1
|
Jofre GI, Dagilis AJ, Sepúlveda VE, Anspach T, Singh A, Chowdhary A, Matute DR. Admixture in the fungal pathogen Blastomyces. Genetics 2024; 228:iyae155. [PMID: 39315610 PMCID: PMC11631411 DOI: 10.1093/genetics/iyae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024] Open
Abstract
Blastomyces is an emerging primary fungal pathogen that affects patients worldwide. The evolutionary processes that have resulted in the current diversity in the genus remain largely unexplored. We used whole genome sequences from 99 Blastomyces isolates, including two sequenced in this study using long-read technologies, to infer the phylogenetic relationships between Blastomyces species. We find that five different methods infer five different phylogenetic trees. Additionally, we find gene tree discordance along the genome with differences in the relative phylogenetic placement of several species of Blastomyces, which we hypothesize is caused by introgression. Our results suggest the urgent need to systematically collect Blastomyces samples around the world and study the evolutionary processes that govern intra- and interspecific variation in these medically important fungi.
Collapse
Affiliation(s)
- Gaston I Jofre
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrius J Dagilis
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Ecology, Evolution and Behavior, University of Connecticut, Storrs, CT 06269, USA
| | | | - Tayte Anspach
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ashutosh Singh
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110021, India
| | - Anuradha Chowdhary
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110021, India
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Rassbach J, Hilsberg N, Haensch VG, Dörner S, Gressler J, Sonnabend R, Semm C, Voigt K, Hertweck C, Gressler M. Non-canonical two-step biosynthesis of anti-oomycete indole alkaloids in Kickxellales. Fungal Biol Biotechnol 2023; 10:19. [PMID: 37670394 PMCID: PMC10478498 DOI: 10.1186/s40694-023-00166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/06/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Fungi are prolific producers of bioactive small molecules of pharmaceutical or agricultural interest. The secondary metabolism of higher fungi (Dikarya) has been well-investigated which led to > 39,000 described compounds. However, natural product researchers scarcely drew attention to early-diverging fungi (Mucoro- and Zoopagomycota) as they are considered to rarely produce secondary metabolites. Indeed, only 15 compounds have as yet been isolated from the entire phylum of the Zoopagomycota. RESULTS Here, we showcase eight species of the order Kickxellales (phylum Zoopagomycota) as potent producers of the indole-3-acetic acid (IAA)-derived compounds lindolins A and B. The compounds are produced both under laboratory conditions and in the natural soil habitat suggesting a specialized ecological function. Indeed, lindolin A is a selective agent against plant-pathogenic oomycetes such as Phytophthora sp. Lindolin biosynthesis was reconstituted in vitro and relies on the activity of two enzymes of dissimilar evolutionary origin: Whilst the IAA-CoA ligase LinA has evolved from fungal 4-coumaryl-CoA synthetases, the subsequently acting IAA-CoA:anthranilate N-indole-3-acetyltransferase LinB is a unique enzyme across all kingdoms of life. CONCLUSIONS This is the first report on bioactive secondary metabolites in the subphylum Kickxellomycotina and the first evidence for a non-clustered, two-step biosynthetic route of secondary metabolites in early-diverging fungi. Thus, the generally accepted "gene cluster hypothesis" for natural products needs to be reconsidered for early diverging fungi.
Collapse
Affiliation(s)
- Johannes Rassbach
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Nathalie Hilsberg
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Veit G Haensch
- Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany
| | - Sebastian Dörner
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Julia Gressler
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Robin Sonnabend
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Caroline Semm
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
- Jena Microbial Resource Collection (JMRC), Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany
| | - Kerstin Voigt
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
- Jena Microbial Resource Collection (JMRC), Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany
| | - Christian Hertweck
- Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Markus Gressler
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany.
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany.
| |
Collapse
|
3
|
Thawornwattana Y, Huang J, Flouri T, Mallet J, Yang Z. Inferring the Direction of Introgression Using Genomic Sequence Data. Mol Biol Evol 2023; 40:msad178. [PMID: 37552932 PMCID: PMC10439365 DOI: 10.1093/molbev/msad178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023] Open
Abstract
Genomic data are informative about the history of species divergence and interspecific gene flow, including the direction, timing, and strength of gene flow. However, gene flow in opposite directions generates similar patterns in multilocus sequence data, such as reduced sequence divergence between the hybridizing species. As a result, inference of the direction of gene flow is challenging. Here, we investigate the information about the direction of gene flow present in genomic sequence data using likelihood-based methods under the multispecies-coalescent-with-introgression model. We analyze the case of two species, and use simulation to examine cases with three or four species. We find that it is easier to infer gene flow from a small population to a large one than in the opposite direction, and easier to infer inflow (gene flow from outgroup species to an ingroup species) than outflow (gene flow from an ingroup species to an outgroup species). It is also easier to infer gene flow if there is a longer time of separate evolution between the initial divergence and subsequent introgression. When introgression is assumed to occur in the wrong direction, the time of introgression tends to be correctly estimated and the Bayesian test of gene flow is often significant, while estimates of introgression probability can be even greater than the true probability. We analyze genomic sequences from Heliconius butterflies to demonstrate that typical genomic datasets are informative about the direction of interspecific gene flow, as well as its timing and strength.
Collapse
Affiliation(s)
| | - Jun Huang
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, P.R. China
| | - Tomáš Flouri
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
4
|
van der Walt D, Steenkamp ET, Wingfield BD, Wilken PM. Evidence of Biparental Mitochondrial Inheritance from Self-Fertile Crosses between Closely Related Species of Ceratocystis. J Fungi (Basel) 2023; 9:686. [PMID: 37367622 DOI: 10.3390/jof9060686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Hybridization is recognized as a notable driver of evolution and adaptation, which closely related species may exploit in the form of incomplete reproductive barriers. Three closely related species of Ceratocystis (i.e., C. fimbriata, C. manginecans and C. eucalypticola) have previously been shown to hybridize. In such studies, naturally occurring self-sterile strains were mated with an unusual laboratory-generated sterile isolate type, which could have impacted conclusions regarding the prevalence of hybridization and inheritance of mitochondria. In the current study, we investigated whether interspecific crosses between fertile isolates of these three species are possible and, if so, how mitochondria are inherited by the progeny. For this purpose, a PCR-RFLP method and a mitochondrial DNA-specific PCR technique were custom-made. These were applied in a novel approach of typing complete ascospore drops collected from the fruiting bodies in each cross to distinguish between self-fertilizations and potential hybridization. These markers showed hybridization between C. fimbriata and C. eucalypticola and between C. fimbriata and C. manginecans, while no hybridization was detected in the crosses involving C. manginecans and C. eucalypticola. In both sets of hybrid progeny, we detected biparental inheritance of mitochondria. This study was the first to successfully produce hybrids from a cross involving self-fertile isolates of Ceratocystis and also provided the first direct evidence of biparental mitochondrial inheritance in the Ceratocystidaceae. This work lays the foundation for further research focused on investigating the role of hybridization in the speciation of Ceratocystis species and if mitochondrial conflict could have influenced the process.
