1
|
Lin GM, Zhang JY, Shao ZH, Yang C, Zhao GP, Huang KY, Zhang CC. The LysR-type transcriptional factor PacR controls heterocyst differentiation and C/N metabolism in the cyanobacterium Anabaena PCC 7120. Microbiol Res 2025; 290:127970. [PMID: 39561606 DOI: 10.1016/j.micres.2024.127970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
PacR (All3953) has previously been identified as a global transcriptional regulator of carbon assimilation in cyanobacteria. In the facultative diazotrophic and filamentous cyanobacterium Anabaena PCC 7120 (Anabaena), inactivation of pacR has been shown to affect cell growth under various conditions. Nitrogen fixation in Anabaena occurs in heterocysts, cells differentiated semiregularly along the filaments following deprivation of combined nitrogen such as nitrate or ammonium. Here, we created a markerless deletion mutant of pacR. In addition to its growth defects observed under different light and nitrogen conditions, the mutant could form a high frequency of heterocysts, including heterocyst doublets, even in the presence of nitrate. Inactivation of pacR led to the upregulation of ntcA, a global regulator of nitrogen metabolism and heterocyst formation, as well as downregulation of genes involved in nitrate uptake and assimilation. These changes led to N-limited cells in the presence of nitrate. PacR also regulates most of the genes encoding bicarbonate transport systems. The promoter regions of ntcA, and several other genes involved in nitrogen or carbon uptake and assimilation, as well as patS and hetN involved in heterocyst patterning can be directly recognized by PacR in vitro. These findings, along with previously reported ChIP-seq data, establish PacR as a crucial transcriptional regulator for balancing carbon and nitrogen metabolism in cyanobacteria.
Collapse
Affiliation(s)
- Gui-Ming Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, Hubei, China
| | - Ju-Yuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, Hubei, China.
| | - Zhi-Hui Shao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Guo-Ping Zhao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Kai-Yao Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, Hubei, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, Hubei, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China.
| |
Collapse
|
2
|
Brenes-Álvarez M, Ropp HR, Papagiannidis D, Potel CM, Stein F, Scholz I, Steglich C, Savitski MM, Vioque A, Muro-Pastor AM, Hess WR. R-DeeP/TripepSVM identifies the RNA-binding OB-fold-like protein PatR as regulator of heterocyst patterning. Nucleic Acids Res 2024:gkae1247. [PMID: 39698830 DOI: 10.1093/nar/gkae1247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
RNA-binding proteins (RBPs) are central components of gene regulatory networks. The differentiation of heterocysts in filamentous cyanobacteria is an example of cell differentiation in prokaryotes. Although multiple non-coding transcripts are involved in this process, no RBPs have been implicated thus far. Here we used quantitative mass spectrometry to analyze the differential fractionation of RNA-protein complexes after RNase treatment in density gradients yielding 333 RNA-associated proteins, while a bioinformatic prediction yielded 311 RBP candidates in Nostoc sp. PCC 7120. We validated in vivo the RNA-binding capacity of six RBP candidates. Some participate in essential physiological aspects, such as photosynthesis (Alr2890), thylakoid biogenesis (Vipp1) or heterocyst differentiation (PrpA, PatU3), but their association with RNA was unknown. Validated RBPs Asl3888 and Alr1700 were not previously characterized. Alr1700 is an RBP with two oligonucleotide/oligosaccharide-binding (OB)-fold-like domains that is differentially expressed in heterocysts and interacts with non-coding regulatory RNAs. Deletion of alr1700 led to complete deregulation of the cell differentiation process, a striking increase in the number of heterocyst-like cells, and was ultimately lethal in the absence of combined nitrogen. These observations characterize this RBP as a master regulator of the heterocyst patterning and differentiation process, leading us to rename Alr1700 to PatR.
Collapse
Affiliation(s)
- Manuel Brenes-Álvarez
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Halie R Ropp
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | | | - Clement M Potel
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Ingeborg Scholz
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Claudia Steglich
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Mikhail M Savitski
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Agustín Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Alicia M Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Bäcker LE, Broux K, Weckx L, Khanal S, Aertsen A. Tuning and functionalization of logic gates for time resolved programming of bacterial populations. Nucleic Acids Res 2024:gkae1158. [PMID: 39657755 DOI: 10.1093/nar/gkae1158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
In order to increase our command over genetically engineered bacterial populations in bioprocessing and therapy, synthetic regulatory circuitry needs to enable the temporal programming of a number of consecutive functional tasks without external interventions. In this context, we have engineered a genetic circuit encoding an autonomous but chemically tunable timer in Escherichia coli, based on the concept of a transcription factor cascade mediated by the cytoplasmic dilution of repressors. As proof-of-concept, we used this circuit to impose a time-resolved two-staged synthetic pathway composed of a production-followed-by-lysis program, via a single input. Moreover, via a recombinase step, this synchronous timer was further engineered into an asynchronous timer in which the generational distance of differentiating daughter cells spawning off from a stem-cell like mother cell becomes a predictable driver and proxy for timer dynamics. Using this asynchronous timer circuit, a temporally defined population heterogeneity can be programmed in bacterial populations.
Collapse
Affiliation(s)
- Leonard E Bäcker
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23-bus 2457, 3001 Leuven, Belgium
| | - Kevin Broux
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23-bus 2457, 3001 Leuven, Belgium
| | - Louise Weckx
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23-bus 2457, 3001 Leuven, Belgium
| | - Sadhana Khanal
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23-bus 2457, 3001 Leuven, Belgium
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23-bus 2457, 3001 Leuven, Belgium
| |
Collapse
|
4
|
Valladares A, Herrero A. ThyD Is a Thylakoid Membrane Protein Influencing Cell Division and Acclimation to High Light in the Multicellular Cyanobacterium Anabaena sp. Strain PCC 7120. Mol Microbiol 2024. [PMID: 39630597 DOI: 10.1111/mmi.15335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Cyanobacteria developed oxygenic photosynthesis and represent the phylogenetic ancestors of chloroplasts. The model strain Anabaena sp. strain PCC 7120 grows as filaments of communicating cells and can form heterocysts, cells specialized for N2 fixation. In the Anabaena genome, ORF all2390 is annotated as encoding a SulA homolog, but sequence similarity to SulA of model bacteria is insignificant. We generated strains that lacked or overexpressed all2390, both of which showed instances of increased cell size, and observed that purified All2390 protein interfered with the in vitro polymerization of FtsZ. Heterocyst frequency diminished by all2390 inactivation and increased by all2390 overexpression. Overexpression retarded the dismantlement of Z-ring structures that determines commitment in the differentiating cells. Thus, All2390 can influence cell division affecting heterocyst differentiation. An All2390-GFP fusion protein localized to the thylakoid membranes including the honeycomb membranes, which harbor photosynthetic complexes, in the heterocyst polar regions. Notably, all2390 expression strongly increased under high light, conditions under which growth of the null mutant is compromised. Thus, All2390 appears essential for adaptation to high light conditions. We named All2390 ThyD to reflect its thylakoidal localization and its dual role in cell division dynamics and acclimation of thylakoid membranes to increased light intensity.
