1
|
Mick GJ, McCormick KL. The role of GABA in type 1 diabetes. Front Endocrinol (Lausanne) 2024; 15:1453396. [PMID: 39619323 PMCID: PMC11604429 DOI: 10.3389/fendo.2024.1453396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
Gamma aminobutyric acid (GABA) is synthesized from glutamate by glutamic decarboxylase (GAD). The entero-pancreatic biology of GABA, which is produced by pancreatic islets, GAD-expressing microbiota, enteric immune cells, or ingested through diet, supports an essential physiologic role of GABA in the health and disease. Outside the central nervous system (CNS), GABA is uniquely concentrated in pancreatic β-cells. They express GAD65, which is a type 1 diabetes (T1D) autoantigen. Glutamate constitutes 10% of the amino acids in dietary protein and is preeminently concentrated in human milk. GABA is enriched in many foods, such as tomato and fermented cheese, and is an over-the-counter supplement. Selected microbiota in the midgut have the enzymatic capacity to produce GABA. Intestinal microbiota interact with gut-associated lymphoid tissue to maintain host defenses and immune tolerance, which are implicated in autoimmune disease. Although GABA is a widely known inhibitory neurotransmitter, oral GABA does not cross the blood brain barrier. Three diabetes-related therapeutic actions are ascribed to GABA, namely, increasing pancreatic β-cell content, attenuating excess glucagon and tamping down T-cell immune destruction. These salutary actions have been observed in numerous rodent diabetes models that usually employed high or near-continuous GABA doses. Clinical studies, to date, have identified positive effects of oral GABA on peripheral blood mononuclear cell cytokine release and plasma glucagon. Going forward, it is reassuring that oral GABA therapy has been well-tolerated and devoid of serious adverse effects.
Collapse
Affiliation(s)
- Gail J. Mick
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
2
|
Chan CH, Chang CC, Peng YC. The Clinical Significance of Pancreatic Steatosis in Pancreatic Cancer: A Hospital-Based Study. Diagnostics (Basel) 2024; 14:2128. [PMID: 39410531 PMCID: PMC11475449 DOI: 10.3390/diagnostics14192128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Pancreatic cancer remains one of the deadliest malignancies worldwide with a pressing need for early detection and intervention strategies. Emerging evidence has suggested a potential link between pancreas steatosis, characterized by excessive pancreatic fat accumulation, and an increased risk of pancreatic cancer development. This retrospective imaging study aims to elucidate the association between pancreatic steatosis and the subsequent development of pancreatic cancer. In the study, we aimed to determine the characteristics of pancreatic cancer with pancreatic steatosis. Methods: During the period of January 2022 to December 2022, we conducted a retrospective study, collecting 101 newly diagnosed pancreas cancer cases from the available image datasets. A comprehensive database of retrospective abdominal imaging studies, comprising computed tomography (CT) and magnetic resonance imaging (MRI), was established from a diverse patient population and subsequently analyzed. Inclusion criteria encompassed patients having available baseline imaging data, allowing for the assessment of pancreatic fat content. Pancreatic fat content was quantified using validated radiological techniques, while demographic, clinical, and histopathological data were all collected. The clinical data and patient characteristics were collected from medical records and analyzed. Results: Preliminary analysis revealed a significant correlation between elevated pancreatic fat content and an increased incidence of subsequent pancreatic cancer. Moreover, subgroup analysis based on age, gender, and comorbidities provided valuable insight into potential risk factors associated with this progression. Additionally, the study identified novel radiological markers that may serve as early indicators of pancreatic cancer development in individuals with pancreatic steatosis. Conclusions: In the imaging study, approximately 30% (30/101) of pancreatic cancer patients presented with pancreatic steatosis. Chronic pancreatitis emerged as the primary factor contributing to pancreatic steatosis in these patients. Importantly, pancreatic steatosis did not significantly impact the prognosis of pancreatic cancer. Follow-up data revealed no significant differences in survival duration between patients with or without pancreatic steatosis. Additionally, no association was found between pancreatic steatosis and hepatic steatosis.
Collapse
Affiliation(s)
- Chia-Hao Chan
- Department of Radiology, Taipei Veterans General Hospital Taitung Branch, Taitung 950410, Taiwan;
- Department of Radiology, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Chia-Chen Chang
- Department of Medical Imaging, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan;
| | - Yen-Chun Peng
- Division of Gastroenterology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
3
|
Yazici C, Priyadarshini M, Boulay B, Dai Y, Layden BT. Alterations in microbiome associated with acute pancreatitis. Curr Opin Gastroenterol 2024; 40:413-421. [PMID: 38900442 PMCID: PMC11305980 DOI: 10.1097/mog.0000000000001046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
PURPOSE OF REVIEW This review evaluates the current knowledge of gut microbiome alterations in acute pancreatitis, including those that can increase acute pancreatitis risk or worsen disease severity, and the mechanisms of gut microbiome driven injury in acute pancreatitis. RECENT FINDINGS Recent observational studies in humans showed the association of gut microbiome changes (decreased gut microbiome diversity, alterations in relative abundances of certain species, and association of unique species with functional pathways) with acute pancreatitis risk and severity. Furthermore, in-vivo studies highlighted the role of gut microbiome in the development and severity of acute pancreatitis using FMT models. The gut barrier integrity, immune cell homeostasis, and microbial metabolites appear to play key roles in acute pancreatitis risk and severity. SUMMARY Large human cohort studies that assess gut microbiome profile, its metabolites and impact on acute pancreatitis risk and severity will be crucial for development of innovative prediction, prevention and treatment strategies.
Collapse
Affiliation(s)
- Cemal Yazici
- Division of Gastroenterology and Hepatology, University of Illinois Chicago, Chicago, IL, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL USA
| | - Medha Priyadarshini
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois Chicago, Chicago, IL, USA
| | - Brian Boulay
- Division of Gastroenterology and Hepatology, University of Illinois Chicago, Chicago, IL, USA
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Brian T. Layden
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL USA
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Gál E, Parvaneh S, Miklós V, Hegyi P, Kemény L, Veréb Z, Venglovecz V. Investigating the influence of taurochenodeoxycholic acid (TCDCA) on pancreatic cancer cell behavior: An RNA sequencing approach. J Biotechnol 2024; 391:20-32. [PMID: 38815810 DOI: 10.1016/j.jbiotec.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Pancreatic cancer (PC) poses a substantial global health challenge, ranking as the fourth leading cause of cancer-related deaths due to its high mortality rate. Late-stage diagnoses are common due to the absence of specific symptoms. Pancreatic ductal adenocarcinoma (PDAC) accounts for the majority of PC cases. Recent research has suggested a potential link between elevated serum levels of bile acids (BAs) and tumorigenesis of PDAC. This study aims to understand how taurochenodeoxycholic acid (TCDCA), a secondary BA, influences PDAC using RNA sequencing techniques on the Capan-1 cell line. We identified 2,950 differentially expressed genes (DEGs) following TCDCA treatment, with 1,597 upregulated and 1,353 downregulated genes. These DEGs were associated with critical PDAC pathways, including coagulation, angiogenesis, cell migration, and signaling regulation. Furthermore, we reviewed relevant literature highlighting genes like DKK-1, KRT80, UPLA, and SerpinB2, known for their roles in PDAC tumorigenesis and metastasis. Our study sheds light on the complex relationship between BAs and PDAC, offering insights into potential diagnostic markers and therapeutic targets. Further research is needed to unravel these findings' precise mechanisms and clinical implications, potentially improving PDAC diagnosis and treatment.
