1
|
Liao HX, Yang J, Wen JR, Nie HY, Zhao J, Xu FR, Liu XY, Dong X. β-Caryophyllene oxide inhibits lysine acetylation of histones in Fusarium proliferatum to block ribosomal biosynthesis and function. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106213. [PMID: 39672623 DOI: 10.1016/j.pestbp.2024.106213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 12/15/2024]
Abstract
The natural bicyclic sesquiterpene, β-Caryophyllene oxide (BCPO), has demonstrated inhibitory activity against Fusarium species. While previous studies have documented its antifungal properties through various biochemical mechanisms, the role of BCPO in modulating epigenetic modifications of DNA via histone deacetylases (HDACs) has received comparatively less attention. The study aims to elucidate how BCPO inhibits Fusarium proliferatum by affecting histone acetylation. Our results indicate that BCPO enhances FPRO_01165 (FpSIR2) enzyme activity to 6.01 ng/min/mg, representing a 55.30 % increase. Molecular docking analysis and molecular dynamics simulation confirmed the interaction between BCPO and FpSIR2. Furthermore, high concentrations (HC) of BCPO significantly inhibited the growth of F. proliferatum, resulting in marked reductions in H3K9ac and H3K27ac modification levels. We conducted chromatin immunoprecipitation sequencing (ChIP-seq) to identify enrichments of H3K9ac and H3K27ac, while also obtaining transcriptomic data from the HC treatment group. Combined analyses revealed that decreased levels of H3K9ac and H3K27ac primarily affected ribosomal pathways in F. proliferatum, leading to downregulation of several ribosomal genes and their corresponding proteins, such as RPL4, RPS19, and RPS16. Our findings suggest that BCPO stimulates both the production and activity of FpSIR2, which subsequently inhibits histone lysine acetylation in F. proliferatum. This inhibition suppresses ribosome biosynthesis and function as well as overall growth in this pathogen. The property of BCPO to reduce acetylation provides new insights for developing highly efficient yet low-toxicity antifungal agents.
Collapse
Affiliation(s)
- Hong-Xin Liao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China; College of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan 430056, People's Republic of China
| | - Jing Yang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China; College of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan 430056, People's Republic of China
| | - Jin-Rui Wen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Hong-Yan Nie
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Jun Zhao
- School of Geography, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Fu-Rong Xu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Xiao-Yun Liu
- College of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan 430056, People's Republic of China.
| | - Xian Dong
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China.
| |
Collapse
|
2
|
Zhang X, Zhou Y, Liu Y, Li B, Tian S, Zhang Z. Research Progress on the Mechanism and Function of Histone Acetylation Regulating the Interaction between Pathogenic Fungi and Plant Hosts. J Fungi (Basel) 2024; 10:522. [PMID: 39194848 DOI: 10.3390/jof10080522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Histone acetylation is a crucial epigenetic modification, one that holds the key to regulating gene expression by meticulously modulating the conformation of chromatin. Most histone acetylation enzymes (HATs) and deacetylation enzymes (HDACs) in fungi were originally discovered in yeast. The functions and mechanisms of HATs and HDACs in yeast that have been documented offer us an excellent entry point for gaining insights into these two types of enzymes. In the interaction between plants and pathogenic fungi, histone acetylation assumes a critical role, governing fungal pathogenicity and plant immunity. This review paper delves deep into the recent advancements in understanding how histone acetylation shapes the interaction between plants and fungi. It explores how this epigenetic modification influences the intricate balance of power between these two kingdoms of life, highlighting the intricate network of interactions and the subtle shifts in these interactions that can lead to either mutual coexistence or hostile confrontation.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Zhou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangzhi Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Cai Q, Tian L, Xie JT, Jiang DH. Two sirtuin proteins, Hst3 and Hst4, modulate asexual development, stress tolerance, and virulence by affecting global gene expression in Beauveria bassiana. Microbiol Spectr 2024; 12:e0313723. [PMID: 38193686 PMCID: PMC10846017 DOI: 10.1128/spectrum.03137-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Beauveria bassiana is a widely used entomopathogenic fungus in insect biological control applications. In this study, we investigated the role of two sirtuin homologs, BbHst3 and BbHst4, in the biological activities and pathogenicity of B. bassiana. Our results showed that deletion of BbHst3 and/or BbHst4 led to impaired sporulation, reduced (~50%) conidial production, and decreased tolerance to various stresses, including osmotic, oxidative, and cell wall-disturbing agents. Moreover, BbHst4 plays dominant roles in histone H3-K56 acetylation and DNA damage response, while BbHst3 is more responsible for maintaining cell wall integrity. Transcriptomic analyses revealed significant changes (>1,500 differentially expressed genes) in gene expression patterns in the mutant strains, particularly in genes related to secondary metabolism, detoxification, and transporters. Furthermore, the ΔBbHst3, ΔBbHst4, and ΔBbHst3ΔBbHst4 strains exhibited reduced virulence in insect bioassays, with decreased (~20%) abilities to kill insect hosts through topical application and intra-hemocoel injection. These findings highlight the crucial role of BbHst3 and BbHst4 in sporulation, DNA damage repair, cell wall integrity, and fungal infection in B. bassiana. Our study provides new insights into the regulatory mechanisms underlying the biological activities and pathogenicity of B. bassiana and emphasizes the potential of targeting sirtuins for improving the efficacy of fungal biocontrol agents.IMPORTANCESirtuins, as a class of histone deacetylases, have been shown to play important roles in various cellular processes in fungi, including asexual development, stress response, and pathogenicity. By investigating the functions of BbHst3 and BbHst4, we have uncovered their critical contributions to important phenotypes in Beauveria bassiana. Deletion of these sirtuin homologs led to reduced conidial yield, increased sensitivity to osmotic and oxidative stresses, impaired DNA damage repair processes, and decreased fungal virulence. Transcriptomic analyses showed differential expression of numerous genes involved in secondary metabolism, detoxification, transporters, and virulence-related factors, potentially uncovering new targets for manipulation and optimization of fungal biocontrol agents. Our study also emphasizes the significance of sirtuins as key regulators in fungal biology and highlights their potential as promising targets for the development of novel antifungal strategies.