Collapse
Affiliation(s)
- Ana Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| |
Collapse
|
5
|
Mrnjavac N, Degli Esposti M, Mizrahi I, Martin WF, Allen JF. Three enzymes governed the rise of O 2 on Earth. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149495. [PMID: 39004113 PMCID: PMC7616410 DOI: 10.1016/j.bbabio.2024.149495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Current views of O2 accumulation in Earth history depict three phases: The onset of O2 production by ∼2.4 billion years ago; 2 billion years of stasis at ∼1 % of modern atmospheric levels; and a rising phase, starting about 500 million years ago, in which oxygen eventually reached modern values. Purely geochemical mechanisms have been proposed to account for this tripartite time course of Earth oxygenation. In particular the second phase, the long period of stasis between the advent of O2 and the late rise to modern levels, has posed a puzzle. Proposed solutions involve Earth processes (geochemical, ecosystem, day length). Here we suggest that Earth oxygenation was not determined by geochemical processes. Rather it resulted from emergent biological innovations associated with photosynthesis and the activity of only three enzymes: 1) The oxygen evolving complex of cyanobacteria that makes O2; 2) Nitrogenase, with its inhibition by O2 causing two billion years of oxygen level stasis; 3) Cellulose synthase of land plants, which caused mass deposition and burial of carbon, thus removing an oxygen sink and therefore increasing atmospheric O2. These three enzymes are endogenously produced by, and contained within, cells that have the capacity for exponential growth. The catalytic properties of these three enzymes paved the path of Earth's atmospheric oxygenation, requiring no help from Earth other than the provision of water, CO2, salts, colonizable habitats, and sunlight.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Department of Biology, Institute for Molecular Evolution, Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
| | | | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Be'er-Sheva, Israel
| | - William F Martin
- Department of Biology, Institute for Molecular Evolution, Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
| | - John F Allen
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, UK.
| |
Collapse
|
6
|
Wang K, Mahbub M, Mastroianni G, Valladares A, Mullineaux CW. mRNA localization and thylakoid protein biogenesis in the filamentous heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. J Bacteriol 2024; 206:e0032824. [PMID: 39329528 PMCID: PMC11500504 DOI: 10.1128/jb.00328-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Heterocyst-forming cyanobacteria such as Anabaena (Nostoc) sp. PCC 7120 exhibit extensive remodeling of their thylakoid membranes during heterocyst differentiation. Here we investigate the sites of translation of thylakoid membrane proteins in Anabaena vegetative cells and developing heterocysts, using mRNA fluorescent in situ hybridization (FISH) to detect the location of specific mRNA species. We probed mRNAs encoding reaction center core components and the heterocyst-specific terminal oxidases Cox2 and Cox3. As in unicellular cyanobacteria, the mRNAs encoding membrane-integral thylakoid proteins are concentrated in patches at the inner face of the thylakoid membrane system, adjacent to the central cytoplasm. These patches mark the putative sites of translation and membrane insertion of these proteins. Oxidase activity in mature heterocysts is concentrated in the specialized "honeycomb" regions of the thylakoid membranes close to the cell poles. However, cox2 and cox3 mRNAs remain evenly distributed over the inner face of the thylakoids, implying that oxidase proteins migrate extensively after translation to reach their destination in the honeycomb membranes. The RNA-binding protein RbpG is the closest Anabaena homolog of Rbp3 in the unicellular cyanobacterium Synechocystis sp. PCC 6803, which we previously showed to be crucial for the correct location of photosynthetic mRNAs. An rbpG null mutant shows decreased cellular levels of photosynthetic mRNAs and photosynthetic complexes, coupled with perturbations to thylakoid membrane organization and lower efficiency of the Photosystem II repair cycle. This suggests that the chaperoning of photosynthetic mRNAs by RbpG is important for the correct coordination of thylakoid protein translation and assembly.IMPORTANCECyanobacteria have a complex thylakoid membrane system which is the site of the photosynthetic light reactions as well as most of the respiratory activity in the cell. Protein targeting to the thylakoids and the spatial organization of thylakoid protein biogenesis remain poorly understood. Further complexity is found in some filamentous cyanobacteria that produce heterocysts, specialized nitrogen-fixing cells in which the thylakoid membranes undergo extensive remodeling. Here we probe mRNA locations to reveal thylakoid translation sites in a heterocyst-forming cyanobacterium. We identify an RNA-binding protein important for the correct co-ordination of thylakoid protein translation and assembly, and we demonstrate the effectiveness of mRNA fluorescent in situ hybridization (FISH) as a way to probe cell-specific gene expression in multicellular cyanobacteria.
Collapse
Affiliation(s)
- Kexin Wang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Moontaha Mahbub
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Giulia Mastroianni
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Ana Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Conrad W. Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
7
|
Duersch BG, Soini SA, Luo Y, Liu X, Chen S, Merk VM. Nanoscale elemental and morphological imaging of nitrogen-fixing cyanobacteria. Metallomics 2024; 16:mfae040. [PMID: 39271453 PMCID: PMC11450467 DOI: 10.1093/mtomcs/mfae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
Nitrogen-fixing cyanobacteria bind atmospheric nitrogen and carbon dioxide using sunlight. This experimental study focused on a laboratory-based model system, Anabaena sp., in nitrogen-depleted culture. When combined nitrogen is scarce, the filamentous prokaryotes reconcile photosynthesis and nitrogen fixation by cellular differentiation into heterocysts. To better understand the influence of micronutrients on cellular function, 2D and 3D synchrotron X-ray fluorescence mappings were acquired from whole biological cells in their frozen-hydrated state at the Bionanoprobe, Advanced Photon Source. To study elemental homeostasis within these chain-like organisms, biologically relevant elements were mapped using X-ray fluorescence spectroscopy and energy-dispersive X-ray microanalysis. Higher levels of cytosolic K+, Ca2+, and Fe2+ were measured in the heterocyst than in adjacent vegetative cells, supporting the notion of elevated micronutrient demand. P-rich clusters, identified as polyphosphate bodies involved in nutrient storage, metal detoxification, and osmotic regulation, were consistently co-localized with K+ and occasionally sequestered Mg2+, Ca2+, Fe2+, and Mn2+ ions. Machine-learning-based k-mean clustering revealed that P/K clusters were associated with either Fe or Ca, with Fe and Ca clusters also occurring individually. In accordance with XRF nanotomography, distinct P/K-containing clusters close to the cellular envelope were surrounded by larger Ca-rich clusters. The transition metal Fe, which is a part of nitrogenase enzyme, was detected as irregularly shaped clusters. The elemental composition and cellular morphology of diazotrophic Anabaena sp. was visualized by multimodal imaging using atomic force microscopy, scanning electron microscopy, and fluorescence microscopy. This paper discusses the first experimental results obtained with a combined in-line optical and X-ray fluorescence microscope at the Bionanoprobe.