Collapse
Affiliation(s)
- Daniella van der Walt
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
5
|
Kronmiller BA, Feau N, Shen D, Tabima JF, Ali SS, Armitage AD, Arredondo F, Bailey BA, Bollmann SR, Dale A, Harrison RJ, Hrywkiw K, Kasuga T, McDougal R, Nellist CF, Panda P, Tripathy S, Williams NM, Ye W, Wang Y, Hamelin RC, Grünwald NJ. Comparative Genomic Analysis of 31 Phytophthora Genomes Reveals Genome Plasticity and Horizontal Gene Transfer. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:26-46. [PMID: 36306437 DOI: 10.1094/mpmi-06-22-0133-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phytophthora species are oomycete plant pathogens that cause great economic and ecological impacts. The Phytophthora genus includes over 180 known species, infecting a wide range of plant hosts, including crops, trees, and ornamentals. We sequenced the genomes of 31 individual Phytophthora species and 24 individual transcriptomes to study genetic relationships across the genus. De novo genome assemblies revealed variation in genome sizes, numbers of predicted genes, and in repetitive element content across the Phytophthora genus. A genus-wide comparison evaluated orthologous groups of genes. Predicted effector gene counts varied across Phytophthora species by effector family, genome size, and plant host range. Predicted numbers of apoplastic effectors increased as the host range of Phytophthora species increased. Predicted numbers of cytoplasmic effectors also increased with host range but leveled off or decreased in Phytophthora species that have enormous host ranges. With extensive sequencing across the Phytophthora genus, we now have the genomic resources to evaluate horizontal gene transfer events across the oomycetes. Using a machine-learning approach to identify horizontally transferred genes with bacterial or fungal origin, we identified 44 candidates over 36 Phytophthora species genomes. Phylogenetic reconstruction indicates that the transfers of most of these 44 candidates happened in parallel to major advances in the evolution of the oomycetes and Phytophthora spp. We conclude that the 31 genomes presented here are essential for investigating genus-wide genomic associations in genus Phytophthora. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Brent A Kronmiller
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR, U.S.A
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, Canada
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Javier F Tabima
- Department of Biology, Clark University, Worcester, MA, U.S.A
| | - Shahin S Ali
- Sustainable Perennial Crops Laboratory, Northeast Area, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, MD, U.S.A
| | - Andrew D Armitage
- Natural Resources Institute, University of Greenwich, Chatham Maritime, U.K
| | - Felipe Arredondo
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR, U.S.A
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
| | - Bryan A Bailey
- Sustainable Perennial Crops Laboratory, Northeast Area, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, MD, U.S.A
| | - Stephanie R Bollmann
- Department of Integrative Biology, Oregon State University, Corvallis, OR, U.S.A
| | - Angela Dale
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, Canada
- SC-New Construction Materials, FPInnovations, Vancouver, V6T 1Z4, Canada
| | | | - Kelly Hrywkiw
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, Canada
| | - Takao Kasuga
- Crops Pathology and Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Davis, CA, U.S.A
| | - Rebecca McDougal
- Scion (Zealand Forest Research Institute), 49 Sala Street, Te Papa Tipu Innovation Park, Private Bag 3020, Rotorua, New Zealand
| | | | - Preeti Panda
- The New Zealand Institute for Plant and Food Research Ltd, 74 Gerald Street, Lincoln, 7608, New Zealand
| | | | - Nari M Williams
- Scion (Zealand Forest Research Institute), 49 Sala Street, Te Papa Tipu Innovation Park, Private Bag 3020, Rotorua, New Zealand
- Department of Pathogen Ecology and Control, Plant and Food Research, Private Bag 1401, Havelock North, New Zealand
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département des sciences du bois et de la forêt, Faculté de Foresterie et Géographie, Université Laval, Québec, Canada
| | - Niklaus J Grünwald
- Horticultural Crop Research Unit, United States Department of Agriculture, Agricultural Research Service, Corvallis, OR, U.S.A
| |
Collapse
|
6
|
Roik A, Reverter M, Pogoreutz C. A roadmap to understanding diversity and function of coral reef-associated fungi. FEMS Microbiol Rev 2022; 46:fuac028. [PMID: 35746877 PMCID: PMC9629503 DOI: 10.1093/femsre/fuac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Tropical coral reefs are hotspots of marine productivity, owing to the association of reef-building corals with endosymbiotic algae and metabolically diverse bacterial communities. However, the functional importance of fungi, well-known for their contribution to shaping terrestrial ecosystems and global nutrient cycles, remains underexplored on coral reefs. We here conceptualize how fungal functional traits may have facilitated the spread, diversification, and ecological adaptation of marine fungi on coral reefs. We propose that functions of reef-associated fungi may be diverse and go beyond their hitherto described roles of pathogens and bioeroders, including but not limited to reef-scale biogeochemical cycles and the structuring of coral-associated and environmental microbiomes via chemical mediation. Recent technological and conceptual advances will allow the elucidation of the physiological, ecological, and chemical contributions of understudied marine fungi to coral holobiont and reef ecosystem functioning and health and may help provide an outlook for reef management actions.
Collapse
Affiliation(s)
- Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Caffier V, Shiller J, Bellanger MN, Collemare J, Expert P, Gladieux P, Pascouau C, Sannier M, Le Cam B. Hybridizations Between formae speciales of Venturia inaequalis Pave the Way for a New Biocontrol Strategy to Manage Fungal Plant Pathogens. PHYTOPATHOLOGY 2022; 112:1401-1405. [PMID: 35080437 DOI: 10.1094/phyto-05-21-0222-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hybridization and adaptation to new hosts are important mechanisms of fungal disease emergence. Evaluating the risk of emergence of hybrids with enhanced virulence is then key to develop sustainable crop disease management. We evaluated this risk in Venturia inaequalis, the fungus responsible for the common and serious scab disease on Rosaceae hosts, including apple, pyracantha, and loquat. Field isolates from these three hosts and progenies obtained from five crosses between formae speciales isolates collected from pyracantha (f. sp. pyracantha) and apple (f. sp. pomi) were tested for their pathogenicity on the three hosts. We confirmed a strict host specificity between isolates from apple and pyracantha and showed that most isolates were able to cause disease on loquat. None of the 251 progeny obtained from five crosses between V. inaequalis f. sp. pyracantha and V. inaequalis f. sp. pomi could infect apple. If confirmed on more crosses, the inability of the hybrids to infect apple could lead to a novel biocontrol strategy based on a sexual hijacking of V. inaequalis f. sp. pomi by a massive introduction of V. inaequalis f. sp. pyracantha in apple orchards. This strategy, analogous to the sterile insect approach, could lead to the collapse of the population size of V. inaequalis and dramatically reduce the use of chemicals in orchards.