Collapse
Affiliation(s)
- Qing Cai
- College of Plant Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Li Tian
- Department of Bioengineering, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Jia-Tao Xie
- College of Plant Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dao-Hong Jiang
- College of Plant Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Yao G, Han N, Zheng H, Wang L. The Histone Deacetylase HstD Regulates Fungal Growth, Development and Secondary Metabolite Biosynthesis in Aspergillus terreus. Int J Mol Sci 2023; 24:12569. [PMID: 37628749 PMCID: PMC10454297 DOI: 10.3390/ijms241612569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Histone acetylation modification significantly affects secondary metabolism in filamentous fungi. However, how histone acetylation regulates secondary metabolite synthesis in the lovastatin (a lipid-lowering drug) producing Aspergillus terreus remains unknown because protein is involved and has been identified in this species. Here, the fungal-specific histone deacetylase gene, hstD, was characterized through functional genomics in two marine-derived A. terreus strains, Mj106 and RA2905. The results showed that the ablation of HstD resulted in reduced mycelium growth, less conidiation, and decreased lovastatin biosynthesis but significantly increased terrein biosynthesis. However, unlike its homologs in yeast, HstD was not required for fungal responses to DNA damage agents, indicating that HstD likely plays a novel role in the DNA damage repair process in A. terreus. Furthermore, the loss of HstD resulted in a significant upregulation of H3K56 and H3K27 acetylation when compared to the wild type, suggesting that epigenetic functions of HstD, as a deacetylase, target H3K27 and H3K56. Additionally, a set of no-histone targets with potential roles in fungal growth, conidiation, and secondary metabolism were identified for the first time using acetylated proteomic analysis. In conclusion, we provide a comprehensive analysis of HstD for its targets in histone or non-histone and its roles in fungal growth and development, DNA damage response, and secondary metabolism in A. terreus.
Collapse
Affiliation(s)
- Guangshan Yao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou 350108, China (N.H.); (H.Z.)
| | - Na Han
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou 350108, China (N.H.); (H.Z.)
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Huawei Zheng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou 350108, China (N.H.); (H.Z.)
| | - Lu Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou 350108, China (N.H.); (H.Z.)
| |
Collapse
|
5
|
Navarrete B, Ibeas JI, Barrales RR. Systematic characterization of Ustilago maydis sirtuins shows Sir2 as a modulator of pathogenic gene expression. Front Microbiol 2023; 14:1157990. [PMID: 37113216 PMCID: PMC10126416 DOI: 10.3389/fmicb.2023.1157990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Phytopathogenic fungi must adapt to the different environmental conditions found during infection and avoid the immune response of the plant. For these adaptations, fungi must tightly control gene expression, allowing sequential changes in transcriptional programs. In addition to transcription factors, chromatin modification is used by eukaryotic cells as a different layer of transcriptional control. Specifically, the acetylation of histones is one of the chromatin modifications with a strong impact on gene expression. Hyperacetylated regions usually correlate with high transcription and hypoacetylated areas with low transcription. Thus, histone deacetylases (HDACs) commonly act as repressors of transcription. One member of the family of HDACs is represented by sirtuins, which are deacetylases dependent on NAD+, and, thus, their activity is considered to be related to the physiological stage of the cells. This property makes sirtuins good regulators during environmental changes. However, only a few examples exist, and with differences in the extent of the implication of the role of sirtuins during fungal phytopathogenesis. In this work, we have performed a systematic study of sirtuins in the maize pathogen Ustilago maydis, finding Sir2 to be involved in the dimorphic switch from yeast cell to filament and pathogenic development. Specifically, the deletion of sir2 promotes filamentation, whereas its overexpression highly reduces tumor formation in the plant. Moreover, transcriptomic analysis revealed that Sir2 represses genes that are expressed during biotrophism development. Interestingly, our results suggest that this repressive effect is not through histone deacetylation, indicating a different target of Sir2 in this fungus.
Collapse
|