related to breeding activity. Some individuals even made occasional excursions across 110 km of open water > 2,000 m deep between Grand Cayman and Little Cayman. One mature female shark showed a displacement of 148.21 km, the greatest distance reported for this species. The data shows that the distances over which some sharks moved, greatly exceeded the extent of any one of the islands' marine protected areas indicating that this species may be more mobile and dispersive than previously thought. This study provides support for the blanket protection to all sharks throughout Cayman waters, which was incorporated within the National Conservation Act in 2015.
Collapse
Affiliation(s)
- Johanna Kohler
- Department of the Environment, Cayman Islands Government, George Town, Cayman Islands
- Centre for Marine Biodiversity and Biotechnology, Heriot-Watt University, Edinburgh, Scotland, United Kingdom
| | - Mauvis Gore
- Centre for Marine Biodiversity and Biotechnology, Heriot-Watt University, Edinburgh, Scotland, United Kingdom
- Marine Conservation International, Edinburgh, Scotland, United Kingdom
| | - Rupert Ormond
- Centre for Marine Biodiversity and Biotechnology, Heriot-Watt University, Edinburgh, Scotland, United Kingdom
- Marine Conservation International, Edinburgh, Scotland, United Kingdom
| | - Bradley Johnson
- Department of the Environment, Cayman Islands Government, George Town, Cayman Islands
| | - Timothy Austin
- Department of the Environment, Cayman Islands Government, George Town, Cayman Islands
| |
Collapse
|
7
|
Smoothey AF, Niella Y, Brand C, Peddemors VM, Butcher PA. Bull Shark ( Carcharhinus leucas) Occurrence along Beaches of South-Eastern Australia: Understanding Where, When and Why. BIOLOGY 2023; 12:1189. [PMID: 37759589 PMCID: PMC10526001 DOI: 10.3390/biology12091189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Unprovoked shark bites have increased over the last three decades, yet they are still relatively rare. Bull sharks are globally distributed throughout rivers, estuaries, nearshore areas and continental shelf waters, and are capable of making long distance movements between tropical and temperate regions. As this species is implicated in shark bites throughout their range, knowledge of the environmental drivers of bull shark movements are important for better predicting the likelihood of their occurrence at ocean beaches and potentially assist in reducing shark bites. Using the largest dataset of acoustically tagged bull sharks in the world, we examined the spatial ecology of 233 juvenile and large (including sub-adult and adult) bull sharks acoustically tagged and monitored over a 5.5-year period (2017-2023) using an array of real-time acoustic listening stations off 21 beaches along the coast of New South Wales, Australia. Bull sharks were detected more in coastal areas of northern NSW (<32° S) but they travelled southwards during the austral summer and autumn. Juveniles were not detected on shark listening stations until they reached 157 cm and stayed north of 31.98° S (Old Bar). Intra-specific diel patterns of occurrence were observed, with juveniles exhibiting higher nearshore presence between 20:00 and 03:00, whilst the presence of large sharks was greatest from midday through to 04:00. The results of generalised additive models revealed that large sharks were more often found when water temperatures were higher than 20 °C, after >45 mm of rain and when swell heights were between 1.8 and 2.8 m. Understanding the influence that environmental variables have on the occurrence of bull sharks in the coastal areas of NSW will facilitate better education and could drive shark smart behaviour amongst coastal water users.
Collapse
Affiliation(s)
- Amy F. Smoothey
- NSW Department of Primary Industries, Fisheries Research, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia;
| | - Yuri Niella
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, NSW 2113, Australia;
| | - Craig Brand
- NSW Department of Primary Industries, Fisheries Research, National Marine Science Centre, Coffs Harbour, NSW 2450, Australia; (C.B.); (P.A.B.)
| | - Victor M. Peddemors
- NSW Department of Primary Industries, Fisheries Research, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia;
| | - Paul A. Butcher
- NSW Department of Primary Industries, Fisheries Research, National Marine Science Centre, Coffs Harbour, NSW 2450, Australia; (C.B.); (P.A.B.)
| |
Collapse
|
8
|
Kottillil S, Rao C, Bowen BW, Shanker K. Phylogeography of sharks and rays: a global review based on life history traits and biogeographic partitions. PeerJ 2023; 11:e15396. [PMID: 37283899 PMCID: PMC10239618 DOI: 10.7717/peerj.15396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 04/20/2023] [Indexed: 06/08/2023] Open
Abstract
Considerable research exists on the life history traits, evolutionary history, and environmental factors that shape the population genetic structure of marine organisms, including sharks and rays. Conservation concerns are particularly strong for this group as they are highly susceptible to anthropogenic stressors due to a combination of life history traits including late maturity and low fecundity. Here, we provide a review and synthesis of the global phylogeography of sharks and rays. We examined existing data for 40 species of sharks belonging to 17 genera and 19 species of rays belonging to 11 genera. Median joining haplotype networks were constructed for each species for the mtDNA cytochrome C oxidase subunit I (COI), and an Analysis of Molecular Variance (AMOVA) was conducted to understand patterns of genetic diversity and structure across the three major ocean basins-the Indian, Atlantic and Pacific Oceans. Haplotype networks showed very shallow coalescence in most species, a finding previously reported for marine teleosts. Star topologies were predominant among sharks while complex mutational topologies predominated among rays, a finding we attribute to extremely limited dispersal in the early life history of rays. Population structuring varied amongst species groups, apparently due to differences in life history traits including reproductive philopatry, site fidelity, pelagic habitat, migratory habits, and dispersal ability. In comparison to reef-associated and demersal species, pelagic and semi pelagic species showed lower levels of structure between and within ocean basins. As expected, there is variation between taxa and groups, but there are also some broad patterns that can guide management and conservation strategies.
Collapse
Affiliation(s)
- Sudha Kottillil
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
- Department of Energy and Environment, TERI School of Advanced Studies, New Delhi, India
| | - Chetan Rao
- Dakshin Foundation, Bengaluru, Karnataka, India
| | - Brian W. Bowen
- Hawai‘i Institute of Marine Biology, University of Hawaii, Kaneohe, Hawai‘i, United States of America
| | - Kartik Shanker
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
- Dakshin Foundation, Bengaluru, Karnataka, India
| |
Collapse
|
9
|
Murie CJG, Lebrato M, Lawrence A, Brown J, Gavard L, Bowles KR, Jije MG, Dicken M, Oliver SP. A Mozambican marine protected area provides important habitat for vulnerable pelagic sharks. Sci Rep 2023; 13:6454. [PMID: 37081058 PMCID: PMC10119319 DOI: 10.1038/s41598-023-32407-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Pelagic sharks play key roles in marine ecosystems, but are increasingly threatened by human extraction, habitat degradation and mismanagement. We investigated the use of protected and unprotected coastal habitats by bull (Carcharhinus leucas) and oceanic blacktip (Carcharhinus limbatus) sharks in southern Mozambique. Five INNOVASEA VR2W-69 kHz acoustic receivers were positioned in the Bazaruto Archipelago National Park (BANP) as well as one to the south of the park's boundaries. Seven receivers were also deployed 250 km south in the Inhambane estuary and on reef sites off Praia de Tofo. Twelve bull, and six oceanic blacktip sharks, were fitted with INNOVASEA V16 acoustic tags, which generated 933 detections of bull and 12,381 detections of oceanic blacktip sharks over a period of 1391 days. A generalised additive model was used to estimate the effects of seven spatiotemporal and environmental parameters on the frequency of each species' detections. In general, calculated residency indices were highest around the locations monitored in the BANP and one unprotected location off Tofo. Both species were more abundant across the monitored sites, during the summer when water temperatures were ~ 27 °C, when the moon was < 50% illuminated, and when the tide was rising. Detections coincided with each species' reproductive season indicating that both species may be reproductively active in the BANP region. Oceanic blacktip sharks were largely resident and so fisheries management may significantly benefit their population(s) around certain reef habitats in the BANP. The low residency and seasonal detections of bull sharks indicates that they may be transient and so effective conservation may require coordination between regional fisheries managers.
Collapse
Affiliation(s)
- Calum J G Murie
- Department of Biological Sciences, University of Chester, Chester, CH1 4BJ, UK.
- Underwater Africa, Tofo, Inhambane, Mozambique.
| | - Mario Lebrato
- Bazaruto Centre for Scientific Studies (BCSS), Bazaruto Archipelago, Inhambane, Mozambique
| | - Andrew Lawrence
- Department of Biological Sciences, University of Chester, Chester, CH1 4BJ, UK
| | - James Brown
- Department of Biological Sciences, University of Chester, Chester, CH1 4BJ, UK
| | | | - Karen R Bowles
- Bazaruto Centre for Scientific Studies (BCSS), Bazaruto Archipelago, Inhambane, Mozambique
| | - Mauro G Jije
- Bazaruto Centre for Scientific Studies (BCSS), Bazaruto Archipelago, Inhambane, Mozambique
| | - Matt Dicken
- KwaZulu Natal Sharks Board, Umhlanga Rocks, 4320, South Africa
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Simon P Oliver
- Department of Biological Sciences, University of Chester, Chester, CH1 4BJ, UK.
- The Thresher Shark Research and Conservation Project, Malapascua Island, Cebu, The Philippines.
| |
Collapse
|
10
|
Marshall AD, Flam AL, Cullain N, Carpenter M, Conradie J, Venables SK. Southward range extension and transboundary movements of reef manta rays Mobula alfredi along the east African coastline. JOURNAL OF FISH BIOLOGY 2023; 102:628-634. [PMID: 36514854 DOI: 10.1111/jfb.15290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Opportunistic in-water and aerial surveys in South Africa and the analysis of contributed citizen science data have extended the known range of reef manta rays Mobula alfredi along the eastern coast of Africa by 140 km (to Mdumbi Beach) and verified the first transboundary movements for the species. Additionally, six new long-range dispersal records have provided evidence of connectivity with the M. alfredi population off the Inhambane coastline of Mozambique. Five of these records captured one-way movements, the longest of which was an individual that travelled 505 km from Praia do Tofo to Sodwana Bay with 301 days between sightings. A single individual made a return trip between Závora, Mozambique and Sodwana Bay, South Africa (a total distance of ~870 km). These findings support the Convention on Migratory Species listing for the species, suggesting regional transboundary management units are warranted for this wide-ranging elasmobranch.