Collapse
Affiliation(s)
- Valérie Caffier
- Univ Angers, Institut Agro, INRAE IRHS, SFR QUASAV, F-49000 Angers, France
| | - Jason Shiller
- Univ Angers, Institut Agro, INRAE IRHS, SFR QUASAV, F-49000 Angers, France
| | | | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Pascale Expert
- Univ Angers, Institut Agro, INRAE IRHS, SFR QUASAV, F-49000 Angers, France
| | - Pierre Gladieux
- PHIM Plant Health Institute, Université Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Claire Pascouau
- Univ Angers, Institut Agro, INRAE IRHS, SFR QUASAV, F-49000 Angers, France
| | - Mélanie Sannier
- Univ Angers, Institut Agro, INRAE IRHS, SFR QUASAV, F-49000 Angers, France
| | - Bruno Le Cam
- Univ Angers, Institut Agro, INRAE IRHS, SFR QUASAV, F-49000 Angers, France
| |
Collapse
|
8
|
Interpreting phylogenetic conflict: Hybridization in the most speciose genus of lichen-forming fungi. Mol Phylogenet Evol 2022; 174:107543. [PMID: 35690378 DOI: 10.1016/j.ympev.2022.107543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/06/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
Abstract
While advances in sequencing technologies have been invaluable for understanding evolutionary relationships, increasingly large genomic data sets may result in conflicting evolutionary signals that are often caused by biological processes, including hybridization. Hybridization has been detected in a variety of organisms, influencing evolutionary processes such as generating reproductive barriers and mixing standing genetic variation. Here, we investigate the potential role of hybridization in the diversification of the most speciose genus of lichen-forming fungi, Xanthoparmelia. As Xanthoparmelia is projected to have gone through recent, rapid diversification, this genus is particularly suitable for investigating and interpreting the origins of phylogenomic conflict. Focusing on a clade of Xanthoparmelia largely restricted to the Holarctic region, we used a genome skimming approach to generate 962 single-copy gene regions representing over 2 Mbp of the mycobiont genome. From this genome-scale dataset, we inferred evolutionary relationships using both concatenation and coalescent-based species tree approaches. We also used three independent tests for hybridization. Although different species tree reconstruction methods recovered largely consistent and well-supported trees, there was widespread incongruence among individual gene trees. Despite challenges in differentiating hybridization from ILS in situations of recent rapid radiations, our genome-wide analyses detected multiple potential hybridization events in the Holarctic clade, suggesting one possible source of trait variability in this hyperdiverse genus. This study highlights the value in using a pluralistic approach for characterizing genome-scale conflict, even in groups with well-resolved phylogenies, while highlighting current challenges in detecting the specific impacts of hybridization.
Collapse
|
9
|
Cote-L’Heureux A, Maurer-Alcalá XX, Katz LA. Old genes in new places: A taxon-rich analysis of interdomain lateral gene transfer events. PLoS Genet 2022; 18:e1010239. [PMID: 35731825 PMCID: PMC9255765 DOI: 10.1371/journal.pgen.1010239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/05/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022] Open
Abstract
Vertical inheritance is foundational to Darwinian evolution, but fails to explain major innovations such as the rapid spread of antibiotic resistance among bacteria and the origin of photosynthesis in eukaryotes. While lateral gene transfer (LGT) is recognized as an evolutionary force in prokaryotes, the role of LGT in eukaryotic evolution is less clear. With the exception of the transfer of genes from organelles to the nucleus, a process termed endosymbiotic gene transfer (EGT), the extent of interdomain transfer from prokaryotes to eukaryotes is highly debated. A common critique of studies of interdomain LGT is the reliance on the topology of single-gene trees that attempt to estimate more than one billion years of evolution. We take a more conservative approach by identifying cases in which a single clade of eukaryotes is found in an otherwise prokaryotic gene tree (i.e. exclusive presence). Starting with a taxon-rich dataset of over 13,600 gene families and passing data through several rounds of curation, we identify and categorize the function of 306 interdomain LGT events into diverse eukaryotes, including 189 putative EGTs, 52 LGTs into Opisthokonta (i.e. animals, fungi and their microbial relatives), and 42 LGTs nearly exclusive to anaerobic eukaryotes. To assess differential gene loss as an explanation for exclusive presence, we compare branch lengths within each LGT tree to a set of vertically-inherited genes subsampled to mimic gene loss (i.e. with the same taxonomic sampling) and consistently find shorter relative distance between eukaryotes and prokaryotes in LGT trees, a pattern inconsistent with gene loss. Our methods provide a framework for future studies of interdomain LGT and move the field closer to an understanding of how best to model the evolutionary history of eukaryotes.
Collapse
Affiliation(s)
- Auden Cote-L’Heureux
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | | | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- Program in Organismic Biology and Evolution, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
10
|
The evolution of the GALactose utilization pathway in budding yeasts. Trends Genet 2022; 38:97-106. [PMID: 34538504 PMCID: PMC8678326 DOI: 10.1016/j.tig.2021.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 01/03/2023]
Abstract
The Leloir galactose utilization or GAL pathway of budding yeasts, including that of the baker's yeast Saccharomyces cerevisiae and the opportunistic human pathogen Candida albicans, breaks down the sugar galactose for energy and biomass production. The GAL pathway has long served as a model system for understanding how eukaryotic metabolic pathways, including their modes of regulation, evolve. More recently, the physical linkage of the structural genes GAL1, GAL7, and GAL10 in diverse budding yeast genomes has been used as a model for understanding the evolution of gene clustering. In this review, we summarize exciting recent work on three different aspects of this iconic pathway's evolution: gene cluster organization, GAL gene regulation, and the population genetics of the GAL pathway.