Collapse
Affiliation(s)
- Eleonóra Gál
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Shahram Parvaneh
- Regenerative Medicine and Cellular Pharmacology Research Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary; Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Vanda Miklós
- University Biobank, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Translational Pancreatology Research Group, Interdisciplinary Center of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary; Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Pancreatic Disorders, Semmelweis University, Budapest, Hungary
| | - Lajos Kemény
- Regenerative Medicine and Cellular Pharmacology Research Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary; Interdisciplinary Research Development and Innovation, Center of Excellence, University of Szeged, Szeged, Hungary; HCEMM-USZ Skin Research Group, HCEMM, Szeged, Hungary
| | - Zoltán Veréb
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary.
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Translational Pancreatology Research Group, Interdisciplinary Center of Excellence for Research Development and Innovation, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Guo Y, Cao F, Li F. Impacts of pancreatic exocrine insufficiency on gut microbiota. J Zhejiang Univ Sci B 2024; 25:271-279. [PMID: 38584090 PMCID: PMC11009442 DOI: 10.1631/jzus.b2300070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/29/2023] [Indexed: 04/09/2024]
Abstract
Pancreatic exocrine insufficiency (PEI) can be induced by various kinds of diseases, including chronic pancreatitis, acute pancreatitis, and post-pancreatectomy. The main pathogenetic mechanism of PEI involves the decline of trypsin synthesis, disorder of pancreatic fluid flow, and imbalance of secretion feedback. Animal studies have shown that PEI could induce gut bacterial overgrowth and dysbiosis, with the abundance of Lactobacillus and Bifidobacterium increasing the most, which could be partially reversed by pancreatic enzyme replacement therapy. Clinical studies have also confirmed the association between PEI and the dysbiosis of gut microbiota. Pancreatic exocrine secretions and changes in duodenal pH as well as bile salt malabsorption brought about by PEI may affect and shape the abundance and composition of gut microbiota. In turn, the gut microbiota may impact the pancreatic exocrine acinus through potential bidirectional crosstalk. Going forward, more and higher-quality studies are needed that focus on the mechanism underlying the impact of PEI on the gut microbiota.
Collapse
Affiliation(s)
- Yulin Guo
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- Acute Pancreatitis Clinical Center of Capital Medical University, Beijing 100053, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- Acute Pancreatitis Clinical Center of Capital Medical University, Beijing 100053, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
- Acute Pancreatitis Clinical Center of Capital Medical University, Beijing 100053, China.
| |
Collapse
|
6
|
Lupu VV, Bratu RM, Trandafir LM, Bozomitu L, Paduraru G, Gimiga N, Ghiga G, Forna L, Ioniuc I, Petrariu FD, Puha B, Lupu A. Exploring the Microbial Landscape: Gut Dysbiosis and Therapeutic Strategies in Pancreatitis-A Narrative Review. Biomedicines 2024; 12:645. [PMID: 38540258 PMCID: PMC10967871 DOI: 10.3390/biomedicines12030645] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 01/03/2025] Open
Abstract
The gut microbiota is emerging as an important contributor to the homeostasis of the human body through its involvement in nutrition and metabolism, protection against pathogens, and the development and modulation of the immune system. It has therefore become an important research topic in recent decades. Although the association between intestinal dysbiosis and numerous digestive pathologies has been thoroughly researched, its involvement in pancreatic diseases constitutes a novelty in the specialized literature. In recent years, growing evidence has pointed to the critical involvement of the pancreas in regulating the intestinal microbiota, as well as the impact of the intestinal microbiota on pancreatic physiology, which implies the existence of a bidirectional connection known as the "gut-pancreas axis". It is theorized that any change at either of these levels triggers a response in the other component, hence leading to the evolution of pancreatitis. However, there are not enough data to determine whether gut dysbiosis is an underlying cause or a result of pancreatitis; therefore, more research is needed in this area. The purpose of this narrative review is to highlight the role of gut dysbiosis in the pathogenesis of acute and chronic pancreatitis, its evolution, and the prospect of employing the microbiota as a therapeutic intervention for pancreatitis.
Collapse
Affiliation(s)
| | - Roxana Mihaela Bratu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (V.V.L.); (L.M.T.); (L.B.); (N.G.); (G.G.); (L.F.); (I.I.); (F.D.P.); (B.P.); (A.L.)
| | | | | | - Gabriela Paduraru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (V.V.L.); (L.M.T.); (L.B.); (N.G.); (G.G.); (L.F.); (I.I.); (F.D.P.); (B.P.); (A.L.)
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Yang X, Xue C, Chen K, Gao D, Wang H, Tang C. Characteristics of elderly diabetes patients: focus on clinical manifestation, pathogenic mechanism, and the role of traditional Chinese medicine. Front Pharmacol 2024; 14:1339744. [PMID: 38273819 PMCID: PMC10808572 DOI: 10.3389/fphar.2023.1339744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Diabetes mellitus has become a major public health issue globally, putting an enormous burden on global health systems and people. Among all diseased groups, a considerable part of patients are elderly, while their clinical features, pathogenic processes, and medication regimens are different from patients of other ages. Despite the availability of multiple therapies and techniques, there are still numerous elderly diabetes patients suffering from poor blood glucose control, severe complications, and drug adverse effects, which negatively affect the quality of life in their golden years. Traditional Chinese Medicine (TCM) has been widely used in the treatment of diabetes for several decades, and its relevant clinical practice has confirmed that it has a satisfactory effect on alleviating clinical symptoms and mitigating the progression of complications. Chinese herbal medicine and its active components were used widely with obvious clinical advantages by multiple targets and signaling pathways. However, due to the particular features of elderly diabetes, few studies were conducted to explore Traditional Chinese Medicine intervention on elderly diabetic patients. This study reviews the research on clinical features, pathogenic processes, treatment principles, and TCM treatments, hoping to provide fresh perspectives on the prevention and management strategies for elderly diabetes.