Collapse
Affiliation(s)
| | - Anna L Flam
- Marine Megafauna Foundation, West Palm Beach, Florida, USA
| | - Nakia Cullain
- Marine Megafauna Foundation, West Palm Beach, Florida, USA
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michelle Carpenter
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | | | | |
Collapse
|
11
|
Sulikowski JA, Hammerschlag N. A novel intrauterine satellite transmitter to identify parturition in large sharks. SCIENCE ADVANCES 2023; 9:eadd6340. [PMID: 36857461 PMCID: PMC9977171 DOI: 10.1126/sciadv.add6340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Determining where and when animals give birth is critical for establishing effective conservation management that protects vulnerable life stages (e.g., pregnant females and newborns) and places (e.g., nursery grounds). To date, this information has been elusive in the case of highly migratory sharks in the wild. Here, we report on the deployment a of novel intrauterine satellite tag implanted in two highly mobile apex predators, the tiger shark (Galeocerdo cuvier) and the scalloped hammerhead (Sphyrna lewini), that remotely documented the location and timing of birth by a highly migratory oceanic animal in the wild. This novel technology will be especially valuable for the protection of threatened and endangered shark species, where protection of pupping and nursery grounds is a conservation priority.
Collapse
Affiliation(s)
- James A. Sulikowski
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| |
Collapse
|
12
|
Kraft S, Gandra M, Lennox RJ, Mourier J, Winkler AC, Abecasis D. Residency and space use estimation methods based on passive acoustic telemetry data. MOVEMENT ECOLOGY 2023; 11:12. [PMID: 36859381 PMCID: PMC9976422 DOI: 10.1186/s40462-022-00364-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/26/2022] [Indexed: 06/18/2023]
Abstract
Acoustic telemetry has helped overcome many of the challenges faced when studying the movement ecology of aquatic species, allowing to obtain unprecedented amounts of data. This has made it into one of the most widely used methods nowadays. Many ways to analyse acoustic telemetry data have been made available and deciding on how to analyse the data requires considering the type of research objectives, relevant properties of the data (e.g., resolution, study design, equipment), habits of the study species, researcher experience, among others. To ease this decision process, here we showcase (1) some of the methods used to estimate pseudo-positions and positions from raw acoustic telemetry data, (2) methods to estimate residency and (3) methods to estimate two-dimensional home and occurrence range using geometric or hull-based methods and density-distribution methods, a network-based approach, and three-dimensional methods. We provide examples of some of these were tested using a sample of real data. With this we intend to provide the necessary background for the selection of the method(s) that better fit specific research objectives when using acoustic telemetry.
Collapse
Affiliation(s)
- S Kraft
- Center of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal.
| | - M Gandra
- Center of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - R J Lennox
- Laboratory for Freshwater Ecology and Inland Fisheries at NORCE Norwegian Research Center, Bergen, Norway
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - J Mourier
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - A C Winkler
- Center of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
| | - D Abecasis
- Center of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| |
Collapse
|
13
|
Chin A, Molloy FJ, Cameron D, Day JC, Cramp J, Gerhardt KL, Heupel MR, Read M, Simpfendorfer CA. Conceptual frameworks and key questions for assessing the contribution of marine protected areas to shark and ray conservation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e13917. [PMID: 35435294 PMCID: PMC10107163 DOI: 10.1111/cobi.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Marine protected areas (MPAs) are key tools in addressing the global decline of sharks and rays, and marine parks and shark sanctuaries of various configurations have been established to conserve shark populations. However, assessments of their efficacy are compromised by inconsistent terminology, lack of standardized approaches to assess how MPAs contribute to shark and ray conservation, and ambiguity about how to integrate movement data in assessment processes. We devised a conceptual framework to standardize key terms (e.g., protection, contribution, potential impact, risk, threat) and used the concept of portfolio risk to identify key attributes of sharks and rays (assets), the threats they face (portfolio risk), and the specific role of MPAs in risk mitigation (insurance). Movement data can be integrated into the process by informing risk exposure and mitigation through MPAs. The framework is operationalized by posing 8 key questions that prompt practitioners to consider the assessment scope, MPA type and purpose, range of existing and potential threats, species biology and ecology, and management and operational contexts. Ultimately, MPA contributions to shark and ray conservation differ according to a complex set of human and natural factors and interactions that should be carefully considered in MPA design, implementation, and evaluation.
Collapse
Affiliation(s)
- Andrew Chin
- Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQueenslandAustralia
- IUCN Shark Specialist GroupGlandSwitzerland
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Fergus John Molloy
- Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQueenslandAustralia
- Great Barrier Reef Marine Park AuthorityTownsvilleQueenslandAustralia
| | - Darren Cameron
- Great Barrier Reef Marine Park AuthorityTownsvilleQueenslandAustralia
| | - Jon C. Day
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Jessica Cramp
- Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Sharks PacificRarotongaCook Islands
| | - Karin Leeann Gerhardt
- Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQueenslandAustralia
| | - Michelle R. Heupel
- Integrated Marine Observing System (IMOS)University of TasmaniaHobartTasmaniaAustralia
| | - Mark Read
- Great Barrier Reef Marine Park AuthorityTownsvilleQueenslandAustralia
| | - Colin A. Simpfendorfer
- Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
14
|
Population structure and genetic connectivity of the scalloped hammerhead shark (Sphyrna lewini) across nursery grounds from the Eastern Tropical Pacific: Implications for management and conservation. PLoS One 2022; 17:e0264879. [PMID: 36525407 PMCID: PMC9757582 DOI: 10.1371/journal.pone.0264879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/18/2022] [Indexed: 12/23/2022] Open
Abstract
Defining demographically independent units and understanding patterns of gene flow between them is essential for managing and conserving exploited populations. The critically endangered scalloped hammerhead shark, Sphyrna lewini, is a coastal semi-oceanic species found worldwide in tropical and subtropical waters. Pregnant females give birth in shallow coastal estuarine habitats that serve as nursery grounds for neonates and small juveniles, whereas adults move offshore and become highly migratory. We evaluated the population structure and connectivity of S. lewini in coastal areas and one oceanic island (Cocos Island) across the Eastern Tropical Pacific (ETP) using both sequences of the mitochondrial DNA control region (mtCR) and 9 nuclear-encoded microsatellite loci. The mtCR defined two genetically discrete groups: one in the Mexican Pacific and another one in the central-southern Eastern Tropical Pacific (Guatemala, Costa Rica, Panama, and Colombia). Overall, the mtCR data showed low levels of haplotype diversity ranging from 0.000 to 0.608, while nucleotide diversity ranged from 0.000 to 0.0015. More fine-grade population structure was detected using microsatellite loci where Guatemala, Costa Rica, and Panama differed significantly. Relatedness analysis revealed that individuals within nursery areas were more closely related than expected by chance, suggesting that S. lewini may exhibit reproductive philopatric behaviour within the ETP. Findings of at least two different management units, and evidence of philopatric behaviour call for intensive conservation actions for this highly threatened species in the ETP.
Collapse
|
15
|
Harned SP, Bernard AM, Salinas‐de‐León P, Mehlrose MR, Suarez J, Robles Y, Bessudo S, Ladino F, López Garo A, Zanella I, Feldheim KA, Shivji MS. Genetic population dynamics of the critically endangered scalloped hammerhead shark ( Sphyrna lewini) in the Eastern Tropical Pacific. Ecol Evol 2022; 12:e9642. [PMID: 36619714 PMCID: PMC9797937 DOI: 10.1002/ece3.9642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 12/30/2022] Open
Abstract
The scalloped hammerhead shark, Sphyrna lewini, is a Critically Endangered, migratory species known for its tendency to form iconic and visually spectacular large aggregations. Herein, we investigated the population genetic dynamics of the scalloped hammerhead across much of its distribution in the Eastern Tropical Pacific (ETP), ranging from Costa Rica to Ecuador, focusing on young-of-year animals from putative coastal nursery areas and adult females from seasonal aggregations that form in the northern Galápagos Islands. Nuclear microsatellites and partial mitochondrial control region sequences showed little evidence of population structure suggesting that scalloped hammerheads in this ETP region comprise a single genetic stock. Galápagos aggregations of adults were not comprised of related individuals, suggesting that kinship does not play a role in the formation of the repeated, annual gatherings at these remote offshore locations. Despite high levels of fisheries exploitation of this species in the ETP, the adult scalloped hammerheads here showed greater genetic diversity compared with adult conspecifics from other parts of the species' global distribution. A phylogeographic analysis of available, globally sourced, mitochondrial control region sequence data (n = 1818 sequences) revealed that scalloped hammerheads comprise three distinct matrilines corresponding to the three major world ocean basins, highlighting the need for conservation of these evolutionarily unique lineages. This study provides the first view of the genetic properties of a scalloped hammerhead aggregation, and the largest sample size-based investigation of population structure and phylogeography of this species in the ETP to date.
Collapse
Affiliation(s)
- Sydney P. Harned
- Save Our Seas Foundation Shark Research Center and Guy Harvey Research InstituteNova Southeastern UniversityDania BeachFloridaUSA
| | - Andrea M. Bernard
- Save Our Seas Foundation Shark Research Center and Guy Harvey Research InstituteNova Southeastern UniversityDania BeachFloridaUSA
| | - Pelayo Salinas‐de‐León
- Save Our Seas Foundation Shark Research Center and Guy Harvey Research InstituteNova Southeastern UniversityDania BeachFloridaUSA
- Charles Darwin Research StationCharles Darwin FoundationGalápagos IslandsEcuador
| | - Marissa R. Mehlrose
- Save Our Seas Foundation Shark Research Center and Guy Harvey Research InstituteNova Southeastern UniversityDania BeachFloridaUSA
| | - Jenifer Suarez
- Direccion Parque Nacional GalápagosDepartamento de Ecosistemas MarinosIslas GalápagosEcuador
| | - Yolani Robles
- Universidad de Panamá, Centro Regional Universitario de VeraguasSan Martín de PorresPanama
| | - Sandra Bessudo
- Fundacion Malpelo y Otros Ecosistemas MarinosBogotáColombia
| | - Felipe Ladino
- Fundacion Malpelo y Otros Ecosistemas MarinosBogotáColombia
| | - Andrés López Garo
- Asociación Conservacionista Misión Tiburon, Playas del CocoCarrilloGuanacasteCosta Rica
| | - Ilena Zanella
- Asociación Conservacionista Misión Tiburon, Playas del CocoCarrilloGuanacasteCosta Rica
| | - Kevin A. Feldheim
- Pritzker Laboratory for Molecular Systematics and EvolutionField Museum of Natural HistoryChicagoIllinoisUSA
| | - Mahmood S. Shivji
- Save Our Seas Foundation Shark Research Center and Guy Harvey Research InstituteNova Southeastern UniversityDania BeachFloridaUSA
| |
Collapse
|
16
|
Pratt HL, Pratt TC, Knotek RJ, Carrier JC, Whitney NM. Long-term use of a shark breeding ground: Three decades of mating site fidelity in the nurse shark, Ginglymostoma cirratum. PLoS One 2022; 17:e0275323. [PMID: 36251734 PMCID: PMC9576040 DOI: 10.1371/journal.pone.0275323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Understanding shark mating dynamics and mating site use may be vital to species management. The Dry Tortugas courtship and mating ground (DTCMG) has been known as a mating site for nurse sharks, Ginglymostoma cirratum, since 1895. In a 30-yr (1992–2021) study we have documented long-term site fidelity to this area with data from 137 adult sharks (89 female, 48 male) tagged with PIT, fin, and acoustic tags. Of 118 sharks tagged from 1993 to 2014, at least 80 (68%) returned to the DTCMG in subsequent years during the June-July mating season. Known individuals returned in up to 16 different mating seasons and over periods of up 28 years, indicating that life span extends well into the forties for this species. Of all returning sharks, 59% (N = 47) have been monitored for over 10 years and 13% (N = 10) have been monitored for over 20 years. Males arrived annually in May and June and departed in July, whereas females arrived biennially or triennially in June, with a secondary peak in site use in September and August, likely associated with thermoregulation during gestation. During the mating season, males made more frequent visits of shorter duration (median = 34 visits for 1 h per visit) to the DTCMG, whereas females made fewer visits but remained on site for longer periods (median = 12.5 visits for 4.4 h per visit). Females typically mated biennially but showed a triennial cycle in 32% of cases, with many females switching cycles at least once. This pattern would reduce the potential reproductive lifetime output of a female by 11% compared to what would be projected from a strict biennial cycle. The long-term mating site fidelity of this shark population reveals the importance of identifying and protecting mating sites for this and other elasmobranch species.