Collapse
|
11
|
Huang Y, Huang W, Meng Z, Braz GT, Li Y, Wang K, Wang H, Lai J, Jiang J, Dong Z, Jin W. Megabase-scale presence-absence variation with Tripsacum origin was under selection during maize domestication and adaptation. Genome Biol 2021; 22:237. [PMID: 34416918 PMCID: PMC8377971 DOI: 10.1186/s13059-021-02448-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/02/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Structural variants (SVs) significantly drive genome diversity and environmental adaptation for diverse species. Unlike the prevalent small SVs (< kilobase-scale) in higher eukaryotes, large-size SVs rarely exist in the genome, but they function as one of the key evolutionary forces for speciation and adaptation. RESULTS In this study, we discover and characterize several megabase-scale presence-absence variations (PAVs) in the maize genome. Surprisingly, we identify a 3.2 Mb PAV fragment that shows high integrity and is present as complete presence or absence in the natural diversity panel. This PAV is embedded within the nucleolus organizer region (NOR), where the suppressed recombination is found to maintain the PAV against the evolutionary variation. Interestingly, by analyzing the sequence of this PAV, we not only reveal the domestication trace from teosinte to modern maize, but also the footprints of its origin from Tripsacum, shedding light on a previously unknown contribution from Tripsacum to the speciation of Zea species. The functional consequence of the Tripsacum segment migration is also investigated, and environmental fitness conferred by the PAV may explain the whole segment as a selection target during maize domestication and improvement. CONCLUSIONS These findings provide a novel perspective that Tripsacum contributes to Zea speciation, and also instantiate a strategy for evolutionary and functional analysis of the "fossil" structure variations during genome evolution and speciation.
Collapse
Affiliation(s)
- Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Zhuang Meng
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps (MOE), Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Guilherme Tomaz Braz
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Yunfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps (MOE), Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China.
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint International Research Laboratory of Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Abstract
True morels (Morchella spp., Morchellaceae, Ascomycota) are widely regarded as a highly prized delicacy and are of great economic and scientific value. Recently, the rapid development of cultivation technology and expansion of areas for artificial morel cultivation have propelled morel research into a hot topic. Many studies have been conducted in various aspects of morel biology, but despite this, cultivation sites still frequently report failure to fruit or only low production of fruiting bodies. Key problems include the gap between cultivation practices and basic knowledge of morel biology. In this review, in an effort to highlight the mating systems, evolution, and life cycle of morels, we summarize the current state of knowledge of morel sexual reproduction, the structure and evolution of mating-type genes, the sexual process itself, and the influence of mating-type genes on the asexual stages and conidium production. Understanding of these processes is critical for improving technology for the cultivation of morels and for scaling up their commercial production. Morel species may well be good candidates as model species for improving sexual development research in ascomycetes in the future.
Collapse
|
13
|
Mayers CG, Harrington TC, Wai A, Hausner G. Recent and Ongoing Horizontal Transfer of Mitochondrial Introns Between Two Fungal Tree Pathogens. Front Microbiol 2021; 12:656609. [PMID: 34149643 PMCID: PMC8208691 DOI: 10.3389/fmicb.2021.656609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022] Open
Abstract
Two recently introduced fungal plant pathogens (Ceratocystis lukuohia and Ceratocystis huliohia) are responsible for Rapid ‘ōhi‘a Death (ROD) in Hawai‘i. Despite being sexually incompatible, the two pathogens often co-occur in diseased ‘ōhi‘a sapwood, where genetic interaction is possible. We sequenced and annotated 33 mitochondrial genomes of the two pathogens and related species, and investigated 35 total Ceratocystis mitogenomes. Ten mtDNA regions [one group I intron, seven group II introns, and two autonomous homing endonuclease (HE) genes] were heterogeneously present in C. lukuohia mitogenomes, which were otherwise identical. Molecular surveys with specific primers showed that the 10 regions had uneven geographic distribution amongst populations of C. lukuohia. Conversely, identical orthologs of each region were present in every studied isolate of C. huliohia regardless of geographical origin. Close relatives of C. lukuohia lacked or, rarely, had few and dissimilar orthologs of the 10 regions, whereas most relatives of C. huliohia had identical or nearly identical orthologs. Each region included or worked in tandem with HE genes or reverse transcriptase/maturases that could facilitate interspecific horizontal transfers from intron-minus to intron-plus alleles. These results suggest that the 10 regions originated in C. huliohia and are actively moving to populations of C. lukuohia, perhaps through transient cytoplasmic contact of hyphal tips (anastomosis) in the wound surface of ‘ōhi‘a trees. Such contact would allow for the transfer of mitochondria followed by mitochondrial fusion or cytoplasmic exchange of intron intermediaries, which suggests that further genomic interaction may also exist between the two pathogens.
Collapse
Affiliation(s)
- Chase G Mayers
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Thomas C Harrington
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
14
|
Sacristán S, Goss EM, Eves-van den Akker S. How Do Pathogens Evolve Novel Virulence Activities? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:576-586. [PMID: 33522842 DOI: 10.1094/mpmi-09-20-0258-ia] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.We consider the state of knowledge on pathogen evolution of novel virulence activities, broadly defined as anything that increases pathogen fitness with the consequence of causing disease in either the qualitative or quantitative senses, including adaptation of pathogens to host immunity and physiology, host species, genotypes, or tissues, or the environment. The evolution of novel virulence activities as an adaptive trait is based on the selection exerted by hosts on variants that have been generated de novo or arrived from elsewhere. In addition, the biotic and abiotic environment a pathogen experiences beyond the host may influence pathogen virulence activities. We consider host-pathogen evolution, host range expansion, and external factors that can mediate pathogen evolution. We then discuss the mechanisms by which pathogens generate and recombine the genetic variation that leads to novel virulence activities, including DNA point mutation, transposable element activity, gene duplication and neofunctionalization, and genetic exchange. In summary, if there is an (epi)genetic mechanism that can create variation in the genome, it will be used by pathogens to evolve virulence factors. Our knowledge of virulence evolution has been biased by pathogen evolution in response to major gene resistance, leaving other virulence activities underexplored. Understanding the key driving forces that give rise to novel virulence activities and the integration of evolutionary concepts and methods with mechanistic research on plant-microbe interactions can help inform crop protection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223-Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Erica M Goss
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, U.S.A
| | | |
Collapse
|
15
|
Sillo F, Garbelotto M, Giordano L, Gonthier P. Genic introgression from an invasive exotic fungal forest pathogen increases the establishment potential of a sibling native pathogen. NEOBIOTA 2021. [DOI: 10.3897/neobiota.65.64031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significant hybridization between the invasive North American fungal plant pathogen Heterobasidion irregulare and its Eurasian sister species H. annosum is ongoing in Italy. Whole genomes of nine natural hybrids were sequenced, assembled and compared with those of three genotypes each of the two parental species. Genetic relationships among hybrids and their level of admixture were determined. A multi-approach pipeline was used to assign introgressed genomic blocks to each of the two species. Alleles that introgressed from H. irregulare to H. annosum were associated with pathways putatively related to saprobic processes, while alleles that introgressed from the native to the invasive species were mainly linked to gene regulation. There was no overlap of allele categories introgressed in the two directions. Phenotypic experiments documented a fitness increase in H. annosum genotypes characterized by introgression of alleles from the invasive species, supporting the hypothesis that hybridization results in putatively adaptive introgression. Conversely, introgression from the native into the exotic species appeared to be driven by selection on genes favoring genome stability. Since the introgression of specific alleles from the exotic H. irregulare into the native H. annosum increased the invasiveness of the latter species, we propose that two invasions may be co-occurring: the first one by genotypes of the exotic species, and the second one by alleles belonging to the exotic species. Given that H. irregulare represents a threat to European forests, monitoring programs need to track not only exotic genotypes in native forest stands, but also exotic alleles introgressed in native genotypes.