Collapse
Affiliation(s)
- Bobby G Duersch
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| | - Steven A Soini
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| | - Yanqi Luo
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Xiaoyang Liu
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Vivian M Merk
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
8
|
Hurali DT, Banerjee M, Ballal A. Unravelling the involvement of protein disorder in cyanobacterial stress responses. Int J Biol Macromol 2024; 277:133934. [PMID: 39025183 DOI: 10.1016/j.ijbiomac.2024.133934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
This study has explored the involvement of Intrinsically Disordered Proteins (IDPs) in cyanobacterial stress response. IDPs possess distinct physicochemical properties, which allow them to execute diverse functions. Anabaena PCC 7120, the model photosynthetic, nitrogen-fixing cyanobacterium encodes 688 proteins (11 % of the total proteome) with at least one intrinsically disordered region (IDR). Of these, 130 proteins that showed >30 % overall disorder were designated as IDPs. Physico-chemical analysis, showed these IDPs to adopt shapes ranging from 'globular' to 'tadpole-like'. Upon exposure to NaCl, 41 IDP-encoding genes were found to be differentially expressed. Surprisingly, most of these were induced, indicating the importance of IDP-accumulation in overcoming salt stress. Subsequently, six IDPs were identified to be induced by multiple stresses (salt, ammonium and selenite). Interestingly, the presence of these 6-multiple stress-induced IDPs was conserved in filamentous cyanobacteria. Utilizing the experimental proteomic data of Anabaena, these 6 IDPs were found to interact with many proteins involved in diverse pathways, underscoring their physiological importance as protein hubs. This study lays the framework for IDP-related research in Anabaena by (a) identifying, as well as physiochemically characterizing, all the disordered proteins and (b) uncovering a subset of IDPs that are likely to be critical in adaptation to environmental stresses.
Collapse
Affiliation(s)
- Deepak T Hurali
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
9
|
Janović A, Maldener I, Menzel C, Parrett GA, Risser DD. The role of FraI in cell-cell communication and differentiation in the hormogonia-forming cyanobacterium Nostoc punctiforme. mSphere 2024; 9:e0051024. [PMID: 39037261 PMCID: PMC11351039 DOI: 10.1128/msphere.00510-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Multicellular cyanobacteria, like Nostoc punctiforme, rely on septal junctions for cell-cell communication, which is crucial for coordinating various physiological processes including differentiation of N2-fixing heterocysts, spore-like akinetes, and hormogonia-short, motile filaments important for dispersal. In this study, we functionally characterize a protein, encoded by gene Npun_F4142, which in a random mutagenesis approach, initially showed a motility-related function. The reconstructed Npun_F4142 knockout mutant exhibits further distinct phenotypic traits, including altered hormogonia formation with significant reduced motility, inability to differentiate heterocysts and filament fragmentation. For that reason, we named the protein FraI (fragmentation phenotype). The mutant displays severely impaired cell-cell communication, due to almost complete absence of the nanopore array in the septal cell wall, which is an essential part of the septal junctions. Despite lack of communication, hormogonia in the ΔfraI mutant maintain motility and phototactic behavior, even though less pronounced than the wild type (WT). This suggests an alternative mechanism for coordinated movement beyond septal junctions. Our study underscores the significance of FraI in nanopore formation and cell differentiation, and provides additional evidence for the importance of septal junction formation and communication in various differentiation traits of cyanobacteria. The findings contribute to a deeper understanding of the regulatory networks governing multicellular cyanobacterial behavior, with implications for broader insights into microbial multicellularity. IMPORTANCE The filament-forming cyanobacterium Nostoc punctiforme serves as a valuable model for studying cell differentiation, including the formation of nitrogen-fixing heterocysts and hormogonia. Hormogonia filaments play a crucial role in dispersal and plant colonization, providing a nitrogen source through atmospheric nitrogen fixation, thus holding promise for fertilizer-free agriculture. The coordination among the hormogonia cells enabling uniform movement toward the positive signal remains poorly understood. This study investigates the role of septal junction-mediated communication in hormogonia differentiation and motility, by studying a ΔfraI mutant with significantly impaired communication. Surprisingly, impaired communication does not abolish synchronized filament movement, suggesting an alternative coordination mechanism. These findings deepen our understanding of cyanobacterial biology and have broader implications for multicellular behavior in prokaryotes.
Collapse
Affiliation(s)
- Ana Janović
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Iris Maldener
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Claudia Menzel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Gabriel A. Parrett
- Department of Biology, University of Colorado, Colorado Springs, Colorado, USA
| | - Douglas D. Risser
- Department of Biology, University of Colorado, Colorado Springs, Colorado, USA
| |
Collapse
|
10
|
Uesaka K, Banba M, Chiba S, Fujita Y. Restoration of the Functional nif Gene Cluster by Complex Recombination Events during Heterocyst Development in the Nitrogen-Fixing Cyanobacterium Calothrix sp. NIES-4101. PLANT & CELL PHYSIOLOGY 2024; 65:1050-1064. [PMID: 38305573 PMCID: PMC11249958 DOI: 10.1093/pcp/pcae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
In the genome of the heterocystous cyanobacterium Calothrix sp. NIES-4101 (NIES-4101), the four genes essential for nitrogen fixation (nifB, nifH, nifD and nifK) are highly fragmented into 13 parts in a 350-kb chromosomal region, and four of these parts are encoded in the reverse strand. Such a complex fragmentation feature makes it difficult to restore the intact nifBHDK genes by the excision mechanism found in the nifD gene of the Anabaena sp. PCC 7120 heterocyst. To examine the nitrogen-fixing ability of NIES-4101, we confirmed that NIES-4101 grew well on a combined nitrogen-free medium and showed high nitrogenase activity, which strongly suggested that the complete nifBHDK genes are restored by a complex recombination process in heterocysts. Next, we resequenced the genome prepared from cells grown under nitrogen-fixing conditions. Two contigs covering the complete nifHDK and nifB genes were found by de novo assembly of the sequencing reads. In addition, the DNA fragments covering the nifBHDK operon were successfully amplified by PCR. We propose that the process of nifBHDK restoration occurs as follows. First, the nifD-nifK genes are restored by four excision events. Then, the complete nifH and nifB genes are restored by two excision events followed by two successive inversion events between the inverted repeat sequences and one excision event, forming the functional nif gene cluster, nifB-fdxN-nifS-nifU-nifH-nifD-nifK. All genes coding recombinases responsible for these nine recombination events are located close to the terminal repeat sequences. The restoration of the nifBHDK genes in NIES-4101 is the most complex genome reorganization reported in heterocystous cyanobacteria.