Collapse
Affiliation(s)
- Xiaofei Yang
- Beijing University of Chinese Medicine, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chongxiang Xue
- Beijing University of Chinese Medicine, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keyu Chen
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongyang Gao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Tang
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Mohanan A, Harilal SL, Plakkot B, Pottakkat B, Kanakkaparambil R. Nutritional Epigenetics and Gut Microbiome. EPIGENETICS AND HUMAN HEALTH 2024:121-159. [DOI: 10.1007/978-3-031-54215-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Zhu Z, Yi B, Tang Z, Chen X, Li M, Xu T, Zhao Z, Tang C. Lactobacillus casei combined with Lactobacillus reuteri alleviate pancreatic cancer by inhibiting TLR4 to promote macrophage M1 polarization and regulate gut microbial homeostasis. BMC Cancer 2023; 23:1044. [PMID: 37904102 PMCID: PMC10614400 DOI: 10.1186/s12885-023-11557-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/22/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Pancreatic cancer is a highly lethal disease with no effective treatments. Lactobacillus casei (L. casei) and Lactobacillus reuteri (L. reuteri) exhibited therapeutic effects on several cancers, but their roles in pancreatic cancer are unknown. This study aims to explore how L. casei & L. reuteri influence pancreatic cancer and the underlying mechanisms. METHODS Pancreatic cancer cells were treated with L. casei & L. reuteri and co-cultured with macrophages in a transwell system in vitro. Pancreatic cancer xenograft model was established and L. casei & L. reuteri was used to treat mice in vivo. MTT, CCK-8 assay or immunohistochemical staining were used to determine the proliferation of pancreatic cancer cells or tumor tissues. Transwell assay was applied to test the migration and invasion of pancreatic cells. RT-qPCR was utilized to assess TLR4 and MyD88 expressions in pancreatic cells or tumor tissues. WB, immunofluorescence staining, or flow cytometry was used to evaluate the M1/M2 polarization of macrophages. Besides, the composition of gut microbiota of tumor-bearing mice was determined by 16 S rRNA sequencing, and ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) untargeted metabolomics was used to evaluate the metabolic profiles of feces. RESULTS L. casei & L. reuteri inhibited the proliferation, migration, invasion of pancreatic cancer cells and pancreatic cancer cell-induced M2 polarization of macrophages by suppressing TLR4. Meanwhile, L. casei & L. reuteri repressed pancreatic cancer growth and promoted M1 macrophage polarization. Besides, L. casei & L. reuteri reduced fecal Alloprevotella and increased fecal azelate and glutamate in nude mice, while TLR4 inhibitor TAK-242 increased Clostridia UCG-014, azelate, uridine, methionine sulfoxide, oxypurinol, and decreased glyceryl monoester in the feces of pancreatic tumor-bearing mice. Fecal oxypurinol and glyceryl monoester levels were positively or negatively associated with gut Clostridia UCG-014 abundance, respectively. CONCLUSION L. casei & L. reuteri alleviate pancreatic cancer by inhibiting TLR4 to promote macrophage M1 polarization and regulate gut microbial homeostasis.
Collapse
Affiliation(s)
- Zemin Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Bo Yi
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Zikai Tang
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Xun Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
- Department of Trauma Center, Zhuzhou Central Hospital, Zhuzhou, China
| | - Ming Li
- Department of Trauma Center, Zhuzhou Central Hospital, Zhuzhou, China
| | - Tao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Zhijian Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China.
| | - Caixi Tang
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China.
- Department of Trauma Center, Zhuzhou Central Hospital, Zhuzhou, China.
| |
Collapse
|
10
|
Wu L, Hu J, Yi X, Lv J, Yao J, Tang W, Zhang S, Wan M. Gut microbiota interacts with inflammatory responses in acute pancreatitis. Therap Adv Gastroenterol 2023; 16:17562848231202133. [PMID: 37829561 PMCID: PMC10566291 DOI: 10.1177/17562848231202133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common acute abdominal conditions, and its incidence has been increasing for years. Approximately 15-20% of patients develop severe AP (SAP), which is complicated by critical inflammatory injury and intestinal dysfunction. AP-associated inflammation can lead to the gut barrier and function damage, causing dysbacteriosis and facilitating intestinal microbiota migration. Pancreatic exocrine deficiency and decreased levels of antimicrobial peptides in AP can also lead to abnormal growth of intestinal bacteria. Meanwhile, intestinal microbiota migration influences the pancreatic microenvironment and affects the severity of AP, which, in turn, exacerbates the systemic inflammatory response. Thus, the interaction between the gut microbiota (GM) and the inflammatory response may be a key pathogenic feature of SAP. Treating either of these factors or breaking their interaction may offer some benefits for SAP treatment. In this review, we discuss the mechanisms of interaction of the GM and inflammation in AP and factors that can deteriorate or even cure both, including some traditional Chinese medicine treatments, to provide new methods for studying AP pathogenesis and developing therapies.
Collapse
Affiliation(s)
- Linjun Wu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Jing Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Xiaolin Yi
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Intensive Care Unit, Suining Municipal Hospital of TCM, Suining, China
| | - Jianqin Lv
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Shu Zhang
- Department of Emergency Medicine, Emergency Medical Laboratory, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, Sichuan, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, China
| |
Collapse
|
11
|
Malhotra P, Palanisamy R, Caparros-Martin JA, Falasca M. Bile Acids and Microbiota Interplay in Pancreatic Cancer. Cancers (Basel) 2023; 15:3573. [PMID: 37509236 PMCID: PMC10377396 DOI: 10.3390/cancers15143573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Evidence suggests the involvement of the microbiota, including oral, intra-tumoral and gut, in pancreatic cancer progression and response to therapy. The gut microbiota modulates the bile acid pool and is associated with maintaining host physiology. Studies have shown that the bile acid/gut microbiota axis is dysregulated in pancreatic cancer. Bile acid receptor expression and bile acid levels are dysregulated in pancreatic cancer as well. Studies have also shown that bile acids can cause pancreatic cell injury and facilitate cancer cell proliferation. The microbiota and its metabolites, including bile acids, are also altered in other conditions considered risk factors for pancreatic cancer development and can alter responses to chemotherapeutic treatments, thus affecting patient outcomes. Altogether, these findings suggest that the gut microbial and/or bile acid profiles could also serve as biomarkers for pancreatic cancer detection. This review will discuss the current knowledge on the interaction between gut microbiota interaction and bile acid metabolism in pancreatic cancer.
Collapse
Affiliation(s)
- Pratibha Malhotra
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Ranjith Palanisamy
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | | | - Marco Falasca
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
12
|
Chai Y, Huang Z, Shen X, Lin T, Zhang Y, Feng X, Mao Q, Liang Y. Microbiota Regulates Pancreatic Cancer Carcinogenesis through Altered Immune Response. Microorganisms 2023; 11:1240. [PMID: 37317214 PMCID: PMC10221276 DOI: 10.3390/microorganisms11051240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The microbiota is present in many parts of the human body and plays essential roles. The most typical case is the occurrence and development of cancer. Pancreatic cancer (PC), one of the most aggressive and lethal types of cancer, has recently attracted the attention of researchers. Recent research has revealed that the microbiota regulates PC carcinogenesis via an altered immune response. Specifically, the microbiota, in several sites, including the oral cavity, gastrointestinal tract, and pancreatic tissue, along with the numerous small molecules and metabolites it produces, influences cancer progression and treatment by activating oncogenic signaling, enhancing oncogenic metabolic pathways, altering cancer cell proliferation, and triggering chronic inflammation that suppresses tumor immunity. Diagnostics and treatments based on or in combination with the microbiota offer novel insights to improve efficiency compared with existing therapies.