Collapse
|
16
|
Motaung TE, Peremore C, Wingfield B, Steenkamp E. Plant-associated fungal biofilms-knowns and unknowns. FEMS Microbiol Ecol 2021; 96:5956487. [PMID: 33150944 DOI: 10.1093/femsec/fiaa224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Nearly all microbes, including fungi, grow firmly attached to surfaces as a biofilm. Yet, attention toward fungal interactions with plants and the environment is dedicated to free-floating (planktonic) cells. Fungal biofilms are generally thought to configure interactions across and among plant populations. Despite this, plant fungal biofilm research lags far behind the research on biofilms of medically important fungi. The deficit in noticing and exploring this research avenue could limit disease management and plant improvement programs. Here, we provide the current state of knowledge of fungal biofilms and the different pivotal ecological roles they impart in the context of disease, through leveraging evidence across medically important fungi, secondary metabolite production, plant beneficial functions and climate change. We also provide views on several important information gaps potentially hampering plant fungal biofilm research, and propose a way forward to address these gaps.
Collapse
Affiliation(s)
- Thabiso E Motaung
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Chizné Peremore
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Brenda Wingfield
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Emma Steenkamp
- University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
17
|
Eschenbrenner CJ, Feurtey A, Stukenbrock EH. Population Genomics of Fungal Plant Pathogens and the Analyses of Rapidly Evolving Genome Compartments. Methods Mol Biol 2021; 2090:337-355. [PMID: 31975174 DOI: 10.1007/978-1-0716-0199-0_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Genome sequencing of fungal pathogens have documented extensive variation in genome structure and composition between species and in many cases between individuals of the same species. This type of genomic variation can be adaptive for pathogens to rapidly evolve new virulence phenotypes. Analyses of genome-wide variation in fungal pathogen genomes rely on high quality assemblies and methods to detect and quantify structural variation. Population genomic studies in fungi have addressed the underlying mechanisms whereby structural variation can be rapidly generated. Transposable elements, high mutation and recombination rates as well as incorrect chromosome segregation during mitosis and meiosis contribute to extensive variation observed in many species. We here summarize key findings in the field of fungal pathogen genomics and we discuss methods to detect and characterize structural variants including an alignment-based pipeline to study variation in population genomic data.
Collapse
Affiliation(s)
- Christoph J Eschenbrenner
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alice Feurtey
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany.
- Max Planck Institute for Evolutionary Biology, Plön, Germany.
| |
Collapse
|
18
|
Hessenauer P, Feau N, Gill U, Schwessinger B, Brar GS, Hamelin RC. Evolution and Adaptation of Forest and Crop Pathogens in the Anthropocene. PHYTOPATHOLOGY 2021; 111:49-67. [PMID: 33200962 DOI: 10.1094/phyto-08-20-0358-fi] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anthropocene marks the era when human activity is making a significant impact on earth, its ecological and biogeographical systems. The domestication and intensification of agricultural and forest production systems have had a large impact on plant and tree health. Some pathogens benefitted from these human activities and have evolved and adapted in response to the expansion of crop and forest systems, resulting in global outbreaks. Global pathogen genomics data including population genomics and high-quality reference assemblies are crucial for understanding the evolution and adaptation of pathogens. Crops and forest trees have remarkably different characteristics, such as reproductive time and the level of domestication. They also have different production systems for disease management with more intensive management in crops than forest trees. By comparing and contrasting results from pathogen population genomic studies done on widely different agricultural and forest production systems, we can improve our understanding of pathogen evolution and adaptation to different selection pressures. We find that in spite of these differences, similar processes such as hybridization, host jumps, selection, specialization, and clonal expansion are shaping the pathogen populations in both crops and forest trees. We propose some solutions to reduce these impacts and lower the probability of global pathogen outbreaks so that we can envision better management strategies to sustain global food production as well as ecosystem services.
Collapse
Affiliation(s)
- Pauline Hessenauer
- Faculty of Forestry, Geography and Geomatics, Laval University, Quebec City, QC, G1V 0A6 Canada
| | - Nicolas Feau
- Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | - Upinder Gill
- College of Agriculture, Food Systems, and Natural Resources, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Acton, ACT 2601 Australia
| | - Gurcharn S Brar
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | - Richard C Hamelin
- Faculty of Forestry, Geography and Geomatics, Laval University, Quebec City, QC, G1V 0A6 Canada
- Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| |
Collapse
|
19
|
Alam B, Lǐ J, Gě Q, Khan MA, Gōng J, Mehmood S, Yuán Y, Gǒng W. Endophytic Fungi: From Symbiosis to Secondary Metabolite Communications or Vice Versa? FRONTIERS IN PLANT SCIENCE 2021; 12:791033. [PMID: 34975976 PMCID: PMC8718612 DOI: 10.3389/fpls.2021.791033] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 05/08/2023]
Abstract
Endophytic fungi (EF) are a group of fascinating host-associated fungal communities that colonize the intercellular or intracellular spaces of host tissues, providing beneficial effects to their hosts while gaining advantages. In recent decades, accumulated research on endophytic fungi has revealed their biodiversity, wide-ranging ecological distribution, and multidimensional interactions with host plants and other microbiomes in the symbiotic continuum. In this review, we highlight the role of secondary metabolites (SMs) as effectors in these multidimensional interactions, and the biosynthesis of SMs in symbiosis via complex gene expression regulation mechanisms in the symbiotic continuum and via the mimicry or alteration of phytochemical production in host plants. Alternative biological applications of SMs in modern medicine, agriculture, and industry and their major classes are also discussed. This review recapitulates an introduction to the research background, progress, and prospects of endophytic biology, and discusses problems and substantive challenges that need further study.