Collapse
Affiliation(s)
- Harold L. Pratt
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, Massachusetts, United States of America
| | - Theo C. Pratt
- Elasmobranch Field Research Association, South Thomaston, Maine, United States of America
| | - Ryan J. Knotek
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, Massachusetts, United States of America
| | - Jeffrey C. Carrier
- Department of Biology, Albion College, Albion, Michigan, United States of America
| | - Nicholas M. Whitney
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Perryman RJ, Mourier J, Venables SK, Tapilatu RF, Setyawan E, Brown C. Reef manta ray social dynamics depend on individual differences in behaviour. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Di Lorenzo M, Calò A, Di Franco A, Milisenda G, Aglieri G, Cattano C, Milazzo M, Guidetti P. Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Nat Commun 2022; 13:4381. [PMID: 35945205 PMCID: PMC9363485 DOI: 10.1038/s41467-022-32035-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Elasmobranchs are heavily impacted by fishing. Catch statistics are grossly underestimated due to missing data from various fishery sectors such as small-scale fisheries. Marine Protected Areas are proposed as a tool to protect elasmobranchs and counter their ongoing depletion. We assess elasmobranchs caught in 1,256 fishing operations with fixed nets carried out in partially protected areas within Marine Protected Areas and unprotected areas beyond Marine Protected Areas borders at 11 locations in 6 Mediterranean countries. Twenty-four elasmobranch species were recorded, more than one-third belonging to the IUCN threatened categories (Vulnerable, Endangered, or Critically Endangered). Catches per unit of effort of threatened and data deficient species were higher (with more immature individuals being caught) in partially protected areas than in unprotected areas. Our study suggests that despite partially protected areas having the potential to deliver ecological benefits for threatened elasmobranchs, poor small-scale fisheries management inside Marine Protected Areas could hinder them from achieving this important conservation objective.
Collapse
Affiliation(s)
- Manfredi Di Lorenzo
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Sicily Marine Center, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy.
| | - Antonio Calò
- Department of Earth and Marine sciences (DiSTeM), University of Palermo, Via Archirafi 20-22, 90123, Palermo, Italy
| | - Antonio Di Franco
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Sicily Marine Center, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy.
| | - Giacomo Milisenda
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Sicily Marine Center, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy
| | - Giorgio Aglieri
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Sicily Marine Center, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy
- Department of Earth and Marine sciences (DiSTeM), University of Palermo, Via Archirafi 20-22, 90123, Palermo, Italy
- CoNISMa, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Carlo Cattano
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Sicily Marine Center, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy
- Department of Earth and Marine sciences (DiSTeM), University of Palermo, Via Archirafi 20-22, 90123, Palermo, Italy
- CoNISMa, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Marco Milazzo
- Department of Earth and Marine sciences (DiSTeM), University of Palermo, Via Archirafi 20-22, 90123, Palermo, Italy
- CoNISMa, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Paolo Guidetti
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Genoa Marine Centre, 16126, Genoa, Italy
- National Research Council, Institute for the Study of Anthropic Impact and sustainability in the Marine Environment (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| |
Collapse
|
19
|
Matich P, Bigelow CL, Chambers B, Dodds JJ, Hebert JA, Lemieux A, Pittman CM, Trapp J, Bianco B, Cadena CP, Castillo EI, Castillo GI, Dawdy A, Dominguez AI, Dominique N, French DR, Glenn CF, Jackson ECH, Johnson B, Kohl G, Manka C, Martin JK, Pappas M, Reedholm AJ, Snead KM, Tyree MK, Fisher M. Delineation of blacktip shark (Carcharhinus limbatus) nursery habitats in the north-western Gulf of Mexico. JOURNAL OF FISH BIOLOGY 2022; 101:236-248. [PMID: 35591772 DOI: 10.1111/jfb.15103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Coevolution with predators leads to the use of low-risk habitats by many prey species, which promotes survival during early developmental phases. These nurseries are valued by conservation and management agencies because of their contributions to adult populations. However, the physical and geographic characteristics, like shallow depths and isolation from other marine habitats, that restrict access to predators and thereby reduce risk to juvenile animals can also limit scientific research. Consequently, many nursery habitats are still unidentified and understudied. Here we used gillnet monitoring from 1982 to 2018 to delineate blacktip shark (Carcharhinus limbatus) nurseries in the north-western Gulf of Mexico and elucidated their physical, environmental and biological characteristics. Nursery habitats within estuaries (<2% of spatial area) were proximate to the Gulf of Mexico and exhibited significantly lower variability in salinity than non-nurseries. However, relative abundances of predators and prey were not significant delineators of nursery habitats. As such, food and risk may not influence juvenile blacktip habitat use as expected. Alternatively, reduced osmoregulatory stress attributed to predictable environments likely provides advantageous conditions for blacktips to develop foraging and antipredator tactics, which is vital prior to the winter migration of juvenile sharks into the Gulf of Mexico.
Collapse
Affiliation(s)
| | - Camryn L Bigelow
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Barrett Chambers
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Jillian J Dodds
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Jessica A Hebert
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Alexis Lemieux
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Christy M Pittman
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Julianna Trapp
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Brooke Bianco
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Carolina P Cadena
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Emily I Castillo
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Gabriela I Castillo
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Alexandra Dawdy
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Alina I Dominguez
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Nicholas Dominique
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Donavon R French
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Callie F Glenn
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Elena C H Jackson
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Breidon Johnson
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Gunnar Kohl
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Cameron Manka
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Jared K Martin
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Matthew Pappas
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Audrey J Reedholm
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Kailey M Snead
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Matthew K Tyree
- Marine Biology Department, Texas A & M University at Galveston, Galveston, Texas, USA
| | - Mark Fisher
- Texas Parks and Wildlife Department, Coastal Fisheries Division, Rockport Marine Science Laboratory, Rockport, Texas, USA
| |
Collapse
|
20
|
Germanov ES, Pierce SJ, Marshall AD, Hendrawan IG, Kefi A, Bejder L, Loneragan N. Residency, movement patterns, behavior and demographics of reef manta rays in Komodo National Park. PeerJ 2022; 10:e13302. [PMID: 35602898 PMCID: PMC9119296 DOI: 10.7717/peerj.13302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/29/2022] [Indexed: 01/13/2023] Open
Abstract
Background The reef manta ray (Mobula alfredi) is a globally threatened species and an iconic tourist attraction for visitors to Indonesia's Komodo National Park (NP). In 2013, manta ray fishing was banned in Komodo NP and its surroundings, preceding the nationwide manta ray protection in 2014. Over a decade ago, a previous acoustic telemetry study demonstrated that reef manta rays had high fidelity to sites within the park, while more recent photo-identification data indicated that some individuals move up to 450 km elsewhere. Characterization of manta ray demographics, behavior, and a focused assessment on site use of popular tourism locations within the park is vital to assist the Komodo NP Management Authority formulate appropriate manta ray conservation and management policies. Methods This study uses a long-term library (MantaMatcher.org) of photo-identification data collected by researchers and citizen scientists to investigate manta ray demographics and habitat use within the park at four sites frequented by tour operators: Cauldron, Karang Makassar, Mawan, and Manta Alley. Residency and movements of manta rays were investigated with maximum likelihood analyses and Markov movement models. Results A total of 1,085 individual manta rays were identified from photographs dating from 2013 to 2018. In general, individual manta rays displayed a higher affinity to specific sites than others. The highest re-sighting probabilities came from the remote southern site, Manta Alley. Karang Makassar and Mawan are only ~5 km apart; however, manta rays displayed distinct site affinities. Exchange of individuals between Manta Alley and the two central sites (~35.5 km apart) occurred, particularly seasonally. More manta rays were recorded traveling from the south to the central area than vice versa. Female manta rays were more mobile than males. Similar demographic groups used Karang Makassar, Mawan, and Manta Alley for foraging, cleaning, cruising, or courtship activities. Conversely, a higher proportion of immature manta rays used the northern site, Cauldron, where foraging was commonly observed. Fishing gear-related injuries were noted on 56 individuals (~5%), and predatory injuries were present on 32 individuals (~3%). Tourism within the park increased from 2014 to 2017, with 34% more dive boats per survey at Karang Makassar and Mawan. Discussion The Komodo NP contains several distinct critical habitats for manta rays that encompass all demographics and accommodate seasonal manta ray movements. While the present study has not examined population trends, it does provide foundational data for such work. Continued research into manta ray abundance, long-range movements, and identifying and protecting other critical aggregation areas within the region is integral to securing the species' recovery. We provide management recommendations to limit undue pressure on manta rays and their critical habitats from tourism.