Collapse
Affiliation(s)
- Yihan Chai
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Zhengze Huang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Xuqiu Shen
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Tianyu Lin
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Yiyin Zhang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Xu Feng
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Qijiang Mao
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou 310028, China
| | - Yuelong Liang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou 310028, China
| |
Collapse
|
13
|
Massaquoi MS, Kong GL, Chilin-Fuentes D, Ngo JS, Horve PF, Melancon E, Hamilton MK, Eisen JS, Guillemin K. Cell-type-specific responses to the microbiota across all tissues of the larval zebrafish. Cell Rep 2023; 42:112095. [PMID: 36787219 PMCID: PMC10423310 DOI: 10.1016/j.celrep.2023.112095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/22/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Animal development proceeds in the presence of intimate microbial associations, but the extent to which different host cells across the body respond to resident microbes remains to be fully explored. Using the vertebrate model organism, the larval zebrafish, we assessed transcriptional responses to the microbiota across the entire body at single-cell resolution. We find that cell types across the body, not limited to tissues at host-microbe interfaces, respond to the microbiota. Responses are cell-type-specific, but across many tissues the microbiota enhances cell proliferation, increases metabolism, and stimulates a diversity of cellular activities, revealing roles for the microbiota in promoting developmental plasticity. This work provides a resource for exploring transcriptional responses to the microbiota across all cell types of the vertebrate body and generating new hypotheses about the interactions between vertebrate hosts and their microbiota.
Collapse
Affiliation(s)
- Michelle S Massaquoi
- Institute of Molecular Biology, University of Oregon, 1318 Franklin Boulevard, Eugene, OR 97403, USA; Thermo Fisher Scientific, 29851 Willow Creek Road, Eugene, OR 97402, USA; Thermo Fisher Scientific, 22025 20th Avenue SE, Bothell, WA 98021, USA
| | - Garth L Kong
- Institute of Molecular Biology, University of Oregon, 1318 Franklin Boulevard, Eugene, OR 97403, USA
| | - Daisy Chilin-Fuentes
- Institute of Molecular Biology, University of Oregon, 1318 Franklin Boulevard, Eugene, OR 97403, USA
| | - Julia S Ngo
- Institute of Molecular Biology, University of Oregon, 1318 Franklin Boulevard, Eugene, OR 97403, USA
| | - Patrick F Horve
- Institute of Molecular Biology, University of Oregon, 1318 Franklin Boulevard, Eugene, OR 97403, USA
| | - Ellie Melancon
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - M Kristina Hamilton
- Institute of Molecular Biology, University of Oregon, 1318 Franklin Boulevard, Eugene, OR 97403, USA; Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA; Thermo Fisher Scientific, 29851 Willow Creek Road, Eugene, OR 97402, USA
| | - Judith S Eisen
- Institute of Molecular Biology, University of Oregon, 1318 Franklin Boulevard, Eugene, OR 97403, USA; Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, 1318 Franklin Boulevard, Eugene, OR 97403, USA; Humans and the Microbiome Program, CIFAR, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
14
|
Shibata K, Motozono C, Nagae M, Shimizu T, Ishikawa E, Motooka D, Okuzaki D, Izumi Y, Takahashi M, Fujimori N, Wing JB, Hayano T, Asai Y, Bamba T, Ogawa Y, Furutani-Seiki M, Shirai M, Yamasaki S. Symbiotic bacteria-dependent expansion of MR1-reactive T cells causes autoimmunity in the absence of Bcl11b. Nat Commun 2022; 13:6948. [PMID: 36376329 PMCID: PMC9663695 DOI: 10.1038/s41467-022-34802-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
MHC class I-related protein 1 (MR1) is a metabolite-presenting molecule that restricts MR1-reactive T cells including mucosal-associated invariant T (MAIT) cells. In contrast to MAIT cells, the function of other MR1-restricted T cell subsets is largely unknown. Here, we report that mice in which a T cell-specific transcription factor, B-cell lymphoma/leukemia 11B (Bcl11b), was ablated in immature thymocytes (Bcl11b∆iThy mice) develop chronic inflammation. Bcl11b∆iThy mice lack conventional T cells and MAIT cells, whereas CD4+IL-18R+ αβ T cells expressing skewed Traj33 (Jα33)+ T cell receptors (TCR) accumulate in the periphery, which are necessary and sufficient for the pathogenesis. The disorders observed in Bcl11b∆iThy mice are ameliorated by MR1-deficiency, transfer of conventional T cells, or germ-free conditions. We further show the crystal structure of the TCR expressed by Traj33+ T cells expanded in Bcl11b∆iThy mice. Overall, we establish that MR1-reactive T cells have pathogenic potential.