Collapse
Affiliation(s)
- Kazuma Uesaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Mari Banba
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| |
Collapse
|
11
|
Liang X, Zhu Y, Liu H, Xie Z, Li G, Li D, Liang Y, Peng C. Nitrogen-fixing cyanobacteria enhance microbial carbon utilization by modulating the microbial community composition in paddy soils of the Mollisols region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172609. [PMID: 38663623 DOI: 10.1016/j.scitotenv.2024.172609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Nitrogen-fixing cyanobacteria (NFC) are photosynthetic prokaryotic microorganisms capable of nitrogen fixation. They can be used as biofertilizers in paddy fields, thereby improving the rice tillering capacity and yield. To reveal the microbiological mechanisms by which nitrogen-fixing cyanobacteria alter soil carbon storage, we conducted a field experiment using NFC as a partial substitute for nitrogen fertilizer in paddy fields in the Sanjiang Plain of Northeast China's Mollisols region. Using metagenomic sequencing technology and Biolog Ecoplate™ carbon matrix metabolism measurements, we explored the changes in the soil microbial community structure and carbon utilization in paddy fields. The results indicated that the replacement of nitrogen fertilizer with NFC predisposed the soil microbial community to host a great number of copiotrophic bacterial taxa, and Proteobacteria and Actinobacteria were closely associated with the metabolism of soil carbon sources. Moreover, through co-occurrence network analysis, we found that copiotrophic bacteria clustered in modules that were positively correlated with the metabolic level of carbon sources. The addition of NFC promoted the growth of copiotrophic bacteria, which increased the carbon utilization level of soil microorganisms, improved the diversity of the microbial communities, and had a potential impact on the soil carbon stock. The findings of this study are helpful for assessing the impact of NFC on the ecological function of soil microbial communities in paddy fields in the black soil area of Northeast China, which is highly important for promoting sustainable agricultural development and providing scientific reference for promoting the use of algal-derived nitrogen fertilizers.
Collapse
Affiliation(s)
- Xiao Liang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yu Zhu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huiyao Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Zuoming Xie
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Genbao Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, PR China.
| |
Collapse
|
12
|
Graf J, Fresenborg L, Seitz HM, Pernil R, Schleiff E. A cobalt concentration sensitive Btu-like system facilitates cobalamin uptake in Anabaena sp. PCC 7120. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:41-56. [PMID: 38379927 PMCID: PMC10878165 DOI: 10.15698/mic2024.02.814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
Metal homeostasis is central to all forms of life, as metals are essential micronutrients with toxic effects at elevated levels. Macromolecular machines facilitate metal uptake into the cells and their intracellular level is regulated by multiple means, which can involve RNA elements and proteinaceous components. While the general principles and components for uptake and cellular content regulation of, e.g., cobalt have been identified for proteobacteria, the corresponding mechanism in other Gram-negative bacteria such as cyanobacteria remain to be established. Based on their photosynthetic activity, cyanobacteria are known to exhibit a special metal demand in comparison to other bacteria. Here, the regulation by cobalt and cobalamin as well as their uptake is described for Anabaena sp. PCC 7120, a model filamentous heterocyst-forming cyanobacterium. Anabaena contains at least three cobalamin riboswitches in its genome, for one of which the functionality is confirmed here. Moreover, two outer membrane-localized cobalamin TonB-dependent transporters, namely BtuB1 and BtuB2, were identified. BtuB2 is important for fast uptake of cobalamin under conditions with low external cobalt, whereas BtuB1 appears to function in cobalamin uptake under conditions of sufficient cobalt supply. While the general function is comparable, the specific function of the two genes differs and mutants thereof show distinct phenotypes. The uptake of cobalamin depends further on the TonB and a BtuFCD machinery, as mutants of tonB3 and btuD show reduced cobalamin uptake rates. Thus, our results provide novel information on the uptake of cobalamin and the regulation of the cellular cobalt content in cyanobacteria.
Collapse
Affiliation(s)
- Julia Graf
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
| | - Leonard Fresenborg
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
- Frankfurt Isotope and Element Research Center, Goethe University Frankfurt, 60438 Frankfurt Germany
| | - Hans-Michael Seitz
- Frankfurt Isotope and Element Research Center, Goethe University Frankfurt, 60438 Frankfurt Germany
- Institute for Geoscience, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany
| | - Rafael Pernil
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
- Frankfurt Isotope and Element Research Center, Goethe University Frankfurt, 60438 Frankfurt Germany
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straβe 1, 60438 Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Max von Laue Str. 11, 60438 Frankfurt, Germany
| |
Collapse
|
13
|
Moore LR, Caspi R, Campbell DA, Casey JR, Crevecoeur S, Lea-Smith DJ, Long B, Omar NM, Paley SM, Schmelling NM, Torrado A, Zehr JP, Karp PD. CyanoCyc cyanobacterial web portal. Front Microbiol 2024; 15:1340413. [PMID: 38357349 PMCID: PMC10864581 DOI: 10.3389/fmicb.2024.1340413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
CyanoCyc is a web portal that integrates an exceptionally rich database collection of information about cyanobacterial genomes with an extensive suite of bioinformatics tools. It was developed to address the needs of the cyanobacterial research and biotechnology communities. The 277 annotated cyanobacterial genomes currently in CyanoCyc are supplemented with computational inferences including predicted metabolic pathways, operons, protein complexes, and orthologs; and with data imported from external databases, such as protein features and Gene Ontology (GO) terms imported from UniProt. Five of the genome databases have undergone manual curation with input from more than a dozen cyanobacteria experts to correct errors and integrate information from more than 1,765 published articles. CyanoCyc has bioinformatics tools that encompass genome, metabolic pathway and regulatory informatics; omics data analysis; and comparative analyses, including visualizations of multiple genomes aligned at orthologous genes, and comparisons of metabolic networks for multiple organisms. CyanoCyc is a high-quality, reliable knowledgebase that accelerates scientists' work by enabling users to quickly find accurate information using its powerful set of search tools, to understand gene function through expert mini-reviews with citations, to acquire information quickly using its interactive visualization tools, and to inform better decision-making for fundamental and applied research.