Collapse
Affiliation(s)
- Beena Alam
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jùnwén Lǐ
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qún Gě
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Mueen Alam Khan
- Department of Plant Breeding & Genetics, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur (IUB), Bahawalpur, Pakistan
| | - Jǔwǔ Gōng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shahid Mehmood
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yǒulù Yuán
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Wànkuí Gǒng,
| | - Wànkuí Gǒng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Yǒulù Yuán,
| |
Collapse
|
20
|
Hartmann FE, Rodríguez de la Vega RC, Gladieux P, Ma WJ, Hood ME, Giraud T. Higher Gene Flow in Sex-Related Chromosomes than in Autosomes during Fungal Divergence. Mol Biol Evol 2020; 37:668-682. [PMID: 31651949 PMCID: PMC7038665 DOI: 10.1093/molbev/msz252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nonrecombining sex chromosomes are widely found to be more differentiated than autosomes among closely related species, due to smaller effective population size and/or to a disproportionally large-X effect in reproductive isolation. Although fungal mating-type chromosomes can also display large nonrecombining regions, their levels of differentiation compared with autosomes have been little studied. Anther-smut fungi from the Microbotryum genus are castrating pathogens of Caryophyllaceae plants with largely nonrecombining mating-type chromosomes. Using whole genome sequences of 40 fungal strains, we quantified genetic differentiation among strains isolated from the geographically overlapping North American species and subspecies of Silene virginica and S. caroliniana. We inferred that gene flow likely occurred at the early stages of divergence and then completely stopped. We identified large autosomal genomic regions with chromosomal inversions, with higher genetic divergence than the rest of the genomes and highly enriched in selective sweeps, supporting a role of rearrangements in preventing gene flow in genomic regions involved in ecological divergence. Unexpectedly, the nonrecombining mating-type chromosomes showed lower divergence than autosomes due to higher gene flow, which may be promoted by adaptive introgressions of less degenerated mating-type chromosomes. The fact that both mating-type chromosomes are always heterozygous and nonrecombining may explain such patterns that oppose to those found for XY or ZW sex chromosomes. The specific features of mating-type chromosomes may also apply to the UV sex chromosomes determining sexes at the haploid stage in algae and bryophytes and may help test general hypotheses on the evolutionary specificities of sex-related chromosomes.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Ecologie Systematique Evolution, Batiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systematique Evolution, Batiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Pierre Gladieux
- UMR BGPI, Univ Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Wen-Juan Ma
- Biology Department, Science Centre, Amherst College, Amherst, MA
| | - Michael E Hood
- Biology Department, Science Centre, Amherst College, Amherst, MA
| | - Tatiana Giraud
- Ecologie Systematique Evolution, Batiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
21
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev Camb Philos Soc 2020; 95:1198-1232. [PMID: 32301582 PMCID: PMC7539958 DOI: 10.1111/brv.12605] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The question of how phenotypic and genomic complexity are inter-related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental Sciences, Universitat Pompeu Fabra (UPF)Dr. Aiguader 88, 08003BarcelonaSpain
- ICREAPg. Lluís Companys 23, 08010BarcelonaSpain
| |
Collapse
|
22
|
Lan N, Perlatti B, Kvitek DJ, Wiemann P, Harvey CJB, Frisvad J, An Z, Bills GF. Acrophiarin (antibiotic S31794/F-1) from Penicillium arenicola shares biosynthetic features with both Aspergillus- and Leotiomycete-type echinocandins. Environ Microbiol 2020; 22:2292-2311. [PMID: 32239586 DOI: 10.1111/1462-2920.15004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/28/2020] [Indexed: 11/30/2022]
Abstract
The antifungal echinocandin lipopeptide, acrophiarin, was circumscribed in a patent in 1979. We confirmed that the producing strain NRRL 8095 is Penicillium arenicola and other strains of P. arenicola produced acrophiarin and acrophiarin analogues. Genome sequencing of NRRL 8095 identified the acrophiarin gene cluster. Penicillium arenicola and echinocandin-producing Aspergillus species belong to the family Aspergillaceae of the Eurotiomycetes, but several features of acrophiarin and its gene cluster suggest a closer relationship with echinocandins from Leotiomycete fungi. These features include hydroxy-glutamine in the peptide core instead of a serine or threonine residue, the inclusion of a non-heme iron, α-ketoglutarate-dependent oxygenase for hydroxylation of the C3 of the glutamine, and a thioesterase. In addition, P. arenicola bears similarity to Leotiomycete echinocandin-producing species because it exhibits self-resistance to exogenous echinocandins. Phylogenetic analysis of the genes of the echinocandin biosynthetic family indicated that most of the predicted proteins of acrophiarin gene cluster exhibited higher similarity to the predicted proteins of the pneumocandin gene cluster of the Leotiomycete Glarea lozoyensis than to those of the echinocandin B gene cluster from A. pachycristatus. The fellutamide gene cluster and related gene clusters are recognized as relatives of the echinocandins. Inclusion of the acrophiarin gene cluster into a comprehensive phylogenetic analysis of echinocandin gene clusters indicated the divergent evolutionary lineages of echinocandin gene clusters are descendants from a common ancestral progenitor. The minimal 10-gene cluster may have undergone multiple gene acquisitions or losses and possibly horizontal gene transfer after the ancestral separation of the two lineages.
Collapse
Affiliation(s)
- Nan Lan
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Bruno Perlatti
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | | | | | | | - Jens Frisvad
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Zhiqiang An
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Gerald F Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| |
Collapse
|
23
|
Hartmann FE, Snirc A, Cornille A, Godé C, Touzet P, Van Rossum F, Fournier E, Le Prieur S, Shykoff J, Giraud T. Congruent population genetic structures and divergence histories in anther‐smut fungi and their host plants
Silene italica
and the
Silene nutans
species complex. Mol Ecol 2020; 29:1154-1172. [DOI: 10.1111/mec.15387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Fanny E. Hartmann
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Alodie Snirc
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Amandine Cornille
- Genetique Quantitative et Evolution–Le Moulon AgroParisTech CNRS INRAE Universite Paris‐Saclay Gif‐sur‐Yvette France
| | - Cécile Godé
- UMR 8198 ‐ Evo‐Eco‐Paleo CNRS Univ. Lille Lille France
| | - Pascal Touzet
- UMR 8198 ‐ Evo‐Eco‐Paleo CNRS Univ. Lille Lille France
| | - Fabienne Van Rossum
- Meise Botanic Garden Meise Belgium
- Fédération Wallonie–Bruxelles Brussels Belgium
| | | | - Stéphanie Le Prieur
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Jacqui Shykoff
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| | - Tatiana Giraud
- Ecologie Systematique Evolution Batiment 360 AgroParisTech CNRS Universite Paris‐Saclay Orsay France
| |
Collapse
|
24
|
Roach MJ, Borneman AR. New genome assemblies reveal patterns of domestication and adaptation across Brettanomyces (Dekkera) species. BMC Genomics 2020; 21:194. [PMID: 32122298 PMCID: PMC7052964 DOI: 10.1186/s12864-020-6595-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/19/2020] [Indexed: 01/05/2023] Open
Abstract
Background Yeasts of the genus Brettanomyces are of significant interest, both for their capacity to spoil, as well as their potential to positively contribute to different industrial fermentations. However, considerable variance exists in the depth of research and knowledgebase of the five currently known species of Brettanomyces. For instance, Brettanomyces bruxellensis has been heavily studied and many resources are available for this species, whereas Brettanomyces nanus is rarely studied and lacks a publicly available genome assembly altogether. The purpose of this study is to fill this knowledge gap and explore the genomic adaptations that have shaped the evolution of this genus. Results Strains for each of the five widely accepted species of Brettanomyces (Brettanomyces anomalus, B. bruxellensis, Brettanomyces custersianus, Brettanomyces naardenensis, and B. nanus) were sequenced using a combination of long- and short-read sequencing technologies. Highly contiguous assemblies were produced for each species. Structural differences between the species’ genomes were observed with gene expansions in fermentation-relevant genes (particularly in B. bruxellensis and B. nanus) identified. Numerous horizontal gene transfer (HGT) events in all Brettanomyces species’, including an HGT event that is probably responsible for allowing B. bruxellensis and B. anomalus to utilize sucrose were also observed. Conclusions Genomic adaptations and some evidence of domestication that have taken place in Brettanomyces are outlined. These new genome assemblies form a valuable resource for future research in Brettanomyces.