Collapse
Affiliation(s)
- Kensuke Shibata
- grid.268397.10000 0001 0660 7960Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan ,grid.177174.30000 0001 2242 4849Department of Ophthalmology, Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan ,grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan
| | - Chihiro Motozono
- grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan ,grid.274841.c0000 0001 0660 6749Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0871 Japan
| | - Masamichi Nagae
- grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan
| | - Takashi Shimizu
- grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan
| | - Eri Ishikawa
- grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan
| | - Daisuke Motooka
- grid.136593.b0000 0004 0373 3971Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan
| | - Daisuke Okuzaki
- grid.136593.b0000 0004 0373 3971Single Cell Genomics, Human Immunology, World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan
| | - Yoshihiro Izumi
- grid.177174.30000 0001 2242 4849Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| | - Masatomo Takahashi
- grid.177174.30000 0001 2242 4849Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| | - Nao Fujimori
- grid.177174.30000 0001 2242 4849Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - James B. Wing
- grid.136593.b0000 0004 0373 3971Laboratory of Human Immunology (Single Cell Immunology), World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan
| | - Takahide Hayano
- grid.268397.10000 0001 0660 7960Department of Systems Bioinformatics, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
| | - Yoshiyuki Asai
- grid.268397.10000 0001 0660 7960Department of Systems Bioinformatics, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
| | - Takeshi Bamba
- grid.177174.30000 0001 2242 4849Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| | - Yoshihiro Ogawa
- grid.177174.30000 0001 2242 4849Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan ,grid.419082.60000 0004 1754 9200Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Tokyo, 100-0004 Japan ,grid.27476.300000 0001 0943 978XDepartment of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601 Japan
| | - Makoto Furutani-Seiki
- grid.268397.10000 0001 0660 7960Systems Biochemistry in Pathology and Regeneration, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
| | - Mutsunori Shirai
- grid.268397.10000 0001 0660 7960Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
| | - Sho Yamasaki
- grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan ,grid.177174.30000 0001 2242 4849Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan ,grid.136304.30000 0004 0370 1101Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, 260-8673 Japan
| |
Collapse
|
15
|
Ghaddar B, Biswas A, Harris C, Omary MB, Carpizo DR, Blaser MJ, De S. Tumor microbiome links cellular programs and immunity in pancreatic cancer. Cancer Cell 2022; 40:1240-1253.e5. [PMID: 36220074 PMCID: PMC9556978 DOI: 10.1016/j.ccell.2022.09.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 11/02/2022]
Abstract
Microorganisms are detected in multiple cancer types, including in putatively sterile organs, but the contexts in which they influence oncogenesis or anti-tumor responses in humans remain unclear. We recently developed single-cell analysis of host-microbiome interactions (SAHMI), a computational pipeline to recover and denoise microbial signals from single-cell sequencing of host tissues. Here we use SAHMI to interrogate tumor-microbiome interactions in two human pancreatic cancer cohorts. We identify somatic-cell-associated bacteria in a subset of tumors and their near absence in nonmalignant tissues. These bacteria predominantly pair with tumor cells, and their presence is associated with cell-type-specific gene expression and pathway activities, including cell motility and immune signaling. Modeling results indicate that tumor-infiltrating lymphocytes closely resemble T cells from infected tissue. Finally, using multiple independent datasets, a signature of cell-associated bacteria predicts clinical prognosis. Tumor-microbiome crosstalk may modulate tumorigenesis in pancreatic cancer with implications for clinical management.
Collapse
Affiliation(s)
- Bassel Ghaddar
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Albany St., New Brunswick, NJ 08901, USA
| | - Antara Biswas
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Albany St., New Brunswick, NJ 08901, USA
| | - Chris Harris
- Department of Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Box SURG, Rochester, NY 14642, USA
| | - M Bishr Omary
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Darren R Carpizo
- Department of Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Box SURG, Rochester, NY 14642, USA
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, 679 Hoes Lane West, Piscataway, NJ 08854, USA.
| | - Subhajyoti De
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Albany St., New Brunswick, NJ 08901, USA.
| |
Collapse
|
16
|
Hankel J, Mößeler A, Hartung CB, Rath S, Schulten L, Visscher C, Kamphues J, Vital M. Responses of Ileal and Fecal Microbiota to Withdrawal of Pancreatic Enzyme Replacement Therapy in a Porcine Model of Exocrine Pancreatic Insufficiency. Int J Mol Sci 2022; 23:11700. [PMID: 36233002 PMCID: PMC9570030 DOI: 10.3390/ijms231911700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Little is known regarding the interplay between microbiota and pancreas functions in humans as investigations are usually limited to distal sites, namely the analyses of fecal samples. The aim of this study was to investigate both ileal and fecal microbiota in response to pancreatic enzyme replacement therapy (PERT) in a porcine model of exocrine pancreatic insufficiency (EPI). PERT was stopped for ten days in ileo-cecal fistulated minipigs with experimentally induced EPI (n = 8) and ileal digesta as well as fecal samples were obtained before withdrawal, during withdrawal and after the reintroduction of PERT. Profound community changes occurred three days after enzyme omission and were maintained throughout the withdrawal phase. A reduction in α-diversity together with relative abundance changes in several taxa, in particular increases in Bifidobacteria (at both sites) and Lactobacilli (only feces) were observed. Overall, dysbiosis events from the ileum had accumulating effects in distal parts of the gastrointestinal tract with additional alterations occurring only in the colon. Changes were reversible after continuing PERT, and one week later, bacterial communities resembled those at baseline. Our study demonstrates the rapid and profound impacts of enzyme withdrawal in bacterial communities, contributing to our understanding of the interplay between pancreas function and microbiota.
Collapse
Affiliation(s)
- Julia Hankel
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hanover, Germany
| | - Anne Mößeler
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hanover, Germany
- Institute for Animal Nutrition and Dietetics, Vetsuisse-Faculty, 8057 Zürich, Switzerland
| | - Clara Berenike Hartung
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hanover, Germany
| | - Silke Rath
- Microbial Interactions and Processes Group, Helmholtz Centre for Infection Research, 30628 Braunschweig, Germany
| | - Lisa Schulten
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hanover, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hanover, Germany
| | - Josef Kamphues
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hanover, Germany
| | - Marius Vital
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
17
|
Activity fingerprinting of polysaccharides on oral, gut, pancreas and lung microbiota in diabetic rats. Biomed Pharmacother 2022; 155:113681. [PMID: 36108392 DOI: 10.1016/j.biopha.2022.113681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
The modern rise in type 2 diabetes mellitus (T2DM) and its correlation to commensal microbiota have elicited global concern about the patterns of microbial action in the host. With the exception of that linked to gut, microbiota were also colonized in pancreas, oral, and lung, contributing to the physiopathology of T2DM. In this study, we aimed to explore the protective effects of Ganoderma atrum polysaccharide (PSG) and White Hyacinth Bean polysaccharide (WHBP) on the intestine, pancreas, oral, and lung microbiota in T2DM rats. Here we showed that, despite capacities of polysaccharides that exerted similar protective effects on hyperglycemia, dyslipidemia, insulin resistance and dysbacteriosis in T2DM rats, PSG and WHBP were able to be characterized by their own "target" bacteria, which could be proposed for activity-fingerprinting of polysaccharide species. Furthermore, we found a mutual bacteria spectrum in the pancreas and lung, and most bacteria could be tracked to oral or gut samples. Notably, the overlapping areas of the microbiota profile between organs (pancreas, lung) and saliva were more than in the gut, suggesting that a saliva sample was also of interest to serve as a "telltale sign" for judging pancreatic injury. Together, these microbiota interactions provided a new potential to harvest alternative samples for disease surveillance. Meanwhile, polysaccharides had anti-T2DM abilities, which could be distinguished by their own characteristic bacteria.