Collapse
Affiliation(s)
- Elitza S. Germanov
- Marine Megafauna Foundation, West Palm Beach, Florida, United States of America,Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia,Environmental and Conservation Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Simon J. Pierce
- Marine Megafauna Foundation, West Palm Beach, Florida, United States of America
| | - Andrea D. Marshall
- Marine Megafauna Foundation, West Palm Beach, Florida, United States of America
| | - I. Gede Hendrawan
- Faculty of Marine Sciences and Fisheries, Universitas Udayana, Denpassar, Bali, Indonesia
| | - Ande Kefi
- Komodo National Park, Labuan Bajo, Flores, Indonesia
| | - Lars Bejder
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia,Environmental and Conservation Sciences, Murdoch University, Perth, Western Australia, Australia,Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Honolulu, Hawaii, United States
| | - Neil Loneragan
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia,Environmental and Conservation Sciences, Murdoch University, Perth, Western Australia, Australia,Faculty of Fisheries and Marine Science, Bogor Institute of Agriculture, Bogor, West Java, Indonesia
| |
Collapse
|
21
|
Manuzzi A, Jiménez-Mena B, Henriques R, Holmes BJ, Pepperell J, Edson J, Bennett MB, Huveneers C, Ovenden JR, Nielsen EE. Retrospective genomics highlights changes in genetic composition of tiger sharks (Galeocerdo cuvier) and potential loss of a south-eastern Australia population. Sci Rep 2022; 12:6582. [PMID: 35449439 PMCID: PMC9023511 DOI: 10.1038/s41598-022-10529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/06/2022] [Indexed: 11/08/2022] Open
Abstract
Over the last century, many shark populations have declined, primarily due to overexploitation in commercial, artisanal and recreational fisheries. In addition, in some locations the use of shark control programs also has had an impact on shark numbers. Still, there is a general perception that populations of large ocean predators cover wide areas and therefore their diversity is less susceptible to local anthropogenic disturbance. Here we report on temporal genomic analyses of tiger shark (Galeocerdo cuvier) DNA samples that were collected from eastern Australia over the past century. Using Single Nucleotide Polymorphism (SNP) loci, we documented a significant change in genetic composition of tiger sharks born between ~1939 and 2015. The change was most likely due to a shift over time in the relative contribution of two well-differentiated, but hitherto cryptic populations. Our data strongly indicate a dramatic shift in the relative contribution of these two populations to the overall tiger shark abundance on the east coast of Australia, possibly associated with differences in direct or indirect exploitation rates.
Collapse
Affiliation(s)
- Alice Manuzzi
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark.
| | - Belen Jiménez-Mena
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Romina Henriques
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Bonnie J Holmes
- School of Science, Technology & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Julian Pepperell
- Pepperell Research and Consulting, PO Box 1475, Noosaville DC, QLD, 4566, Australia
| | - Janette Edson
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mike B Bennett
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Jennifer R Ovenden
- Molecular Fisheries Laboratory, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Einar E Nielsen
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
22
|
Burg Mayer G, de Souza ECS, Gilson SP, de Freitas RHA. South Brazil pre-colonial sharks: Insights into biodiversity and species distributions. JOURNAL OF FISH BIOLOGY 2022; 100:811-819. [PMID: 35043986 DOI: 10.1111/jfb.14998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
South Brazil's archaeological coastal sites (shellmounds and middens) show a diverse collection of shark faunal remains, some of which belong to species considered rare nowadays for the region. However, shark archaeological remains identification in this region has been historically insufficient and prone to mistakes. This study identified shark fauna and estimated body size (total length) present at two archaeological sites: Rio do Meio (1220-977 Cal B.P.) and Enseada II (4286-3783 Cal B.P.), located in Santa Catarina, South of Brazil. Here, 1600 teeth and 3588 vertebrae were analysed and identified. We showed higher historical shark species richness than previously reported for South Brazil in historical and archaeological studies. In total, we identified at least 15 species of sharks (11 species and four identifications at the genus level). The presence of juvenile shark remains adds to the evidence of pre-colonial fishing impacts in local shark populations. The consistent recovery of adults and juveniles of Carcharias taurus points to a possible nursery area on the mouth of Babitonga bay. The high teeth frequency (43%) of C. taurus suggests the South Brazil coastline was once home to abundant populations of this critically endangered species. Furthermore, we discuss the presence of rare species nowadays, suggesting a possible historical residency for adult populations of Carcharodon carcharias based on the presence of juveniles and young-of-the-year on archaeological sites. The occurrence of Negaprion brevirostris, a tropical species, might have been facilitated by ocean current variations.
Collapse
Affiliation(s)
- Guilherme Burg Mayer
- Departamento de Ecologia e Zoologia, Laboratório de Biologia de Teleósteos e Elasmobrânquios (LABITEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus João David Ferreira Lima, Florianópolis, Brazil
| | - Elisa Cristina Santos de Souza
- Departamento de Ecologia e Zoologia, Laboratório de Biologia de Teleósteos e Elasmobrânquios (LABITEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus João David Ferreira Lima, Florianópolis, Brazil
| | - Simon-Pierre Gilson
- Programa de Pós-Graduação em Arqueologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Estudos Interdisciplinares em Arqueologia, Universidade Federal de Santa Catarina, Campus João David Ferreira Lima -Trindade, Florianópolis, Brazil
| | - Renato Hajenius Aché de Freitas
- Departamento de Ecologia e Zoologia, Laboratório de Biologia de Teleósteos e Elasmobrânquios (LABITEL), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus João David Ferreira Lima, Florianópolis, Brazil
| |
Collapse
|
23
|
Braun CD, Arostegui MC, Thorrold SR, Papastamatiou YP, Gaube P, Fontes J, Afonso P. The Functional and Ecological Significance of Deep Diving by Large Marine Predators. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:129-159. [PMID: 34416123 DOI: 10.1146/annurev-marine-032521-103517] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many large marine predators make excursions from surface waters to the deep ocean below 200 m. Moreover, the ability to access meso- and bathypelagic habitats has evolved independently across marine mammals, reptiles, birds, teleost fishes, and elasmobranchs. Theoretical and empirical evidence suggests a number of plausible functional hypotheses for deep-diving behavior. Developing ways to test among these hypotheses will, however, require new ways to quantify animal behavior and biophysical oceanographic processes at coherent spatiotemporal scales. Current knowledge gaps include quantifying ecological links between surface waters and mesopelagic habitats and the value of ecosystem services provided by biomass in the ocean twilight zone. Growing pressure for ocean twilight zone fisheries creates an urgent need to understand the importance of the deep pelagic ocean to large marine predators.
Collapse
Affiliation(s)
- Camrin D Braun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA;
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Martin C Arostegui
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA;
- Air-Sea Interaction and Remote Sensing Department, Applied Physics Laboratory, University of Washington, Seattle, Washington 98105, USA
| | - Simon R Thorrold
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA;
| | - Yannis P Papastamatiou
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, Florida 33181, USA
| | - Peter Gaube
- Air-Sea Interaction and Remote Sensing Department, Applied Physics Laboratory, University of Washington, Seattle, Washington 98105, USA
| | - Jorge Fontes
- Okeanos and Institute of Marine Research, University of the Azores, 9901-862 Horta, Portugal
| | - Pedro Afonso
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA;
- Okeanos and Institute of Marine Research, University of the Azores, 9901-862 Horta, Portugal
| |
Collapse
|
24
|
Klein JD, Asbury TA, da Silva C, Hull KL, Dicken ML, Gennari E, Maduna SN, Bester-van der Merwe AE. Site fidelity and shallow genetic structure in the common smooth-hound shark Mustelus mustelus confirmed by tag-recapture and genetic data. JOURNAL OF FISH BIOLOGY 2022; 100:134-149. [PMID: 34658037 DOI: 10.1111/jfb.14926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/07/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
The common smooth-hound shark, Mustelus mustelus, is a widely distributed demersal shark under heavy exploitation from various fisheries throughout its distribution range. To assist in the development of appropriate management strategies, the authors evaluate stock structure, site fidelity and movement patterns along the species' distribution in southern Africa based on a combination of molecular and long-term tag-recapture data. Eight species-specific microsatellite markers (N = 73) and two mitochondrial genes, nicotinamide adenine dehydrogenase subunit 4 and control region (N = 45), did not reveal any significant genetic structure among neighbouring sites. Nonetheless, tagging data demonstrate a remarkable degree of site fidelity with 76% of sharks recaptured within 50 km of the original tagging location. On a larger geographic scale, dispersal is governed by oceanographic features as demonstrated by the lack of movements across the Benguela-Agulhas transition zone separating the South-East Atlantic Ocean (SEAO) and South-West Indian Ocean (SWIO) populations. Microsatellite data supported very shallow ocean-based structure (SEAO and SWIO) and historical southward gene flow following the Agulhas Current, corroborating the influence of this dynamic oceanographic system on gene flow. Moreover, no movements between Namibia and South Africa were observed, indicating that the Lüderitz upwelling formation off the Namibian coast acts as another barrier to dispersal and gene flow. Overall, these results show that dispersal and stock structure of M. mustelus are governed by a combination of behavioural traits and oceanographic features such as steep temperature gradients, currents and upwelling systems.