Collapse
Affiliation(s)
- Michael J Roach
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, South Australia, 5046, Australia
| | - Anthony R Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, South Australia, 5046, Australia.
| |
Collapse
|
25
|
Morard M, Benavent-Gil Y, Ortiz-Tovar G, Pérez-Través L, Querol A, Toft C, Barrio E. Genome structure reveals the diversity of mating mechanisms in Saccharomyces cerevisiae x Saccharomyces kudriavzevii hybrids, and the genomic instability that promotes phenotypic diversity. Microb Genom 2020; 6:e000333. [PMID: 32065577 PMCID: PMC7200066 DOI: 10.1099/mgen.0.000333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/15/2020] [Indexed: 01/03/2023] Open
Abstract
Interspecific hybridization has played an important role in the evolution of eukaryotic organisms by favouring genetic interchange between divergent lineages to generate new phenotypic diversity involved in the adaptation to new environments. This way, hybridization between Saccharomyces species, involving the fusion between their metabolic capabilities, is a recurrent adaptive strategy in industrial environments. In the present study, whole-genome sequences of natural hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii were obtained to unveil the mechanisms involved in the origin and evolution of hybrids, as well as the ecological and geographic contexts in which spontaneous hybridization and hybrid persistence take place. Although Saccharomyces species can mate using different mechanisms, we concluded that rare-mating is the most commonly used, but other mechanisms were also observed in specific hybrids. The preponderance of rare-mating was confirmed by performing artificial hybridization experiments. The mechanism used to mate determines the genomic structure of the hybrid and its final evolutionary outcome. The evolution and adaptability of the hybrids are triggered by genomic instability, resulting in a wide diversity of genomic rearrangements. Some of these rearrangements could be adaptive under the stressful conditions of the industrial environment.
Collapse
Affiliation(s)
- Miguel Morard
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Yaiza Benavent-Gil
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Guadalupe Ortiz-Tovar
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
- Present address: Centro de Estudios Vitivinícolas de Baja California, México, CETYS Universidad, Ensenada, Baja California, Mexico
| | - Laura Pérez-Través
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Christina Toft
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
- Present address: Institute for Integrative and Systems Biology, Universitat de València and CSIC, Paterna, Valencia, Spain
| | - Eladio Barrio
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| |
Collapse
|
26
|
Keuler R, Garretson A, Saunders T, Erickson RJ, St Andre N, Grewe F, Smith H, Lumbsch HT, Huang JP, St Clair LL, Leavitt SD. Genome-scale data reveal the role of hybridization in lichen-forming fungi. Sci Rep 2020; 10:1497. [PMID: 32001749 PMCID: PMC6992703 DOI: 10.1038/s41598-020-58279-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
Advancements in molecular genetics have revealed that hybridization may be common among plants, animals, and fungi, playing a role in evolutionary dynamics and speciation. While hybridization has been well-documented in pathogenic fungi, the effects of these processes on speciation in fungal lineages with different life histories and ecological niches are largely unexplored. Here we investigated the potential influence of hybridization on the emergence of morphologically and reproductively distinct asexual lichens. We focused on vagrant forms (growing obligately unattached to substrates) within a clade of rock-dwelling, sexually reproducing species in the Rhizoplaca melanophthalma (Lecanoraceae, Ascomycota) species complex. We used phylogenomic data from both mitochondrial and nuclear genomes to infer evolutionary relationships and potential patterns of introgression. We observed multiple instances of discordance between the mitochondrial and nuclear trees, including the clade comprising the asexual vagrant species R. arbuscula, R. haydenii, R. idahoensis, and a closely related rock-dwelling lineage. Despite well-supported phylogenies, we recovered strong evidence of a reticulated evolutionary history using a network approach that incorporates both incomplete lineage sorting and hybridization. These data suggest that the rock-dwelling western North American subalpine endemic R. shushanii is potentially the result of a hybrid speciation event, and introgression may have also played a role in other taxa, including vagrant species R. arbuscula, R. haydenii and R. idahoensis. We discuss the potential roles of hybridization in terms of generating asexuality and novel morphological traits in lichens. Furthermore, our results highlight the need for additional study of reticulate phylogenies when investigating species boundaries and evolutionary history, even in cases with well-supported topologies inferred from genome-scale data.
Collapse
Affiliation(s)
- Rachel Keuler
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - Alexis Garretson
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - Theresa Saunders
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - Robert J Erickson
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - Nathan St Andre
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - Felix Grewe
- Grainger Bioinformatics Center, Science & Education, The Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL, 60605, USA
| | - Hayden Smith
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - H Thorsten Lumbsch
- Grainger Bioinformatics Center, Science & Education, The Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL, 60605, USA
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, 128 Academia Rd, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Larry L St Clair
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
- M. L. Bean Life Science Museum, Brigham Young University, 1115 MLBM, Provo, UT, 84602, USA
| | - Steven D Leavitt
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA.