Collapse
Affiliation(s)
| | - Ron Caspi
- SRI International, Menlo Park, CA, United States
| | | | - John R. Casey
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, United States
| | - Sophie Crevecoeur
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - David J. Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Bin Long
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | | | | | | | - Alejandro Torrado
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and Spanish National Research Council, Sevilla, Spain
| | - Jonathan P. Zehr
- Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| | | |
Collapse
|
14
|
Kolan D, Cattan-Tsaushu E, Enav H, Freiman Z, Malinsky-Rushansky N, Ninio S, Avrani S. Tradeoffs between phage resistance and nitrogen fixation drive the evolution of genes essential for cyanobacterial heterocyst functionality. THE ISME JOURNAL 2024; 18:wrad008. [PMID: 38365231 PMCID: PMC10811720 DOI: 10.1093/ismejo/wrad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 02/18/2024]
Abstract
Harmful blooms caused by diazotrophic (nitrogen-fixing) Cyanobacteria are becoming increasingly frequent and negatively impact aquatic environments worldwide. Cyanophages (viruses infecting Cyanobacteria) can potentially regulate cyanobacterial blooms, yet Cyanobacteria can rapidly acquire mutations that provide protection against phage infection. Here, we provide novel insights into cyanophage:Cyanobacteria interactions by characterizing the resistance to phages in two species of diazotrophic Cyanobacteria: Nostoc sp. and Cylindrospermopsis raciborskii. Our results demonstrate that phage resistance is associated with a fitness tradeoff by which resistant Cyanobacteria have reduced ability to fix nitrogen and/or to survive nitrogen starvation. Furthermore, we use whole-genome sequence analysis of 58 Nostoc-resistant strains to identify several mutations associated with phage resistance, including in cell surface-related genes and regulatory genes involved in the development and function of heterocysts (cells specialized in nitrogen fixation). Finally, we employ phylogenetic analyses to show that most of these resistance genes are accessory genes whose evolution is impacted by lateral gene transfer events. Together, these results further our understanding of the interplay between diazotrophic Cyanobacteria and their phages and suggest that a tradeoff between phage resistance and nitrogen fixation affects the evolution of cell surface-related genes and of genes involved in heterocyst differentiation and nitrogen fixation.
Collapse
Affiliation(s)
- Dikla Kolan
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3103301, Israel
| | - Esther Cattan-Tsaushu
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3103301, Israel
| | - Hagay Enav
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3103301, Israel
| | - Zohar Freiman
- Kinneret Limnological Laboratory (KLL) Israel Oceanographic and Limnological Research (IOLR), Migdal 1495000, Israel
| | - Nechama Malinsky-Rushansky
- Kinneret Limnological Laboratory (KLL) Israel Oceanographic and Limnological Research (IOLR), Migdal 1495000, Israel
| | - Shira Ninio
- Kinneret Limnological Laboratory (KLL) Israel Oceanographic and Limnological Research (IOLR), Migdal 1495000, Israel
| | - Sarit Avrani
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3103301, Israel
| |
Collapse
|
15
|
Yin L, Zheng Z, Li Y, Li X, Cheng D, Dong C, Liu Y, Zhao J. PatU3 plays a central role in coordinating cell division and differentiation in pattern formation of filamentous cyanobacterium Nostoc sp. PCC 7120. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2896-2909. [PMID: 37505430 DOI: 10.1007/s11427-023-2380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/31/2023] [Indexed: 07/29/2023]
Abstract
Spatial periodic signal for cell differentiation in some multicellular organisms is generated according to Turing's principle for pattern formation. How a dividing cell responds to the signal of differentiation is addressed with the filamentous cyanobacterium Nostoc sp. PCC 7120, which forms the patterned distribution of heterocysts. We show that differentiation of a dividing cell was delayed until its division was completed and only one daughter cell became heterocyst. A mutant of patU3, which encodes an inhibitor of heterocyst formation, showed no such delay and formed heterocyst pairs from the daughter cells of cell division or dumbbell-shaped heterocysts from the cells undergoing cytokinesis. The patA mutant, which forms heterocysts only at the filament ends, restored intercalary heterocysts by a single nucleotide mutation of patU3, and double mutants of patU3/patA and patU3/hetF had the phenotypes of the patU3 mutant. We provide evidence that HetF, which can degrade PatU3, is recruited to cell divisome through its C-terminal domain. A HetF mutant with its N-terminal peptidase domain but lacking the C-terminal domain could not prevent the formation of heterocyst pairs, suggesting that the divisome recruitment of HetF is needed to sequester HetF for the delay of differentiation in dividing cells. Our study demonstrates that PatU3 plays a key role in cell-division coupled control of differentiation.
Collapse
Affiliation(s)
- Lei Yin
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhenggao Zheng
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yilin Li
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiying Li
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Dan Cheng
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Chunxia Dong
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yixuan Liu
- National Teaching Center for Experimental Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Jindong Zhao
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China.
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
16
|
Valladares A, Picossi S, Corrales-Guerrero L, Herrero A. The role of SepF in cell division and diazotrophic growth in the multicellular cyanobacterium Anabaena sp. strain PCC 7120. Microbiol Res 2023; 277:127489. [PMID: 37716126 DOI: 10.1016/j.micres.2023.127489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
The cyanobacterium Anabaena forms filaments of cells that grow by intercalary cell division producing adjoined daughter cells connected by septal junction protein complexes that provide filament cohesion and intercellular communication, representing a genuine case of bacterial multicellularity. In spite of their diderm character, cyanobacterial genomes encode homologs of SepF, a protein normally found in Gram-positive bacteria. In Anabaena, SepF is an essential protein that localized to the cell division ring and the intercellular septa. Overexpression of sepF had detrimental effects on growth, provoking conspicuous alterations in cell morphology that resemble the phenotype of mutants impaired in cell division, and altered the localization of the division-ring. SepF interacted with FtsZ and with the essential FtsZ tether ZipN. Whereas SepF from unicellular bacteria generally induces the bundling of FtsZ filaments, Anabaena SepF inhibited FtsZ bundling, reducing the thickness of the toroidal aggregates formed by FtsZ alone and eventually preventing FtsZ polymerization. Thus, in Anabaena SepF appears to have an essential role in cell division by limiting the polymerization of FtsZ to allow the correct formation and localization of the Z-ring. Expression of sepF is downregulated during heterocyst differentiation, likely contributing to the inhibition of Z-ring formation in heterocysts. Finally, the localization of SepF in intercellular septa and its interaction with the septal-junction related proteins SepJ and SepI suggest a role of SepF in the formation or stability of the septal complexes that mediate cell-cell adhesion and communication, processes that are key for the multicellular behavior of Anabaena.