Collapse
Affiliation(s)
- Juliana D Klein
- Molecular Breeding and Biodiversity Research Group, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Tamaryn A Asbury
- Molecular Breeding and Biodiversity Research Group, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Charlene da Silva
- Department of Environment, Forestry and Fisheries, Rogge Bay, South Africa
| | - Kelvin L Hull
- Molecular Breeding and Biodiversity Research Group, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Matthew L Dicken
- KwaZulu-Natal Sharks Board, Umhlanga Rocks, South Africa
- Department of Development Studies, School of Economics, Development and Tourism, Nelson Mandela University, Port Elizabeth, South Africa
| | - Enrico Gennari
- Oceans Research Institute, Mossel Bay, South Africa
- South African Institute for Aquatic Biodiversity, Grahamstown, South Africa
- Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa
| | - Simo N Maduna
- Molecular Breeding and Biodiversity Research Group, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
- Division of Wildlife Research, Reel Science Coalition, Somerset West, South Africa
| | - Aletta E Bester-van der Merwe
- Molecular Breeding and Biodiversity Research Group, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
25
|
Qi J, Shi F, Zhang B, Chen X, Jie X, Furumitsu K, Corush JB, Yamaguchi A, Zhang J. Insights into genetic variation and demographic history of sharpnose rays: Examinations of three species of Telatrygon (Elasmobranchii, Dasyatidae) from the Indo-West Pacific. Integr Zool 2021; 17:1063-1077. [PMID: 34932875 DOI: 10.1111/1749-4877.12614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coastal and demersal chondrichthyans (sharks, rays, and skates) are expected to exhibit high levels of genetic differentiation in areas of complex geomorphology. Population genetic studies investigating the extent to which demographic history shapes the genetic structure of these fishes are rare. Here, we combination mitochondrial DNA (Cytb and ND2) and eight nuclear microsatellite loci from 244 individuals to examine the population genetic structure and demographic history of the three Indo-West Pacific species of sharpnose rays (Telatrygon zugei, Telatrygon biasa, and Trygon crozieri). High levels of genetic variation both within and between species was identified. Phylogenetic analysis partitioned haplotypes into two lineages supporting divergence of T. zugei from T. crozieri and T. biasa during the Pleistocene. Furthermore, microsatellite-based clustering analyses identified four genetic groups (i.e., T. zugei from Japan, T. zugei from coastal China, T. biasa from Gulf of Thailand, and T. crozieri from the Andaman Sea. Measurements of genetic differentiation also support these four groups. Additionally, Pleistocene demographic expansions were examined in all genetic groups. The climate oscillations and current hydrologic cycles in the Indo-West Pacific appear to be coincide with the hypothesis regarding speciation and the observed demographic history trends of the sharpnose rays. Considering the species group has, until recently, been thought to be one species, these results are critical for defining management units and guiding conservation efforts to preserve stingray biodiversity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jiwei Qi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fanglei Shi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Baowei Zhang
- School of Life Science, Anhui University, Hefei, Anhui, China
| | - Xiao Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xing Jie
- East China Sea Centre of Standard and Metrology, SOA, Shanghai, China
| | | | - Joel B Corush
- Illinois Natural History Survey, University of Illinois Champaign-Urbana, Champaign, IL, 61820
| | | | - Jie Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| |
Collapse
|
26
|
Tuya F, Aguilar R, Espino F, Bosch NE, Meyers EKM, Jiménez‐Alvarado D, Castro JJ, Otero‐Ferrer F, Haroun R. Differences in the occurrence and abundance of batoids across an oceanic archipelago using complementary data sources: Implications for conservation. Ecol Evol 2021; 11:16704-16715. [PMID: 34938467 PMCID: PMC8668743 DOI: 10.1002/ece3.8290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/05/2022] Open
Abstract
Batoids, distributed from shallow to abyssal depths, are considerably vulnerable to anthropogenic threats. Data deficiencies on the distribution patterns of batoids, however, challenge their effective management and conservation. In this study, we took advantage of the particular geological and geomorphological configuration of the Canary Islands, across an east-to-west gradient in the eastern Atlantic Ocean, to assess whether patterns in the occurrence and abundance of batoids varied between groups of islands (western, central, and eastern). Data were collected from shallow (<40 m, via underwater visual counts and by a local community science program) and deep waters (60-700 m, via ROV deployments). Eleven species of batoids, assessed by the IUCN Red List of Threatened Species, were registered, including three "Critically Endangered" (Aetomylaeus bovinus, Dipturus batis, and Myliobatis aquila), three "Endangered" (Gymnura altavela, Mobula mobular, and Rostroraja alba), two "Vulnerable" (Dasyatis pastinaca and Raja maderenseis), and two "Data Deficient" (Taeniurops grabata and Torpedo marmorata). Also, a "Least Concern" species (Bathytoshia lata) was observed. Overall, batoids were ~1 to 2 orders of magnitude more abundant in the central and eastern islands, relative to the western islands. This pattern was consistent among the three sources of data and for both shallow and deep waters. This study, therefore, shows differences in the abundance of batoids across an oceanic archipelago, likely related to varying insular shelf area, availability of habitats, and proximity to the nearby continental (African) mass. Large variation in population abundances among islands suggests that "whole" archipelago management strategies are unlikely to provide adequate conservation. Instead, management plans should be adjusted individually per island and complemented with focused research to fill data gaps on the spatial use and movements of these iconic species.
Collapse
Affiliation(s)
- Fernando Tuya
- Grupo en Biodiversidad y ConservaciónIU‐ECOAQUAUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
| | | | - Fernando Espino
- Grupo en Biodiversidad y ConservaciónIU‐ECOAQUAUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
| | - Nestor E. Bosch
- School of Biological SciencesOceans InstituteUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | | | - David Jiménez‐Alvarado
- Grupo en Biodiversidad y ConservaciónIU‐ECOAQUAUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
| | - Jose J. Castro
- Grupo en Biodiversidad y ConservaciónIU‐ECOAQUAUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
| | - Francisco Otero‐Ferrer
- Grupo en Biodiversidad y ConservaciónIU‐ECOAQUAUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
| | - Ricardo Haroun
- Grupo en Biodiversidad y ConservaciónIU‐ECOAQUAUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
| |
Collapse
|
27
|
Gonzalez C, Postaire B, Domingues RR, Feldheim KA, Caballero S, Chapman D. Phylogeography and population genetics of the cryptic bonnethead shark Sphyrna aff. tiburo in Brazil and the Caribbean inferred from mtDNA markers. JOURNAL OF FISH BIOLOGY 2021; 99:1899-1911. [PMID: 34476811 DOI: 10.1111/jfb.14896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Resolving the identity, phylogeny and distribution of cryptic species within species complexes is an essential precursor to management. The bonnethead shark, Sphyrna tiburo, is a small coastal shark distributed in the Western Atlantic from North Carolina (U.S.A.) to southern Brazil. Genetic analyses based on mitochondrial markers revealed that bonnethead sharks comprise a species complex with at least two lineages in the Northwestern Atlantic and the Caribbean (S. tiburo and Sphyrna aff. tiburo, respectively). The phylogeographic and phylogenetic analysis of two mitochondrial markers [control region (mtCR) and cytochrome oxidase I (COI)] showed that bonnethead sharks from southeastern Brazil correspond to S. aff. tiburo, extending the distribution of this cryptic species >5000 km. Bonnethead shark populations are only managed in the U.S.A. and in the 2000s were considered to be regionally extinct or collapsed in southeast Brazil. The results indicate that there is significant genetic differentiation between S. aff. tiburo from Brazil and other populations from the Caribbean (ΦST = 0.9053, P < 0.000), which means that collapsed populations in the former are unlikely to be replenished from Caribbean immigration. The species identity of bonnethead sharks in the Southwest Atlantic and their relationship to North Atlantic and Caribbean populations still remains unresolved. Taxonomic revision and further sampling are required to reevaluate the status of the bonnethead shark complex through its distribution range.
Collapse
Affiliation(s)
- Cindy Gonzalez
- Predator Ecology and Conservation Lab, Biological Sciences Department, Florida International University, Miami, Florida, 33181, USA
| | - Bautisse Postaire
- Predator Ecology and Conservation Lab, Biological Sciences Department, Florida International University, Miami, Florida, 33181, USA
| | - Rodrigo R Domingues
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Instituto do Mar, São Paulo, Brazil
| | - Kevin A Feldheim
- Pritzker Laboratory for Molecular Systematics and Evolution, Field Museum of Natural History, Chicago, Illinois, USA
| | - Susana Caballero
- Laboratorio de Ecología Molecular de Vertebrados Acuáticos, Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
| | - Demian Chapman
- Predator Ecology and Conservation Lab, Biological Sciences Department, Florida International University, Miami, Florida, 33181, USA
| |
Collapse
|
28
|
Matich P, Plumlee JD, Fisher M. Grow fast, die young: Does compensatory growth reduce survival of juvenile blacktip sharks ( Carcharhinus limbatus) in the western Gulf of Mexico? Ecol Evol 2021; 11:16280-16295. [PMID: 34824827 PMCID: PMC8601900 DOI: 10.1002/ece3.8311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/01/2022] Open
Abstract
Effective conservation and management necessitate an understanding of the ecological mechanisms that shape species life histories in order to predict how variability in natural and anthropogenic impacts will alter growth rates, recruitment, and survival. Among these mechanisms, the interaction between parturition timing and prey availability frequently influences offspring success, particularly when postnatal care is absent. Here, we assess how parturition timing and nursery conditions, including prey abundance and environmental conditions, influence the growth and potential survival of blacktip sharks (Carcharhinus limbatus) in western Gulf of Mexico (GOM) estuaries over their first year. Catch data from long-term gillnet monitoring allowed for clear delineation of cohorts based on size frequency distribution plots, and showed that late parturition cohorts born in estuaries with fewer prey resources exhibited more rapid growth than early parturition cohorts that experienced more abundant prey. Compensatory behaviors that promoted accelerated growth led to reduced second year residency, likely due to reduced survival resultant from greater risk taking and potentially due to reduced site fidelity attributed to larger body size. Water temperatures influenced blacktip growth rates through physiological increases in metabolism and potential premigratory foraging cues associated with cooling temperatures. Gradual warming of the GOM (0.03°C year-1) was also correlated with earlier parturition across the study period (1982-2017), similar to other migratory species. Considering current trends in climate and associated phenological shifts in many animals, testing hypotheses assessing compensatory growth-risk trade-offs is important moving forward to predict changes in life histories and associated recruitment in concert with current and future conservation actions, like wildlife management.
Collapse
Affiliation(s)
- Philip Matich
- Marine Biology DepartmentTexas A & M University at GalvestonGalvestonTexasUSA
| | - Jeffrey D. Plumlee
- Institute of Marine SciencesUniversity of North Carolina at Chapel HillMorehead CityNorth CarolinaUSA
| | - Mark Fisher
- Rockport Marine Science LaboratoryCoastal Fisheries DivisionTexas Parks and Wildlife DepartmentRockportTexasUSA
| |
Collapse
|
29
|
Bass NC, Day J, Guttridge TL, Mourier J, Knott NA, Vila Pouca C, Brown C. Residency and movement patterns of adult Port Jackson sharks (Heterodontus portusjacksoni) at a breeding aggregation site. JOURNAL OF FISH BIOLOGY 2021; 99:1455-1466. [PMID: 34270092 DOI: 10.1111/jfb.14853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Examining the movement ecology of mesopredators is fundamental to developing an understanding of their biology, ecology and behaviour, as well as the communities and ecosystems they influence. The limited research on the residency and movements of benthic marine mesopredators has primarily used visual tags, which do not allow for the efficient and accurate monitoring of individual space use. In this study, the authors investigated the residency and movement patterns of Port Jackson sharks Heterodontus portusjacksoni (Meyer 1793) at a breeding aggregation site in Jervis Bay, south-eastern Australia, using passive acoustic telemetry to further our understanding of the movement ecology of these important mesopredators. Between 2012 and 2014, individuals were tagged with acoustic transmitters, and their residency and movements within the bay were monitored for up to 4 years. H. portusjacksoni showed strong preferences for particular reefs within and between breeding seasons. Males had significantly higher residency indices at their favoured sites relative to females, suggesting that males may be engaging in territorial behaviour. Conversely, female H. portusjacksoni exhibited higher roaming indices relative to males indicating that females may move between sites to assess males. Finally, H. portusjacksoni showed temporal variation in movements between reefs with individuals typically visiting more reefs at night relative to the day, dusk and dawn corresponding with their nocturnal habits.