Collapse
|
18
|
Caecal microbiota composition of experimental inbred MHC-B lines infected with IBV differs according to genetics and vaccination. Sci Rep 2022; 12:9995. [PMID: 35705568 PMCID: PMC9199466 DOI: 10.1038/s41598-022-13512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Interactions between the gut microbiota and the immune system may be involved in vaccine and infection responses. In the present study, we studied the interactions between caecal microbiota composition and parameters describing the immune response in six experimental inbred chicken lines harboring different MHC haplotypes. Animals were challenge-infected with the infectious bronchitis virus (IBV), and half of them were previously vaccinated against this pathogen. We explored to what extent the gut microbiota composition and the genetic line could be related to the immune response, evaluated through flow cytometry. To do so, we characterized the caecal bacterial communities with a 16S rRNA gene amplicon sequencing approach performed one week after the IBV infectious challenge. We observed significant effects of both the vaccination and the genetic line on the microbiota after the challenge infection with IBV, with a lower bacterial richness in vaccinated chickens. We also observed dissimilar caecal community profiles among the different lines, and between the vaccinated and non-vaccinated animals. The effect of vaccination was similar in all the lines, with a reduced abundance of OTU from the Ruminococcacea UCG-014 and Faecalibacterium genera, and an increased abundance of OTU from the Eisenbergiella genus. The main association between the caecal microbiota and the immune phenotypes involved TCRϒδ expression on TCRϒδ+ T cells. This phenotype was negatively associated with OTU from the Escherichia-Shigella genus that were also less abundant in the lines with the highest responses to the vaccine. We proved that the caecal microbiota composition is associated with the IBV vaccine response level in inbred chicken lines, and that the TCRϒδ+ T cells (judged by TCRϒδ expression) may be an important component involved in this interaction, especially with bacteria from the Escherichia-Shigella genus. We hypothesized that bacteria from the Escherichia-Shigella genus increased the systemic level of bacterial lipid antigens, which subsequently mitigated poultry γδ T cells.
Collapse
|
19
|
Abstract
The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.
Collapse
Affiliation(s)
- Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
20
|
Abstract
The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.
Collapse
Affiliation(s)
- Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
21
|
Zhang T, Gao G, Sakandar HA, Kwok LY, Sun Z. Gut Dysbiosis in Pancreatic Diseases: A Causative Factor and a Novel Therapeutic Target. Front Nutr 2022; 9:814269. [PMID: 35242797 PMCID: PMC8885515 DOI: 10.3389/fnut.2022.814269] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic-related disorders such as pancreatitis, pancreatic cancer, and type 1 diabetes mellitus (T1DM) impose a substantial challenge to human health and wellbeing. Even though our understanding of the initiation and progression of pancreatic diseases has broadened over time, no effective therapeutics is yet available for these disorders. Mounting evidence suggests that gut dysbiosis is closely related to human health and disease, and pancreatic diseases are no exception. Now much effort is under way to explore the correlation and eventually potential causation between the gut microbiome and the course of pancreatic diseases, as well as to develop novel preventive and/or therapeutic strategies of targeted microbiome modulation by probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT) for these multifactorial disorders. Attempts to dissect the intestinal microbial landscape and its metabolic profile might enable deep insight into a holistic picture of these complex conditions. This article aims to review the subtle yet intimate nexus loop between the gut microbiome and pancreatic diseases, with a particular focus on current evidence supporting the feasibility of preventing and controlling pancreatic diseases via microbiome-based therapeutics and therapies.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Guangqi Gao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Hafiz Arbab Sakandar
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Zhihong Sun
| |
Collapse
|
22
|
Sammallahti H, Kokkola A, Rezasoltani S, Ghanbari R, Asadzadeh Aghdaei H, Knuutila S, Puolakkainen P, Sarhadi VK. Microbiota Alterations and Their Association with Oncogenomic Changes in Pancreatic Cancer Patients. Int J Mol Sci 2021; 22:ijms222312978. [PMID: 34884776 PMCID: PMC8658013 DOI: 10.3390/ijms222312978] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive disease with a high mortality and poor prognosis. The human microbiome is a key factor in many malignancies, having the ability to alter host metabolism and immune responses and participate in tumorigenesis. Gut microbes have an influence on physiological functions of the healthy pancreas and are themselves controlled by pancreatic secretions. An altered oral microbiota may colonize the pancreas and cause local inflammation by the action of its metabolites, which may lead to carcinogenesis. The mechanisms behind dysbiosis and PC development are not completely clear. Herein, we review the complex interactions between PC tumorigenesis and the microbiota, and especially the question, whether and how an altered microbiota induces oncogenomic changes, or vice versa, whether cancer mutations have an impact on microbiota composition. In addition, the role of the microbiota in drug efficacy in PC chemo- and immunotherapies is discussed. Possible future scenarios are the intentional manipulation of the gut microbiota in combination with therapy or the utilization of microbial profiles for the noninvasive screening and monitoring of PC.
Collapse
Affiliation(s)
- Heidelinde Sammallahti
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Arto Kokkola
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Sama Rezasoltani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 1985717411, Iran;
| | - Reza Ghanbari
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Science, Tehran P.O. Box 1411713135, Iran;
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 1985717411, Iran;
| | - Sakari Knuutila
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Correspondence:
| | - Pauli Puolakkainen
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland;
| |
Collapse
|
23
|
Li G, Chen H, Liu L, Xiao P, Xie Y, Geng X, Zhang T, Zhang Y, Lu T, Tan H, Li L, Sun B. Role of Interleukin-17 in Acute Pancreatitis. Front Immunol 2021; 12:674803. [PMID: 34594321 PMCID: PMC8476864 DOI: 10.3389/fimmu.2021.674803] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
Acute pancreatitis (AP) is a leading cause of death and is commonly accompanied by systemic manifestations that are generally associated with a poor prognosis. Many cytokines contribute to pancreatic tissue damage and cause systemic injury. Interleukin-17 (IL-17) is a cytokine that may play a vital role in AP. Specifically, IL-17 has important effects on the immune response and causes interactions between different inflammatory mediators in the AP-related microenvironment. In this literature review, we will discuss the existing academic understanding of IL-17 and the impacts of IL-17 in different cells (especially in acinar cells and immune system cells) in AP pathogenesis. The clinical significance and potential mechanisms of IL-17 on AP deterioration are emphasized. The evidence suggests that inhibiting the IL-17 cytokine family could alleviate the pathogenic process of AP, and we highlight therapeutic strategies that directly or indirectly target IL-17 cytokines in acute pancreatitis.
Collapse
Affiliation(s)
- Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liwei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Xiao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Xie
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Geng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianqi Lu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongtao Tan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| |
Collapse
|
24
|
Bellotti R, Speth C, Adolph TE, Lass-Flörl C, Effenberger M, Öfner D, Maglione M. Micro- and Mycobiota Dysbiosis in Pancreatic Ductal Adenocarcinoma Development. Cancers (Basel) 2021; 13:cancers13143431. [PMID: 34298645 PMCID: PMC8303110 DOI: 10.3390/cancers13143431] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Dysbiosis of the intestinal flora has emerged as an oncogenic contributor in different malignancies. Recent findings suggest a crucial tumor-promoting role of micro- and mycobiome alterations also in the development of pancreatic ductal adenocarcinoma (PDAC). METHODS To summarize the current knowledge about this topic, a systematic literature search of articles published until October 2020 was performed in MEDLINE (PubMed). RESULTS An increasing number of publications describe associations between bacterial and fungal species and PDAC development. Despite the high inter-individual variability of the commensal flora, some studies identify specific microbial signatures in PDAC patients, including oral commensals like Porphyromonas gingivalis and Fusobacterium nucleatum or Gram-negative bacteria like Proteobacteria. The role of Helicobacter spp. remains unclear. Recent isolation of Malassezia globosa from PDAC tissue suggest also the mycobiota as a crucial player of tumorigenesis. Based on described molecular mechanisms and interactions between the pancreatic tissue and the immune system this review proposes a model of how the micro- and the mycobial dysbiosis could contribute to tumorigenesis in PDAC. CONCLUSIONS The presence of micro- and mycobial dysbiosis in pancreatic tumor tissue opens a fascinating perspective on PDAC oncogenesis. Further studies will pave the way for novel tumor markers and treatment strategies.