Collapse
Affiliation(s)
- A Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - S Picossi
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - L Corrales-Guerrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - A Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
17
|
Velázquez-Suárez C, Springstein BL, Nieves-Morión M, Helbig AO, Kieninger AK, Maldener I, Nürnberg DJ, Stucken K, Luque I, Dagan T, Herrero A. SepT, a novel protein specific to multicellular cyanobacteria, influences peptidoglycan growth and septal nanopore formation in Anabaena sp. PCC 7120. mBio 2023; 14:e0098323. [PMID: 37650636 PMCID: PMC10653889 DOI: 10.1128/mbio.00983-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Multicellular organization is a requirement for the development of complex organisms, and filamentous cyanobacteria such as Anabaena represent a paradigmatic case of bacterial multicellularity. The Anabaena filament can include hundreds of communicated cells that exchange nutrients and regulators and, depending on environmental conditions, can include different cell types specialized in distinct biological functions. Hence, the specific features of the Anabaena filament and how they are propagated during cell division represent outstanding biological issues. Here, we studied SepT, a novel coiled-coil-rich protein of Anabaena that is located in the intercellular septa and influences the formation of the septal specialized structures that allow communication between neighboring cells along the filament, a fundamental trait for the performance of Anabaena as a multicellular organism.
Collapse
Affiliation(s)
| | | | - Mercedes Nieves-Morión
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Andreas O. Helbig
- AG Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Ann-Katrin Kieninger
- Department of Microbiology/Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Iris Maldener
- Department of Microbiology/Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Dennis J. Nürnberg
- Institute of Experimental Physics and Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Karina Stucken
- Department of Food Engineering, Universidad de La Serena, La Serena, Chile
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| |
Collapse
|
18
|
Gomaa MN, Carmichael WW. The Role of Heterocysts in Cyanotoxin Production during Nitrogen Limitation. Toxins (Basel) 2023; 15:611. [PMID: 37888642 PMCID: PMC10610833 DOI: 10.3390/toxins15100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Cyanobacteria harmful algal blooms (cyanoHABs) can have impacts on human health, aquatic ecosystems, and the economy. Nutrient management is an important mitigation and even remediation strategy. In this work, the paralytic shellfish toxin (PST)-producing Aphanizomenon (Aphan.) flos-aquae (Linnaeus) Ralfs ex Bornet & Flahault (now identified as Aphan. sp.) single filament isolate NH-5 was grown in P-depleted media, N-depleted media, and complete BG-11 media. Growth and heterocyst and vegetative cells were monitored using dry weight and cell counts. Ultrasonication was used to separate heterocysts from vegetative cells. HPLC-FLD with post-column derivatization was used to determine the saxitoxin (STX) and neosaxitoxin (NEOSTX) concentration per cell. Aphan. sp. NH-5 biomass was lower in the P-depleted media than in the N-depleted media and the control, though higher heterocyst counts were detected in the N-depleted media. The heterocyst toxin concentration was significantly higher compared to the vegetative cells for the N-depleted media, control, and P-depleted media. However, no significant differences were found among all preparations with regard to the STX-to-NEOSTX ratio. We conclude that N limitation induced higher heterocyst numbers and that N fixation activity is a factor behind the increase in the STX and NEOSTX production of Aphan. sp. NH-5.
Collapse
Affiliation(s)
- Mohamed N. Gomaa
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Wayne W. Carmichael
- Department Biological Sciences (Emeritus), Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
19
|
Llamas A, Leon-Miranda E, Tejada-Jimenez M. Microalgal and Nitrogen-Fixing Bacterial Consortia: From Interaction to Biotechnological Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:2476. [PMID: 37447037 PMCID: PMC10346606 DOI: 10.3390/plants12132476] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Microalgae are used in various biotechnological processes, such as biofuel production due to their high biomass yields, agriculture as biofertilizers, production of high-value-added products, decontamination of wastewater, or as biological models for carbon sequestration. The number of these biotechnological applications is increasing, and as such, any advances that contribute to reducing costs and increasing economic profitability can have a significant impact. Nitrogen fixing organisms, often called diazotroph, also have great biotechnological potential, mainly in agriculture as an alternative to chemical fertilizers. Microbial consortia typically perform more complex tasks than monocultures and can execute functions that are challenging or even impossible for individual strains or species. Interestingly, microalgae and diazotrophic organisms are capable to embrace different types of symbiotic associations. Certain corals and lichens exhibit this symbiotic relationship in nature, which enhances their fitness. However, this relationship can also be artificially created in laboratory conditions with the objective of enhancing some of the biotechnological processes that each organism carries out independently. As a result, the utilization of microalgae and diazotrophic organisms in consortia is garnering significant interest as a potential alternative for reducing production costs and increasing yields of microalgae biomass, as well as for producing derived products and serving biotechnological purposes. This review makes an effort to examine the associations of microalgae and diazotrophic organisms, with the aim of highlighting the potential of these associations in improving various biotechnological processes.
Collapse
Affiliation(s)
- Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain; (E.L.-M.); (M.T.-J.)
| | | | | |
Collapse
|
20
|
Risser DD. Hormogonium Development and Motility in Filamentous Cyanobacteria. Appl Environ Microbiol 2023; 89:e0039223. [PMID: 37199640 PMCID: PMC10304961 DOI: 10.1128/aem.00392-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
Filamentous cyanobacteria exhibit some of the greatest developmental complexity observed in the prokaryotic domain. This includes the ability to differentiate nitrogen-fixing cells known as heterocysts, spore-like akinetes, and hormogonia, which are specialized motile filaments capable of gliding on solid surfaces. Hormogonia and motility play critical roles in several aspects of the biology of filamentous cyanobacteria, including dispersal, phototaxis, the formation of supracellular structures, and the establishment of nitrogen-fixing symbioses with plants. While heterocyst development has been investigated extensively at the molecular level, much less is known about akinete or hormogonium development and motility. This is due, in part, to the loss of developmental complexity during prolonged laboratory culture in commonly employed model filamentous cyanobacteria. In this review, recent progress in understanding the molecular level regulation of hormogonium development and motility in filamentous cyanobacteria is discussed, with a focus on experiments performed using the genetically tractable model filamentous cyanobacterium Nostoc punctiforme, which retains the developmental complexity of field isolates.
Collapse
Affiliation(s)
- Douglas D. Risser
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado, USA
| |
Collapse
|
21
|
Wang ZQ, Yang Y, Zhang JY, Zeng X, Zhang CC. Global translational control by the transcriptional repressor TrcR in the filamentous cyanobacterium Anabaena sp. PCC 7120. Commun Biol 2023; 6:643. [PMID: 37322092 PMCID: PMC10272220 DOI: 10.1038/s42003-023-05012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
Transcriptional and translational regulations are important mechanisms for cell adaptation to environmental conditions. In addition to house-keeping tRNAs, the genome of the filamentous cyanobacterium Anabaena sp. strain PCC 7120 (Anabaena) has a long tRNA operon (trn operon) consisting of 26 genes present on a megaplasmid. The trn operon is repressed under standard culture conditions, but is activated under translational stress in the presence of antibiotics targeting translation. Using the toxic amino acid analog β-N-methylamino-L-alanine (BMAA) as a tool, we isolated and characterized several BMAA-resistance mutants from Anabaena, and identified one gene of unknown function, all0854, named as trcR, encoding a transcription factor belonging to the ribbon-helix-helix (RHH) family. We provide evidence that TrcR represses the expression of the trn operon and is thus the missing link between the trn operon and translational stress response. TrcR represses the expression of several other genes involved in translational control, and is required for maintaining translational fidelity. TrcR, as well as its binding sites, are highly conserved in cyanobacteria, and its functions represent an important mechanism for the coupling of the transcriptional and translational regulations in cyanobacteria.