Collapse
Affiliation(s)
- Nathan Charles Bass
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Joanna Day
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, New South Wale, Australia
| | | | - Johann Mourier
- UMR MARBEC (IRD, Ifremer, Univ. Montpellier, CNRS), Séte, France
| | - Nathan A Knott
- NSW Department of Primary Industry, Fisheries Research, Huskisson, New South Wales, Australia
| | - Catarina Vila Pouca
- Zoological Institute, Stockholm University, Stockholm, Sweden
- Behavioural Ecology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Culum Brown
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
30
|
Small localized breeding populations in a widely distributed coastal shark species. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Cambra M, Madrigal-Mora S, Chinchilla I, Golfín-Duarte G, Lowe CG, Espinoza M. First record of a potential neonate tiger shark (Galeocerdo cuvier) at a remote oceanic island in the Eastern Tropical Pacific. JOURNAL OF FISH BIOLOGY 2021; 99:1140-1144. [PMID: 33942302 DOI: 10.1111/jfb.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Tiger sharks (Galeocerdo cuvier) play an important ecological role as top predators, yet knowledge of their reproductive ecology is scarce. Here, the authors report the first observation of a potential neonate G. cuvier at Cocos Island, a predator-dominated oceanic island in the Eastern Tropical Pacific (ETP). The individual was detected using baited remote underwater video stations (BRUVS). The cameras also detected female individuals potentially pregnant, suggesting that parturition may take place at or near the island. Nonetheless, it is still unclear if the presence of a single neonate is an isolated event or evidence that the species is using the island for reproduction.
Collapse
Affiliation(s)
- Marta Cambra
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San José, Costa Rica
| | - Sergio Madrigal-Mora
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San José, Costa Rica
| | - Isaac Chinchilla
- Parque Nacional Isla del Coco, Área de Conservación Marina Cocos (ACMC), Sistema Nacional de Áreas de Conservación, San José, Costa Rica
| | - Geiner Golfín-Duarte
- Parque Nacional Isla del Coco, Área de Conservación Marina Cocos (ACMC), Sistema Nacional de Áreas de Conservación, San José, Costa Rica
| | | | - Mario Espinoza
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San José, Costa Rica
- Museo de Zoología, Universidad de Costa Rica, San José, Costa Rica
- Migramar, Olema, California, USA
| |
Collapse
|
32
|
Bernard AM, Finnegan KA, Pavinski Bitar P, Stanhope MJ, Shivji MS. Genomic assessment of global population structure in a highly migratory and habitat versatile apex predator, the tiger shark (Galeocerdo cuvier). J Hered 2021; 112:497-507. [PMID: 34374783 DOI: 10.1093/jhered/esab046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/09/2021] [Indexed: 11/12/2022] Open
Abstract
Understanding the population dynamics of highly mobile, widely distributed, oceanic sharks, many of which are overexploited, is necessary to aid their conservation management. We investigated the global population genomics of tiger sharks (Galeocerdo cuvier), a circumglobally distributed, apex predator displaying remarkable behavioral versatility in its diet, habitat use (near coastal, coral reef, pelagic), and individual movement patterns (spatially resident to long-distance migrations). We genotyped 242 tiger sharks from 10 globally distributed locations at more than 2000 single nucleotide polymorphisms. Although this species often conducts massive distance migrations, the data show strong genetic differentiation at both neutral (FST=0.125-0.144) and candidate outlier loci (FST=0.570-0.761) between western Atlantic and Indo-Pacific sharks, suggesting the potential for adaptation to the environments specific to these oceanic regions. Within these regions, there was mixed support for population differentiation between northern and southern hemispheres in the western Atlantic, and none for structure within the Indian Ocean. Notably, the results demonstrate a low level of population differentiation of tiger sharks from the remote Hawaiian archipelago compared to sharks from the Indian Ocean (FST=0.003-0.005, P<0.01). Given concerns about biodiversity loss and marine ecosystem impacts caused by overfishing of oceanic sharks in the midst of rapid environmental change, our results suggest it imperative that international fishery management prioritize conservation of the evolutionary potential of the highly genetically differentiated Atlantic and Indo-Pacific populations of this unique apex predator. Furthermore, we suggest targeted management attention to tiger sharks in the Hawaiian archipelago based on a precautionary biodiversity conservation perspective.
Collapse
Affiliation(s)
- Andrea M Bernard
- Save Our Seas Foundation Shark Research Center, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, Florida, USA
| | - Kimberly A Finnegan
- Save Our Seas Foundation Shark Research Center, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, Florida, USA.,Guy Harvey Research Institute, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, Florida, USA
| | - Paulina Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Michael J Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Mahmood S Shivji
- Save Our Seas Foundation Shark Research Center, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, Florida, USA.,Guy Harvey Research Institute, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, Florida, USA
| |
Collapse
|
33
|
Baremore IE, Graham RT, Burgess GH, Castellanos DW. Movements and residency of Caribbean reef sharks at a remote atoll in Belize, Central America. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201036. [PMID: 34430037 PMCID: PMC8355683 DOI: 10.1098/rsos.201036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
We investigated spatial use patterns of 77 Caribbean reef sharks (Carcharhinus perezi) at Lighthouse Reef Atoll, Belize over 7 years using residency patterns, kernel density (KD) estimation and network analysis. We found a high degree individual variation in spatial use of the atoll, but there were significant differences in residency and activity space between sexes, with females being overall more resident. Ontogenetic shifts in movement and residency were largely limited to females, as the residency index increased and activity space estimates decreased as females matured, while for males there was no relationship between space use or residency and size. KD analysis revealed many mature females were highly resident to discrete locations, and average activity space of the intermediate-sized sharks was significantly larger than that of the adults, but not the smallest sharks. Markov chain analyses indicated that the southwestern portion of the atoll was the most important movement corridor for all sharks. Both the Blue Hole and Half Moon Caye Natural Monuments provide some protection for larger Caribbean reef sharks; however, a gear ban on longlines on the southwestern forereef between Long Caye and the channel entrance to the Blue Hole would maximize the benefits for all sharks.
Collapse
Affiliation(s)
| | | | - George H. Burgess
- Florida Museum of Natural History, University of Florida, Dickinson Hall, Museum Road, Gainesville, FL 32611, USA
| | | |
Collapse
|
34
|
Macdonald C, Jerome J, Pankow C, Perni N, Black K, Shiffman D, Wester J. First identification of probable nursery habitat for critically endangered great hammerhead
Sphyrna mokarran
on the Atlantic Coast of the United States. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Catherine Macdonald
- Field School Miami Florida USA
- Rosenstiel School of Marine and Atmospheric Science University of Miami Miami Florida USA
| | | | | | | | - Kristina Black
- Department of Integrative Biology University of Texas at Austin Austin Texas USA
| | - David Shiffman
- New College of Interdisciplinary Arts and Sciences Arizona State University Glendale Arizona USA
- David Shiffman Scientific and Environmental Consulting, Inc. Silver Spring Maryland USA
| | - Julia Wester
- Field School Miami Florida USA
- Abess Center for Ecosystem Science and Policy University of Miami Coral Gables Florida USA
| |
Collapse
|
35
|
Laurrabaquio-Alvarado NS, Díaz-Jaimes P, Hinojosa-Álvarez S, Blanco-Parra MDP, Adams DH, Pérez-Jiménez JC, Castillo-Géniz JL. Mitochondrial DNA genome evidence for the existence of a third divergent lineage in the western Atlantic Ocean for the bull shark (Carcharhinus leucas). JOURNAL OF FISH BIOLOGY 2021; 99:275-282. [PMID: 33559201 DOI: 10.1111/jfb.14698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/06/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
We report for the first time a highly divergent lineage in the Caribbean Sea for the bull shark (Carcharhinus leucas) based on the analysis of 51 mitochondrial DNA genomes of individuals collected in the western North Atlantic. When comparing the mtDNA control region obtained from the mitogenomes to sequences reported previously for Brazil, the Caribbean lineage remained highly divergent. These results support the existence of a discrete population in Central America due to a phylogeographic break separating the Caribbean Sea from the western North Atlantic, Gulf of Mexico and South America.
Collapse
Affiliation(s)
| | - Píndaro Díaz-Jaimes
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, UNAM, Mexico City, Mexico
| | - Silvia Hinojosa-Álvarez
- Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, Mexico
| | - Maria Del Pilar Blanco-Parra
- Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
- División de Ciencias e Ingeniería, Universidad de Quintana Roo, Chetumal, Mexico
- Fundación internacional para la naturaleza y la sustentabilidad, Chetumal, Mexico
| | - Douglas H Adams
- Florida Fish & Wildlife Conservation Commission, Fish & Wildlife Research Institute, Melbourne, Florida, USA
| | | | | |
Collapse
|
36
|
Keller BA, Putman NF, Grubbs RD, Portnoy DS, Murphy TP. Map-like use of Earth's magnetic field in sharks. Curr Biol 2021; 31:2881-2886.e3. [PMID: 33961785 DOI: 10.1016/j.cub.2021.03.103] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/25/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Migration is common in marine animals,1-5 and use of the map-like information of Earth's magnetic field appears to play an important role.2,6-9 While sharks are iconic migrants10-12 and well known for their sensitivity to electromagnetic fields,13-20 whether this ability is used for navigation is unresolved.14,17,21,22 We conducted magnetic displacement experiments on wild-caught bonnetheads (Sphyrna tiburo) and show that magnetic map cues can elicit homeward orientation. We further show that use of a magnetic map to derive positional information may help explain aspects of the genetic structure of bonnethead populations in the northwest Atlantic.23-26 These results offer a compelling explanation for the puzzle of how migratory routes and population structure are maintained in marine environments, where few physical barriers limit movements of vagile species. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Bryan A Keller
- Florida State University Coastal and Marine Laboratory, 3618 Coastal Highway 98, St. Teresa, FL 32358, USA.