Collapse
Affiliation(s)
- Ruben Bellotti
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (R.B.); (D.Ö.)
| | - Cornelia Speth
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.L.-F.)
| | - Timon E. Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (T.E.A.); (M.E.)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.L.-F.)
| | - Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (T.E.A.); (M.E.)
| | - Dietmar Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (R.B.); (D.Ö.)
| | - Manuel Maglione
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (R.B.); (D.Ö.)
- Correspondence: ; Tel.: +43-504-51280 (ext. 809)
| |
Collapse
|
25
|
Gut microbiota in pancreatic diseases: possible new therapeutic strategies. Acta Pharmacol Sin 2021; 42:1027-1039. [PMID: 33093569 DOI: 10.1038/s41401-020-00532-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic diseases such as pancreatitis, type 1 diabetes and pancreatic cancer impose substantial health-care costs and contribute to marked morbidity and mortality. Recent studies have suggested a link between gut microbiota dysbiosis and pancreatic diseases; however, the potential roles and mechanisms of action of gut microbiota in pancreatic diseases remain to be fully elucidated. In this review, we summarize the evidence that supports relationship between alterations of gut microbiota and development of pancreatic diseases, and discuss the potential molecular mechanisms of gut microbiota dysbiosis in the pathogenesis of pancreatic diseases. We also propose current strategies toward gut microbiota to advance a developing research field that has clinical potential to reduce the cost of pancreatic diseases.
Collapse
|
26
|
Tong Y, Gao H, Qi Q, Liu X, Li J, Gao J, Li P, Wang Y, Du L, Wang C. High fat diet, gut microbiome and gastrointestinal cancer. Theranostics 2021; 11:5889-5910. [PMID: 33897888 PMCID: PMC8058730 DOI: 10.7150/thno.56157] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancer is currently one of the main causes of cancer death, with a large number of cases and a wide range of lesioned sites. A high fat diet, as a public health problem, has been shown to be correlated with various digestive system diseases and tumors, and can accelerate the occurrence of cancer due to inflammation and altered metabolism. The gut microbiome has been the focus of research in recent years, and associated with cell damage or tumor immune microenvironment changes via direct or extra-intestinal effects; this may facilitate the occurrence and development of gastrointestinal tumors. Based on research showing that both a high fat diet and gut microbes can promote the occurrence of gastrointestinal tumors, and that a high fat diet imbalances intestinal microbes, we propose that a high fat diet drives gastrointestinal tumors by changing the composition of intestinal microbes.
Collapse
Affiliation(s)
- Yao Tong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| |
Collapse
|
27
|
Yoshikawa T, Watanabe T, Kamata K, Hara A, Minaga K, Kudo M. Intestinal Dysbiosis and Autoimmune Pancreatitis. Front Immunol 2021; 12:621532. [PMID: 33833754 PMCID: PMC8021793 DOI: 10.3389/fimmu.2021.621532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
Autoimmune pancreatitis (AIP) is a chronic fibro-inflammatory disorder of the pancreas. Recent clinicopathological analysis revealed that most cases of AIP are pancreatic manifestations of systemic IgG4-related disease (IgG4-RD), a newly established disease characterized by enhanced IgG4 antibody responses and the involvement of multiple organs. Although the immuno-pathogenesis of AIP and IgG4-RD has been poorly defined, we recently showed that activation of plasmacytoid dendritic cells (pDCs) with the ability to produce large amounts of IFN-α and IL-33 mediates chronic fibro-inflammatory responses in experimental and human AIP. Moreover, M2 macrophages producing a large amount of IL-33 play pathogenic roles in the development of human IgG4-RD. Interestingly, recent studies including ours provide evidence that compositional alterations of gut microbiota are associated with the development of human AIP and IgG4-RD. In addition, intestinal dysbiosis plays pathological roles in the development of chronic pancreatic inflammation as dysbiosis mediates the activation of pDCs producing IFN-α and IL-33, thereby causing experimental AIP. In this Mini Review, we focus on compositional alterations of gut microbiota in AIP and IgG4-RD to clarify the mechanisms by which intestinal dysbiosis contributes to the development of these disorders.
Collapse
Affiliation(s)
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University, Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan
| | | | | | | | | |
Collapse
|
28
|
Albracht-Schulte K, Islam T, Johnson P, Moustaid-Moussa N. Systematic Review of Beef Protein Effects on Gut Microbiota: Implications for Health. Adv Nutr 2021; 12:102-114. [PMID: 32761179 PMCID: PMC7850003 DOI: 10.1093/advances/nmaa085] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/10/2020] [Accepted: 06/24/2020] [Indexed: 01/07/2023] Open
Abstract
The influence of diet on the gut microbiota is an emerging research area with significant impact on human health and disease. However, the effects of beef, the most consumed red meat in the United States, on gut microbial profile are not well studied. Following Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols, the objective of this systematic review was to conduct a rigorous and thorough review of the current scientific literature regarding the effects of beef protein and the resulting bioactivity of beef protein and amino acids on the gut microbiota, with the goal of identifying gaps in the literature and guiding future research priorities. Utilizing MEDLINE Complete, PubMed, ScienceDirect, Scopus, and Google Scholar databases, we conducted searches including terms and combinations of the following: animal protein, amino acid, beef, bioactive compounds, diet, health, microbiome, peptide, processed beef, and protein. We identified 131 articles, from which 15 were included in our review. The effects of beef on mouse and rat models were mostly consistent for the bacterial phylum level. Short-term (1-4-wk) beef intakes had little to no effect on microbial profiles in humans. Most studies utilized high beef feeding (240-380 g/d), and no study examined recommended amounts of protein [∼3.71 oz/d (105 g/d) meats, poultry, and eggs, or ∼26 oz/week (737 g/wk) from these food sources] according to US dietary guidelines. Additionally, the majority of animal and human studies with adverse findings examined the impact of beef in the context of a diet high in fat or sugar. In conclusion, an extensive gap exists in the literature regarding beef and the microbiota. More studies are necessary to elucidate the role of the microbiota following the consumption of beef, especially in interaction with other dietary compounds, and how beef preparation, processing, and cooking methods differentially influence the biological effects of beef on human health.