Collapse
Affiliation(s)
- Zi-Qian Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Yiling Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
| | - Ju-Yuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
| | - Xiaoli Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China.
- Institute AMU-WUT, Aix-Marseille Université and Wuhan University of Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
22
|
Brenes-Álvarez M, Vioque A, Muro-Pastor AM. Nitrogen-regulated antisense transcription in the adaptation to nitrogen deficiency in Nostoc sp. PCC 7120. PNAS NEXUS 2023; 2:pgad187. [PMID: 37361547 PMCID: PMC10287535 DOI: 10.1093/pnasnexus/pgad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Transcriptomic analyses using high-throughput methods have revealed abundant antisense transcription in bacteria. Antisense transcription is often due to the overlap of mRNAs with long 5' or 3' regions that extend beyond the coding sequence. In addition, antisense RNAs that do not contain any coding sequence are also observed. Nostoc sp. PCC 7120 is a filamentous cyanobacterium that, under nitrogen limitation, behaves as a multicellular organism with division of labor among two different cell types that depend on each other, the vegetative CO2-fixing cells and the nitrogen-fixing heterocysts. The differentiation of heterocysts depends on the global nitrogen regulator NtcA and requires the specific regulator HetR. To identify antisense RNAs potentially involved in heterocyst differentiation, we assembled the Nostoc transcriptome using RNA-seq analysis of cells subjected to nitrogen limitation (9 or 24 h after nitrogen removal) in combination with a genome-wide set of transcriptional start sites and a prediction of transcriptional terminators. Our analysis resulted in the definition of a transcriptional map that includes >4,000 transcripts, 65% of which contain regions in antisense orientation to other transcripts. In addition to overlapping mRNAs, we identified nitrogen-regulated noncoding antisense RNAs transcribed from NtcA- or HetR-dependent promoters. As an example of this last category, we further analyzed an antisense (as_gltA) of the gene-encoding citrate synthase and showed that transcription of as_gltA takes place specifically in heterocysts. Since the overexpression of as_gltA reduces citrate synthase activity, this antisense RNA could eventually contribute to the metabolic remodeling that occurs during the differentiation of vegetative cells into heterocysts.
Collapse
Affiliation(s)
| | - Agustín Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | | |
Collapse
|
23
|
Control of Cell Size by c-di-GMP Requires a Two-Component Signaling System in the Cyanobacterium Anabaena sp. Strain PCC 7120. Microbiol Spectr 2023; 11:e0422822. [PMID: 36625639 PMCID: PMC9927289 DOI: 10.1128/spectrum.04228-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Each bacterial species possesses a specific cell size and morphology, which constitute important and recognizable physical traits. How bacteria maintain their particular cell size and morphology remains an essential question in microbiology. Cyanobacteria are oxygen-evolving photosynthetic prokaryotes. Although monophyletic, these organisms are highly diverse in their cell morphology and cell size. How these physical traits of cyanobacteria are controlled is poorly understood. Here, we report the identification of a two-component signaling system, composed of a histidine kinase CdgK and a response regulator CdgS, involved in cell size regulation in the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Inactivation of cdgK or cdgS led to reduction of cell length and width with little effect on cell growth capacity. CdgS has a GGDEF domain responsible for the synthesis of the second messenger c-di-GMP. Based on genetic and biochemical studies, we proposed a signaling pathway initiated by CdgK, leading to the phosphorylation of CdgS, and thereby an enhanced enzymatic activity for c-di-GMP synthesis of the latter. The GGDEF domain of CdgS was essential in cell size control, and the reduction of cell size observed in various mutants could be rescued by the expression of a c-di-GMP synthetase from E. coli. These results provided evidence that a minimal threshold of c-di-GMP level was required for maintaining cell size in Anabaena. IMPORTANCE Cyanobacteria are considered the first organisms to produce oxygen on Earth, and their activities shaped the evolution of our ecosystems. Cell size is an important trait fixed early in evolution, with the diversification of micro- and macrocyanobacterial species during the Great Oxidation Event. However, the genetic basis underlying cell size control in cyanobacteria was not understood. Our studies demonstrated that the CdgK-CdgS signaling pathway participates in the control of cell size, and their absence did not affect cell growth. CdgK has multiple domains susceptible to signal input, which are necessary for cell size regulation. This observation suggests that cell size in Anabaena could respond to environmental signals. These studies paved the way for genetic dissection of cell size regulation in cyanobacteria.
Collapse
|
24
|
Liu J, Xing WY, Liu B, Zhang CC. Three-dimensional coordination of cell-division site positioning in a filamentous cyanobacterium. PNAS NEXUS 2022; 2:pgac307. [PMID: 36743469 PMCID: PMC9896137 DOI: 10.1093/pnasnexus/pgac307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
Bacterial cells mostly divide symmetrically. In the filamentous, multicellular cyanobacterium Anabaena, cell-division planes are aligned vertically relative to the long axis of every single cell. This observation suggests that both the placement and the angle of the division planes are controlled in every single cell so that the filament can grow in one single dimension along the long axis. In this study, we showed that inactivation of patU3 encoding a cell-division inhibitor led cells to divide asymmetrically in two dimensions leading to twisted filaments, indicating that PatU3 controls not only the position but also the angle of the division planes. Deletion of the conserved minC and minD genes affected cell division symmetry, but not the angle of the division planes. Remarkably, when both patU3 and minCD were inactivated, cells could divide asymmetrically over 360° angles in three dimensions across different cellular sections, producing not only cells with irregular sizes, but also branching filaments. This study demonstrated the existence of a system operating in a three-dimensional manner for the control of cell division in Anabaena. Such a regulation may have been evolved to accommodate multicellular behaviors, a hallmark in evolution.