| | - Nathan F Putman
- LGL Ecological Research Associates, 4103 South Texas Avenue, Suite 211, Bryan, TX 77802, USA
| | - R Dean Grubbs
- Florida State University Coastal and Marine Laboratory, 3618 Coastal Highway 98, St. Teresa, FL 32358, USA
| | - David S Portnoy
- Marine Genomics Laboratory, Texas A&M University, Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Timothy P Murphy
- Florida State University, National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, USA
| |
Collapse
|
37
|
Nosal AP, Cartamil DP, Ammann AJ, Bellquist LF, Ben‐Aderet NJ, Blincow KM, Burns ES, Chapman ED, Freedman RM, Klimley AP, Logan RK, Lowe CG, Semmens BX, White CF, Hastings PA. Triennial migration and philopatry in the critically endangered soupfin shark
Galeorhinus galeus. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew P. Nosal
- Department of Environmental and Ocean Sciences University of San Diego San Diego CA USA
- Marine Biology Research Division Scripps Institution of Oceanography University of California – San Diego La Jolla CA USA
| | - Daniel P. Cartamil
- Marine Biology Research Division Scripps Institution of Oceanography University of California – San Diego La Jolla CA USA
| | - Arnold J. Ammann
- Fisheries Ecology Division Southwest Fisheries Science Center National Marine Fisheries ServiceNOAA Santa Cruz CA USA
| | - Lyall F. Bellquist
- Marine Biology Research Division Scripps Institution of Oceanography University of California – San Diego La Jolla CA USA
- The Nature Conservancy San Francisco CA USA
| | - Noah J. Ben‐Aderet
- Fisheries Resources Division Southwest Fisheries Science Center NOAA Fisheries La Jolla CA USA
| | - Kayla M. Blincow
- Marine Biology Research Division Scripps Institution of Oceanography University of California – San Diego La Jolla CA USA
| | - Echelle S. Burns
- Bren School of Environmental Science and Management University of California – Santa Barbara Santa Barbara CA USA
| | - Eric D. Chapman
- Department of Wildlife, Fish and Conservation Biology University of California – Davis Davis CA USA
- ICF Sacramento CA USA
| | - Ryan M. Freedman
- NOAA Channel Islands National Marine Sanctuary University of California – Santa Barbara Santa Barbara CA USA
| | - A. Peter Klimley
- Department of Wildlife, Fish and Conservation Biology University of California – Davis Davis CA USA
- Biotelemetry Consultants Petaluma CA USA
| | - Ryan K. Logan
- Guy Harvey Research Institute Nova Southeastern University Dania Beach FL USA
| | | | - Brice X. Semmens
- Marine Biology Research Division Scripps Institution of Oceanography University of California – San Diego La Jolla CA USA
| | - Connor F. White
- Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| | - Philip A. Hastings
- Marine Biology Research Division Scripps Institution of Oceanography University of California – San Diego La Jolla CA USA
| |
Collapse
|
38
|
Domingues RR, Bunholi IV, Pinhal D, Antunes A, Mendonça FF. From molecule to conservation: DNA-based methods to overcome frontiers in the shark and ray fin trade. CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-021-01194-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Heinrich D, Dhellemmes F, Guttridge TL, Smukall M, Brown C, Rummer J, Gruber S, Huveneers C. Short-term impacts of daily feeding on the residency, distribution and energy expenditure of sharks. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Quinn TP. Differential migration in Pacific salmon and trout: Patterns and hypotheses. ANIMAL MIGRATION 2021. [DOI: 10.1515/ami-2021-0001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Migrations affect the population dynamics, life history, evolution, and connections of animals to natural ecosystems and humans. Many species and populations display partial migration (some individuals migrate and some do not), and differential migration (migration distance varies). Partial migration is widely distributed in fishes but the term differential migration is much less commonly applied, despite the occurrence of this phenomenon. This paper briefly reviews the extent of differential migration in Pacific salmon and trout (genus Oncorhynchus), a very extensively studied group. Three hypotheses are presented to explain the patterns among species: 1) phylogenetic relationships, 2) the prevalence of partial migration (i.e., variation in anadromy), and 3) life history patterns (iteroparous or semelparous, and duration spent feeding at sea prior to maturation). Each hypothesis has some support but none is consistent with all patterns. The prevalence of differential migration, ranging from essentially non-existent to common within a species, reflects phylogeny and life history, interacting with the geographic features of the region where juvenile salmon enter the ocean. Notwithstanding the uncertain evolution of this behavior, it has very clear implications for salmon conservation, as it strongly affects exposure to predators, patterns of fishery exploitation and also uptake of toxic contaminants.
Collapse
Affiliation(s)
- Thomas P. Quinn
- School of Aquatic and Fishery Sciences , University of Washington , Seattle , WA 98195, USA
| |
Collapse
|
41
|
Smith KL, Feldheim K, Carlson JK, Wiley TR, Taylor SS. Female philopatry in smalltooth sawfish Pristis pectinata: conservation and management implications. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
Jorgensen SJ, Micheli F, White TD, Van Houtan KS, Alfaro-Shigueto J, Andrzejaczek S, Arnoldi NS, Baum JK, Block B, Britten GL, Butner C, Caballero S, Cardeñosa D, Chapple TK, Clarke S, Cortés E, Dulvy NK, Fowler S, Gallagher AJ, Gilman E, Godley BJ, Graham RT, Hammerschlag N, Harry AV, Heithaus M, Hutchinson M, Huveneers C, Lowe CG, Lucifora LO, MacKeracher T, Mangel JC, Barbosa Martins AP, McCauley DJ, McClenachan L, Mull C, Natanson LJ, Pauly D, Pazmiño DA, Pistevos JCA, Queiroz N, Roff G, Shea BD, Simpfendorfer CA, Sims DW, Ward-Paige C, Worm B, Ferretti F. Emergent research and priorities for shark and ray conservation. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
Cardeñosa D, Fields AT, Babcock E, Shea SKH, Feldheim KA, Kraft DW, Hutchinson M, Herrera MA, Caballero S, Chapman DD. Indo‐Pacific origins of silky shark fins in major shark fin markets highlights supply chains and management bodies key for conservation. Conserv Lett 2020. [DOI: 10.1111/conl.12780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Diego Cardeñosa
- School of Marine and Atmospheric Science Stony Brook University New York USA
- Fundación Colombia Azul Bogotá Colombia
- Department of Biological Sciences Florida International University North Miami Florida USA
| | - Andrew T. Fields
- School of Marine and Atmospheric Science Stony Brook University New York USA
| | - Elizabeth Babcock
- Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Ecology University of Miami Miami Florida USA
| | | | - Kevin A. Feldheim
- Pritzker Laboratory for Molecular Systematics and Evolution The Field Museum Chicago Illinois USA
| | - Derek W. Kraft
- Hawai‘i Institute of Marine Biology University of Hawai‘i Kane‘ohe Hawaii USA
| | - Melanie Hutchinson
- Hawai‘i Institute of Marine Biology University of Hawai‘i Kane‘ohe Hawaii USA
- Joint Institute for Marine and Atmospheric Research, Pacific Islands Fisheries Science Center, NOAA University of Hawaii Honolulu Hawaii USA
| | - Maria A. Herrera
- Departamento de Ciencias Naturales y Matemáticas Pontificia Universidad Javeriana Cali Colombia
| | - Susana Caballero
- Laboratorio de Ecología Molecular de Vertebrados Acuáticos – LEMVA Departamento de Ciencias Biológicas Universidad de Los Andes Bogotá Colombia
| | - Demian D. Chapman
- Department of Biological Sciences Florida International University North Miami Florida USA
| |
Collapse
|
44
|
Determining Stingray Movement Patterns in a Wave-Swept Coastal Zone Using a Blimp for Continuous Aerial Video Surveillance. FISHES 2020. [DOI: 10.3390/fishes5040031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Stingrays play a key role in the regulation of nearshore ecosystems. However, their movement ecology in high-energy surf areas remains largely unknown due to the notorious difficulties in conducting research in these environments. Using a blimp as an aerial platform for video surveillance, we overcame some of the limitations of other tracking methods, such as the use of tags and drones. This novel technology offered near-continuous coverage to characterise the fine-scale movements of stingrays in a surf area in Kiama, Australia, without any invasive procedures. A total of 98 stingray tracks were recorded, providing 6 h 27 min of movement paths. The tracking data suggest that stingrays may use a depth gradient located in the sandflat area of the bay for orientating their movements and transiting between locations within their home range. Our research also indicates that stingray behaviour was influenced by diel periods and tidal states. We observed a higher stingray occurrence during the afternoon, potentially related to foraging and anti-predatory strategies. We also saw a reduced route fidelity during low tide, when the bathymetric reference was less accessible due to stranding risk. Considering the increasing threat of anthropogenic development to nearshore coastal environments, the identification of these patterns can better inform the management and mitigation of threats.
Collapse
|
45
|
Ajemian MJ, Drymon JM, Hammerschlag N, Wells RJD, Street G, Falterman B, McKinney JA, Driggers WB, Hoffmayer ER, Fischer C, Stunz GW. Movement patterns and habitat use of tiger sharks (Galeocerdo cuvier) across ontogeny in the Gulf of Mexico. PLoS One 2020; 15:e0234868. [PMID: 32667920 PMCID: PMC7363083 DOI: 10.1371/journal.pone.0234868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/03/2020] [Indexed: 11/18/2022] Open
Abstract
The tiger shark (Galeocerdo cuvier) is globally distributed with established coastal and open-ocean movement patterns in many portions of its range. While all life stages of tiger sharks are known to occur in the Gulf of Mexico (GoM), variability in habitat use and movement patterns over ontogeny have never been quantified in this large marine ecosystem. To address this data gap we fitted 56 tiger sharks with Smart Position and Temperature transmitting tags between 2010 and 2018 and examined seasonal and spatial distribution patterns across the GoM. Additionally, we analyzed overlap of core habitats (i.e., 50% kernel density estimates) among individuals relative to large benthic features (oil and gas platforms, natural banks, bathymetric breaks). Our analyses revealed significant ontogenetic and seasonal differences in distribution patterns as well as across-shelf (i.e., regional) and sex-linked variability in movement rates. Presumably sub-adult and adult sharks achieved significantly higher movement rates and used off-shelf deeper habitats at greater proportions than juvenile sharks, particularly during the fall and winter seasons. Further, female maximum rate of movement was higher than males when accounting for size. Additionally, we found evidence of core regions encompassing the National Oceanographic and Atmospheric Administration designated Habitat Areas of Particular Concern (i.e., shelf-edge banks) during cooler months, particularly by females, as well as 2,504 oil and gas platforms. These data provide a baseline for future assessments of environmental impacts, such as climate variability or oil spills, on tiger shark movements and distribution in the region. Future research may benefit from combining alternative tracking tools, such as acoustic telemetry and genetic approaches, which can facilitate long-term assessment of the species’ movement dynamics and better elucidate the ecological significance of the core habitats identified here.