Collapse
Affiliation(s)
- Kembra Albracht-Schulte
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Tariful Islam
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Paige Johnson
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
29
|
Bidirectional and dynamic interaction between the microbiota and therapeutic resistance in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188484. [PMID: 33246025 DOI: 10.1016/j.bbcan.2020.188484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal malignancies and is known for its high resistance and low response to treatment. Cancer treatments can reshape the microbiota and in turn, the microbiota influences the therapeutic efficacy by regulating immune response and metabolism. This crosstalk is bidirectional, heterogeneous, and dynamic. In this review, we elaborated on the interactions between the microbiota and therapeutic resistance in pancreatic ductal adenocarcinoma. Regulating the microbiota in pancreatic tumor microenvironment may not only generate direct anti-cancer but also synergistic effects with other treatments, providing new directions in cancer therapy.
Collapse
|
30
|
Kamata K, Watanabe T, Minaga K, Hara A, Sekai I, Otsuka Y, Yoshikawa T, Park AM, Kudo M. Gut microbiome alterations in type 1 autoimmune pancreatitis after induction of remission by prednisolone. Clin Exp Immunol 2020; 202:308-320. [PMID: 32880930 DOI: 10.1111/cei.13509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022] Open
Abstract
Although increasing evidence demonstrates the association between intestinal dysbiosis and pancreatic diseases such as chronic pancreatitis and pancreatic cancer, it remains largely unknown whether intestinal dysbiosis is involved in the immunopathogenesis of autoimmune pancreatitis (AIP). Recently, we found that intestinal dysbiosis mediates experimental AIP via the activation of plasmacytoid dendritic cells (pDCs), which can produce interferon (IFN)-α and interleukin (IL)-33. However, candidate intestinal bacteria, which promote the development of AIP, have not been identified. Fecal samples were obtained from type 1 AIP patients before and after prednisolone (PSL) treatment and subjected to 16S ribosomal RNA sequencing to evaluate the composition of intestinal bacteria. Induction of remission by PSL was associated with the complete disappearance of Klebsiella species from feces in two of the three analyzed patients with type 1 AIP. To assess the pathogenicity of Klebsiella species, mild experimental AIP was induced in MRL/MpJ mice by repeated injections of 10 μg of polyinosinic-polycytidylic acid [poly(I:C)], in combination with oral administration of heat-killed Klebsiella pneumoniae. The AIP pathology score was significantly higher in MRL/MpJ mice that received both oral administration of heat-killed K. pneumoniae and intraperitoneal injections of poly(I:C) than in those administered either agent alone. Pancreatic accumulation of pDCs capable of producing large amounts of IFN-α and IL-33 was also significantly higher in mice that received both treatments. These data suggest that intestinal colonization by K. pneumoniae may play an intensifying role in the development of type 1 AIP.
Collapse
Affiliation(s)
- K Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - T Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - K Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - A Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - I Sekai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Y Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - T Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - A-M Park
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - M Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
31
|
Li P, Chen K, Mao Z, Luo Y, Xue Y, Zhang Y, Wang X, Zhang L, Gu S, Dou D. Association between Inflammatory Bowel Disease and Pancreatitis: A PRISMA-Compliant Systematic Review. Gastroenterol Res Pract 2020; 2020:7305241. [PMID: 32831829 PMCID: PMC7422476 DOI: 10.1155/2020/7305241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 06/21/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022] Open
Abstract
METHODS MEDLINE, Embase, and CENTRAL were systematically searched for correlative studies till 2 November 2019. RevMan5.3 was used to estimate relevance. RESULTS Three studies with 166008 participants were included. The risk of pancreatitis significantly increased in the patients with CD (OR, 3.40; 95% CI, 2.70-4.28; P < 0.00001) and UC (OR, 2.49; 95% CI, 1.91-3.26; P < 0.00001). Increased risks of CD (OR, 12.90; 95% CI, 5.15-32.50; P < 0.00001) and UC (OR, 2.80; 95% CI, 1.00-7.86; P = 0.05) were found in patients with chronic pancreatitis. As for patients with acute pancreatitis, there were significant association of CD (OR, 3.70; 95% CI, 1.90-7.60; P = 0.0002), but were not UC. CONCLUSIONS The evidence confirmed an association between pancreatitis and IBD. When pancreatitis patients have chronic diarrhea and mucus blood stool or IBD patients have repeated abdominal pain and weight loss, they should consult pancreatic and gastrointestinal specialists.
Collapse
Affiliation(s)
- Pengfan Li
- Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kanjun Chen
- Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zheng Mao
- Department of Foreign Language Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yan Xue
- Institute of Tramotology and Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuli Zhang
- Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xueying Wang
- Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lihang Zhang
- Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sizhen Gu
- Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Danbo Dou
- Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
32
|
Ribichini E, Stigliano S, Rossi S, Zaccari P, Sacchi MC, Bruno G, Badiali D, Severi C. Role of Fibre in Nutritional Management of Pancreatic Diseases. Nutrients 2019; 11:nu11092219. [PMID: 31540004 PMCID: PMC6770015 DOI: 10.3390/nu11092219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022] Open
Abstract
The role of fibre intake in the management of patients with pancreatic disease is still controversial. In acute pancreatitis, a prebiotic enriched diet is associated with low rates of pancreatic necrosis infection, hospital stay, systemic inflammatory response syndrome and multiorgan failure. This protective effect seems to be connected with the ability of fibre to stabilise the disturbed intestinal barrier homeostasis and to reduce the infection rate. On the other hand, in patients with exocrine pancreatic insufficiency, a high content fibre diet is associated with an increased wet fecal weight and fecal fat excretion because of the fibre inhibition of pancreatic enzymes. The mechanism by which dietary fibre reduces the pancreatic enzyme activity is still not clear. It seems likely that pancreatic enzymes are absorbed on the fibre surface or entrapped in pectin, a gel-like substance, and are likely inactivated by anti-nutrient compounds present in some foods. The aim of the present review is to highlight the current knowledge on the role of fibre in the nutritional management of patients with pancreatic disorders.
Collapse
Affiliation(s)
- Emanuela Ribichini
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Serena Stigliano
- Department of Internal Medicine and Medical Specialties, Gastroenterology Unit, Sapienza University of Rome, 00161 Rome, Italy.
| | - Sara Rossi
- Department of Internal Medicine and Medical Specialties, Gastroenterology Unit, Sapienza University of Rome, 00161 Rome, Italy.
| | - Piera Zaccari
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Maria Carlotta Sacchi
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Giovanni Bruno
- Department of Internal Medicine and Medical Specialties, Gastroenterology Unit, Sapienza University of Rome, 00161 Rome, Italy.
| | - Danilo Badiali
- Department of Internal Medicine and Medical Specialties, Gastroenterology Unit, Sapienza University of Rome, 00161 Rome, Italy.
| | - Carola Severi
- Department of Internal Medicine and Medical Specialties, Gastroenterology Unit, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|