- M. L. Bean Life Science Museum, Brigham Young University, 1115 MLBM, Provo, UT, 84602, USA.
| |
Collapse
|
27
|
Hamelin RC, Roe AD. Genomic biosurveillance of forest invasive alien enemies: A story written in code. Evol Appl 2020; 13:95-115. [PMID: 31892946 PMCID: PMC6935587 DOI: 10.1111/eva.12853] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/30/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
The world's forests face unprecedented threats from invasive insects and pathogens that can cause large irreversible damage to the ecosystems. This threatens the world's capacity to provide long-term fiber supply and ecosystem services that range from carbon storage, nutrient cycling, and water and air purification, to soil preservation and maintenance of wildlife habitat. Reducing the threat of forest invasive alien species requires vigilant biosurveillance, the process of gathering, integrating, interpreting, and communicating essential information about pest and pathogen threats to achieve early detection and warning and to enable better decision-making. This process is challenging due to the diversity of invasive pests and pathogens that need to be identified, the diverse pathways of introduction, and the difficulty in assessing the risk of establishment. Genomics can provide powerful new solutions to biosurveillance. The process of invasion is a story written in four chapters: transport, introduction, establishment, and spread. The series of processes that lead to a successful invasion can leave behind a DNA signature that tells the story of an invasion. This signature can help us understand the dynamic, multistep process of invasion and inform management of current and future introductions. This review describes current and future application of genomic tools and pipelines that will provide accurate identification of pests and pathogens, assign outbreak or survey samples to putative sources to identify pathways of spread, and assess risk based on traits that impact the outbreak outcome.
Collapse
Affiliation(s)
- Richard C. Hamelin
- Department of Forest and Conservation SciencesThe University of British ColumbiaVancouverBCCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Département des sciences du bois et de la forêt, Faculté de Foresterie et GéographieUniversité LavalQuébecQCCanada
| | - Amanda D. Roe
- Great Lakes Forestry CenterNatural Resources CanadaSault Ste. MarieONCanada
| |
Collapse
|
28
|
Feurtey A, Stevens DM, Stephan W, Stukenbrock EH. Interspecific Gene Exchange Introduces High Genetic Variability in Crop Pathogen. Genome Biol Evol 2019; 11:3095-3105. [PMID: 31603209 PMCID: PMC6836716 DOI: 10.1093/gbe/evz224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2019] [Indexed: 12/27/2022] Open
Abstract
Genome analyses have revealed a profound role of hybridization and introgression in the evolution of many eukaryote lineages, including fungi. The impact of recurrent introgression on fungal evolution however remains elusive. Here, we analyzed signatures of introgression along the genome of the fungal wheat pathogen Zymoseptoria tritici. We applied a comparative population genomics approach, including genome data from five Zymoseptoria species, to characterize the distribution and composition of introgressed regions representing segments with an exceptional haplotype pattern. These regions are found throughout the genome, comprising 5% of the total genome and overlapping with > 1,000 predicted genes. We performed window-based phylogenetic analyses along the genome to distinguish regions which have a monophyletic or nonmonophyletic origin with Z. tritici sequences. A majority of nonmonophyletic windows overlap with the highly variable regions suggesting that these originate from introgression. We verified that incongruent gene genealogies do not result from incomplete lineage sorting by comparing the observed and expected length distribution of haplotype blocks resulting from incomplete lineage sorting. Although protein-coding genes are not enriched in these regions, we identify 18 that encode putative virulence determinants. Moreover, we find an enrichment of transposable elements in these regions implying that hybridization may contribute to the horizontal spread of transposable elements. We detected a similar pattern in the closely related species Zymoseptoria ardabiliae, suggesting that hybridization is widespread among these closely related grass pathogens. Overall, our results demonstrate a significant impact of recurrent hybridization on overall genome evolution of this important wheat pathogen.
Collapse
Affiliation(s)
- Alice Feurtey
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Botanical Institute, Christian-Albrechts University of Kiel, Germany
| | - Danielle M Stevens
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Botanical Institute, Christian-Albrechts University of Kiel, Germany
- Department of Plant Pathology, University of California, Davis
| | - Wolfgang Stephan
- Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Eva H Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Botanical Institute, Christian-Albrechts University of Kiel, Germany
| |
Collapse
|
29
|
Drenth A, McTaggart AR, Wingfield BD. Fungal clones win the battle, but recombination wins the war. IMA Fungus 2019; 10:18. [PMID: 32647622 PMCID: PMC7325676 DOI: 10.1186/s43008-019-0020-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
Clonal reproduction is common in fungi and fungal-like organisms during epidemics and invasion events. The success of clonal fungi shaped systems for their classification and some pathogens are tacitly treated as asexual. We argue that genetic recombination driven by sexual reproduction must be a starting hypothesis when dealing with fungi for two reasons: (1) Clones eventually crash because they lack adaptability; and (2) fungi find a way to exchange genetic material through recombination, whether sexual, parasexual, or hybridisation. Successful clones may prevail over space and time, but they are the product of recombination and the next successful clone will inevitably appear. Fungal pathogen populations are dynamic rather than static, and they need genetic recombination to adapt to a changing environment.
Collapse
Affiliation(s)
- André Drenth
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4102 Australia
| | - Alistair R McTaggart
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4102 Australia.,Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, Gauteng South Africa
| | - Brenda D Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, Gauteng South Africa
| |
Collapse
|
30
|
Hartmann FE, Rodríguez de la Vega RC, Carpentier F, Gladieux P, Cornille A, Hood ME, Giraud T. Understanding Adaptation, Coevolution, Host Specialization, and Mating System in Castrating Anther-Smut Fungi by Combining Population and Comparative Genomics. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:431-457. [PMID: 31337277 DOI: 10.1146/annurev-phyto-082718-095947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Anther-smut fungi provide a powerful system to study host-pathogen specialization and coevolution, with hundreds of Microbotryum species specialized on diverse Caryophyllaceae plants, castrating their hosts through manipulation of the hosts' reproductive organs to facilitate disease transmission. Microbotryum fungi have exceptional genomic characteristics, including dimorphic mating-type chromosomes, that make this genus anexcellent model for studying the evolution of mating systems and their influence on population genetics structure and adaptive potential. Important insights into adaptation, coevolution, host specialization, and mating system evolution have been gained using anther-smut fungi, with new insights made possible by the recent advent of genomic approaches. We illustrate with Microbotryum case studies how using a combination of comparative genomics, population genomics, and transcriptomics approaches enables the integration of different evolutionary perspectives across different timescales. We also highlight current challenges and suggest future studies that will contribute to advancing our understanding of the mechanisms underlying adaptive processes in populations of fungal pathogens.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Ecologie Systématique Evolution, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France;
| | | | - Fantin Carpentier
- Ecologie Systématique Evolution, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France;
| | - Pierre Gladieux
- UMR BGPI, Univ. Montpellier, INRA, CIRAD, Montpellier SupAgro, 34398 Montpellier, France
| | - Amandine Cornille
- Génétique Quantitative et Evolution-Le Moulon, INRA; Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Michael E Hood
- Biology Department, Amherst College, Amherst, Massachusetts 01002-5000, USA
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France;
| |
Collapse
|