Collapse
Affiliation(s)
- Matthew J. Ajemian
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, United States of America
- * E-mail:
| | - J. Marcus Drymon
- Coastal Research and Extension Center, Mississippi State University, Biloxi, Mississippi, United States of America
- Mississippi-Alabama Sea Grant, Ocean Springs, Mississippi, United States of America
| | - Neil Hammerschlag
- Rosenstiel School of Marine & Atmospheric Science, University of Miami, Causeway, Miami, Florida, United States of America
- Abess Center for Ecosystem Science & Policy, University of Miami, Miami, Florida, United States of America
| | - R. J. David Wells
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- Department of Wildlife & Fisheries Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Garrett Street
- Quantitative Ecology & Spatial Technologies Laboratory, Mississippi State University, Starkville, Mississippi State, United States of America
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Starkville, Mississippi State, United States of America
| | - Brett Falterman
- Louisiana Department of Wildlife and Fisheries, New Orleans, Louisiana, United States of America
| | - Jennifer A. McKinney
- Louisiana Department of Wildlife and Fisheries, New Orleans, Louisiana, United States of America
| | - William B. Driggers
- NOAA Fisheries, Southeast Fisheries Science Center, Mississippi Laboratories, Pascagoula, Mississippi, United States of America
| | - Eric R. Hoffmayer
- NOAA Fisheries, Southeast Fisheries Science Center, Mississippi Laboratories, Pascagoula, Mississippi, United States of America
| | | | - Gregory W. Stunz
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus Christi, Texas, United States of America
| |
Collapse
|
46
|
TinHan TC, O'Leary SJ, Portnoy DS, Rooker JR, Gelpi CG, Wells RJD. Natural tags identify nursery origin of a coastal elasmobranch
Carcharhinus leucas. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas C. TinHan
- Department of Marine Biology Texas A&M University at Galveston Galveston TX USA
| | - Shannon J. O'Leary
- Department of Life Sciences Texas A&M University‐Corpus Christi Corpus Christi TX USA
| | - David S. Portnoy
- Department of Life Sciences Texas A&M University‐Corpus Christi Corpus Christi TX USA
| | - Jay R. Rooker
- Department of Marine Biology Texas A&M University at Galveston Galveston TX USA
- Department of Wildlife and Fisheries Science Texas A&M University College Station TX USA
| | - Carey G. Gelpi
- Coastal Fisheries Division Texas Parks and Wildlife Department Port Arthur TX USA
| | - R. J. David Wells
- Department of Marine Biology Texas A&M University at Galveston Galveston TX USA
- Department of Wildlife and Fisheries Science Texas A&M University College Station TX USA
| |
Collapse
|
47
|
Fields AT, Fischer GA, Shea SKH, Zhang H, Feldheim KA, Chapman DD. DNA Zip‐coding: identifying the source populations supplying the international trade of a critically endangered coastal shark. Anim Conserv 2020. [DOI: 10.1111/acv.12585] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | | | | | - H. Zhang
- Kadoorie Farm and Botanic Garden Tai Po Hong Kong
| | - K. A. Feldheim
- Pritzker Laboratory for Molecular Systematics and Evolution The Field Museum Chicago IL USA
| | - D. D. Chapman
- Stony Brook University Stony Brook NY USA
- Department of Biological Sciences Florida International University Miami FL USA
| |
Collapse
|
48
|
Schlaff AM, Heupel MR, Udyawer V, Simpfendorfer CA. Sex-based differences in movement and space use of the blacktip reef shark, Carcharhinus melanopterus. PLoS One 2020; 15:e0231142. [PMID: 32271802 PMCID: PMC7145100 DOI: 10.1371/journal.pone.0231142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/17/2020] [Indexed: 11/18/2022] Open
Abstract
Information on the spatial ecology of reef sharks is critical to understanding life-history patterns, yet gaps remain in our knowledge of how these species move and occupy space. Previous studies have focused on offshore reefs and atolls with little information available on the movement and space use of sharks utilising reef habitats closer to shore. Cross-shelf differences in physical and biological properties of reefs can alter regional ecosystem processes resulting in different movement patterns for resident sharks. Passive acoustic telemetry was used to examine residency, space use and depth use of 40 blacktip reef sharks, Carcharhinus melanopterus, on an inshore reef in Queensland, Australia, and assess temporal or biological influences. All sharks showed strong site-attachment to inshore reefs with residency highest among adult females. Sharks exhibited a sex-based, seasonal pattern in space use where males moved more, occupied more space and explored new areas during the reproductive season, while females utilised the same amount of space throughout the year, but shifted the location of the space used. A positive relationship was also observed between space use and size. There was evidence of seasonal site fidelity and long-distance movement with the coordinated, annual migration of two adult males to the study site during the mating season. Depth use was segregated with some small sharks occupying shallower depths than adults throughout the day and year, most likely as refuge from predation. Results highlight the importance of inshore reef habitats to blacktip reef sharks and provide evidence of connectivity with offshore reefs, at least for adult males.
Collapse
Affiliation(s)
- Audrey M. Schlaff
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- * E-mail:
| | - Michelle R. Heupel
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Integrated Marine Observing System, University of Tasmania, Hobart, Tasmania, Australia
| | - Vinay Udyawer
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Colin A. Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
49
|
Dolton HR, Gell FR, Hall J, Hall G, Hawkes LA, Witt MJ. Assessing the importance of Isle of Man waters for the basking shark Cetorhinus maximus. ENDANGER SPECIES RES 2020. [DOI: 10.3354/esr01018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Satellite tracking of endangered or threatened animals can facilitate informed conservation by revealing priority areas for their protection. Basking sharks Cetorhinus maximus (n = 11) were tagged during the summers of 2013, 2015, 2016 and 2017 in the Isle of Man (IoM; median tracking duration 378 d, range: 89-804 d; median minimum straight-line distance travelled 541 km, range: 170-10406 km). Tracking revealed 3 movement patterns: (1) coastal movements within IoM and Irish waters, (2) summer northward movements to Scotland and (3) international movements to Morocco and Norway. One tagged shark was bycaught and released alive in the Celtic Sea. Basking sharks displayed inter-annual site fidelity to the Irish Sea (n = 3), a Marine Nature Reserve (MNR) in IoM waters (n = 1), and Moroccan waters (n = 1). Core distribution areas (50% kernel density estimation) of 5 satellite tracked sharks in IoM waters were compared with 3902 public sightings between 2005 and 2017, highlighting west and south coast hotspots. Location data gathered from satellite tagging broadly correspond to the current boundaries of MNRs in IoM waters. However, minor modifications of some MNR boundaries would incorporate ~20% more satellite tracking location data from this study, and protective measures for basking sharks in IoM waters could further aid conservation of the species at local, regional and international scales. We also show the first documented movement of a basking shark from the British Isles to Norway, and the longest ever track for a tagged basking shark (2 yr and 2 mo, 804 d).
Collapse
Affiliation(s)
- HR Dolton
- University of Exeter College of Life and Environmental Sciences, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK
- University of Exeter, Environment and Sustainability Institute, Penryn Campus, Cornwall TR10 9FE, UK
| | - FR Gell
- Department of Environment, Food and Agriculture, Thie Slieau Whallian, Foxdale Road, St John’s IM4 3AS, Isle of Man
| | - J Hall
- Manx Basking Shark Watch, Glenchass Farmhouse, Port St Mary IM9 5PJ, Isle of Man
| | - G Hall
- Manx Basking Shark Watch, Glenchass Farmhouse, Port St Mary IM9 5PJ, Isle of Man
| | - LA Hawkes
- University of Exeter College of Life and Environmental Sciences, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK
| | - MJ Witt
- University of Exeter College of Life and Environmental Sciences, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK
- University of Exeter, Environment and Sustainability Institute, Penryn Campus, Cornwall TR10 9FE, UK
| |
Collapse
|
50
|
Lieber L, Hall G, Hall J, Berrow S, Johnston E, Gubili C, Sarginson J, Francis M, Duffy C, Wintner SP, Doherty PD, Godley BJ, Hawkes LA, Witt MJ, Henderson SM, de Sabata E, Shivji MS, Dawson DA, Sims DW, Jones CS, Noble LR. Spatio-temporal genetic tagging of a cosmopolitan planktivorous shark provides insight to gene flow, temporal variation and site-specific re-encounters. Sci Rep 2020; 10:1661. [PMID: 32015388 PMCID: PMC6997447 DOI: 10.1038/s41598-020-58086-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 12/29/2019] [Indexed: 12/30/2022] Open
Abstract
Migratory movements in response to seasonal resources often influence population structure and dynamics. Yet in mobile marine predators, population genetic consequences of such repetitious behaviour remain inaccessible without comprehensive sampling strategies. Temporal genetic sampling of seasonally recurring aggregations of planktivorous basking sharks, Cetorhinus maximus, in the Northeast Atlantic (NEA) affords an opportunity to resolve individual re-encounters at key sites with population connectivity and patterns of relatedness. Genetic tagging (19 microsatellites) revealed 18% of re-sampled individuals in the NEA demonstrated inter/multi-annual site-specific re-encounters. High genetic connectivity and migration between aggregation sites indicate the Irish Sea as an important movement corridor, with a contemporary effective population estimate (Ne) of 382 (CI = 241-830). We contrast the prevailing view of high gene flow across oceanic regions with evidence of population structure within the NEA, with early-season sharks off southwest Ireland possibly representing genetically distinct migrants. Finally, we found basking sharks surfacing together in the NEA are on average more related than expected by chance, suggesting a genetic consequence of, or a potential mechanism maintaining, site-specific re-encounters. Long-term temporal genetic monitoring is paramount in determining future viability of cosmopolitan marine species, identifying genetic units for conservation management, and for understanding aggregation structure and dynamics.
Collapse
Affiliation(s)
- Lilian Lieber
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland, UK
- School of Chemistry and Chemical Engineering, Queen´s University Belfast, Marine Laboratory, Portaferry, BT22 1PF, Northern Ireland, UK
| | - Graham Hall
- Manx Basking Shark Watch and Manx Wildlife Trust, Peel, Isle of Man, IM9 5PJ, UK
| | - Jackie Hall
- Manx Basking Shark Watch and Manx Wildlife Trust, Peel, Isle of Man, IM9 5PJ, UK
| | - Simon Berrow
- Irish Basking Shark Study Group, Merchants Quay, Kilrush, County Clare, UK
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway, Ireland
| | - Emmett Johnston
- Irish Basking Shark Study Group, Merchants Quay, Kilrush, County Clare, UK
- School of Biological Sciences, Queen´s University Belfast, Belfast, Northern Ireland, UK
| | - Chrysoula Gubili
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland, UK
- Hellenic Agricultural Organisation, Fisheries Research Institute, Nea Peramos, Kavala, Macedonia, 64007, Greece
| | - Jane Sarginson
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland, UK
- Faculty of Science and Engineering, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Malcolm Francis
- National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington, 6241, New Zealand
| | - Clinton Duffy
- Department of Conservation, Private Bag 68908, Wellesley Street, Auckland, 1141, New Zealand
| | - Sabine P Wintner
- KwaZulu-Natal Sharks Board, Private Bag 2, Umhlanga Rocks, 4320, South Africa
- School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Philip D Doherty
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, UK
| | - Brendan J Godley
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, UK
| | - Lucy A Hawkes
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, UK
| | - Matthew J Witt
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, UK
| | - Suzanne M Henderson
- Scottish Natural Heritage Great Glen House, Inverness, IV3 8NW, Scotland, UK
| | | | - Mahmood S Shivji
- Save Our Seas Shark Research Center and Guy Harvey Research Institute, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, FL, 33004, USA
| | - Deborah A Dawson
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, South Yorkshire, UK
| | - David W Sims
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, Southampton, SO14 3ZH, UK
| | - Catherine S Jones
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland, UK
| | - Leslie R Noble
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland, UK.
- Faculty of Biosciences and Aquaculture, Nord University, Postboks 1490, 8049, Bodø, Norway.
| |
Collapse
|