Collapse
Affiliation(s)
| | | | - Bowen Liu
- Institut WUT-AMU, Aix-Marseille Université and Wuhan University of Technology, Wuhan, Hubei 430070, People's Republic of China
| | | |
Collapse
|
25
|
Kieninger AK, Tokarz P, Janović A, Pilhofer M, Weiss GL, Maldener I. SepN is a septal junction component required for gated cell-cell communication in the filamentous cyanobacterium Nostoc. Nat Commun 2022; 13:7486. [PMID: 36470860 PMCID: PMC9722847 DOI: 10.1038/s41467-022-34946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/11/2022] [Indexed: 12/09/2022] Open
Abstract
Multicellular organisms require controlled intercellular communication for their survival. Strains of the filamentous cyanobacterium Nostoc regulate cell-cell communication between sister cells via a conformational change in septal junctions. These multi-protein cell junctions consist of a septum spanning tube with a membrane-embedded plug at both ends, and a cap covering the plug on the cytoplasmic side. The identities of septal junction components are unknown, with exception of the protein FraD. Here, we identify and characterize a FraD-interacting protein, SepN, as the second component of septal junctions in Nostoc. We use cryo-electron tomography of cryo-focused ion beam-thinned cyanobacterial filaments to show that septal junctions in a sepN mutant lack a plug module and display an aberrant cap. The sepN mutant exhibits highly reduced cell-cell communication rates, as shown by fluorescence recovery after photobleaching experiments. Furthermore, the mutant is unable to gate molecule exchange through septal junctions and displays reduced filament survival after stress. Our data demonstrate the importance of controlling molecular diffusion between cells to ensure the survival of a multicellular organism.
Collapse
Affiliation(s)
- Ann-Katrin Kieninger
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Piotr Tokarz
- grid.5801.c0000 0001 2156 2780Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Ana Janović
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Martin Pilhofer
- grid.5801.c0000 0001 2156 2780Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Gregor L. Weiss
- grid.5801.c0000 0001 2156 2780Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Iris Maldener
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
26
|
Casanova-Ferrer P, Muñoz-García J, Ares S. Mathematical models of nitrogen-fixing cell patterns in filamentous cyanobacteria. Front Cell Dev Biol 2022; 10:959468. [PMID: 36187490 PMCID: PMC9523125 DOI: 10.3389/fcell.2022.959468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The Anabaena genus is a model organism of filamentous cyanobacteria whose vegetative cells can differentiate under nitrogen-limited conditions into a type of cell called a heterocyst. These heterocysts lose the possibility to divide and are necessary for the filament because they can fix and share environmental nitrogen. In order to distribute the nitrogen efficiently, heterocysts are arranged to form a quasi-regular pattern whose features are maintained as the filament grows. Recent efforts have allowed advances in the understanding of the interactions and genetic mechanisms underlying this dynamic pattern. Here, we present a systematic review of the existing theoretical models of nitrogen-fixing cell differentiation in filamentous cyanobacteria. These filaments constitute one of the simplest forms of multicellular organization, and this allows for several modeling scales of this emergent pattern. The system has been approached at three different levels. From bigger to smaller scale, the system has been considered as follows: at the population level, by defining a mean-field simplified system to study the ratio of heterocysts and vegetative cells; at the filament level, with a continuous simplification as a reaction-diffusion system; and at the cellular level, by studying the genetic regulation that produces the patterning for each cell. In this review, we compare these different approaches noting both the virtues and shortcomings of each one of them.
Collapse
Affiliation(s)
- Pau Casanova-Ferrer
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain
- Centro Nacional de Biotecnologia (CNB), CSIC, Madrid, Spain
| | - Javier Muñoz-García
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain
| | - Saúl Ares
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Centro Nacional de Biotecnologia (CNB), CSIC, Madrid, Spain
| |
Collapse
|
27
|
Velázquez-Suárez C, Luque I, Herrero A. The Role of MreB, MreC and MreD in the Morphology of the Diazotrophic Filament of Anabaena sp. PCC 7120. Life (Basel) 2022; 12:life12091437. [PMID: 36143472 PMCID: PMC9503725 DOI: 10.3390/life12091437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022] Open
Abstract
The cyanobacterium Anabaena sp. PCC 7120 forms filaments of communicating cells. Under conditions of nitrogen scarcity, some cells differentiate into heterocysts, allowing the oxygen-sensitive N2-reduction system to be expressed and operated in oxic environments. The key to diazotrophic growth is the exchange of molecules with nutritional and signaling functions between the two types of cells of the filament. During heterocyst differentiation, the peptidoglycan sacculus grows to allow cell enlargement, and the intercellular septa are rebuilt to narrow the contact surface with neighboring cells and to hold specific transport systems, including the septal junction complexes for intercellular molecular transfer, which traverse the periplasm between heterocysts and neighboring vegetative cells through peptidoglycan nanopores. Here we have followed the spatiotemporal pattern of peptidoglycan incorporation during heterocyst differentiation by Van-FL labeling and the localization and role of proteins MreB, MreC and MreD. We observed strong transitory incorporation of peptidoglycan in the periphery and septa of proheterocysts and a maintained focal activity in the center of mature septa. During differentiation, MreB, MreC and MreD localized throughout the cell periphery and at the cell poles. In mreB, mreC or mreD mutants, instances of strongly increased peripheral and septal peptidoglycan incorporation were detected, as were also heterocysts with aberrant polar morphology, even producing filament breakage, frequently lacking the septal protein SepJ. These results suggest a role of Mre proteins in the regulation of peptidoglycan growth and the formation of the heterocyst neck during differentiation, as well as in the maintenance of polar structures for intercellular communication in the mature heterocyst. Finally, as previously observed in filaments growing with combined nitrogen, in the vegetative cells of diazotrophic filaments, the lack of MreB, MreC or MreD led to altered localization of septal peptidoglycan-growth bands reproducing an altered localization of FtsZ and ZipN rings during cell division.
Collapse
|
28
|
A proteolytic pathway coordinates cell division and heterocyst differentiation in the cyanobacterium Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 2022; 119:e2207963119. [PMID: 36037363 PMCID: PMC9457339 DOI: 10.1073/pnas.2207963119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The filamentous, multicellular cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a prokaryotic model for the study of cell differentiation and cell-cell interactions. Upon combined-nitrogen deprivation, Anabaena forms a particular cell type, heterocyst, for aerobic nitrogen fixation. Heterocysts are semiregularly spaced among vegetative cells. Heterocyst differentiation is coupled to cell division, but the underlying mechanism remains unclear. This mechanism could be mediated by the putative protease HetF, which is a divisome component and is necessary for heterocyst differentiation. In this study, by suppressor screening, we identified PatU3, as a negative regulator acting downstream of HetF for cell division and heterocyst development. The inactivation of patU3 restored the capacity of cell division and heterocyst differentiation in the ΔhetF mutant, and overexpression of patU3 inhibited both processes in the wild-type background. We demonstrated that PatU3 was a specific substrate of the protease activity of HetF. Consequently, PatU3 accumulated in the hetF-deficient mutant, which was responsible for the resultant mutant phenotype. The cleavage site of PatU3 by HetF was mapped after the Arg117 residue, whose mutation made PatU3 resistant to HetF processing, and mimicked the effect of hetF deletion. Our results provided evidence that HetF regulated cell division and heterocyst differentiation by controlling the inhibitory effects of PatU3. This proteolytic pathway constituted a mechanism for the coordination between cell division and differentiation in a prokaryotic model used for studies on developmental biology and multicellularity.
Collapse
|