1
|
Wang T, Iriawan H, Peng J, Rao RR, Huang B, Zheng D, Menga D, Aggarwal A, Yuan S, Eom J, Zhang Y, McCormack K, Román-Leshkov Y, Grossman J, Shao-Horn Y. Confined Water for Catalysis: Thermodynamic Properties and Reaction Kinetics. Chem Rev 2025; 125:1420-1467. [PMID: 39902648 DOI: 10.1021/acs.chemrev.4c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Water is a salient component in catalytic systems and acts as a reactant, product and/or spectator species in the reaction. Confined water in distinct local environments can display significantly different behaviors from that of bulk water. Therefore, the wide-ranging chemistry of confined water can provide tremendous opportunities to tune the reaction kinetics. In this review, we focus on drawing the connection between confined water properties and reaction kinetics for heterogeneous (electro)catalysis. First, the properties of confined water are presented, where the enthalpy, entropy, and dielectric properties of water can be regulated by tuning the geometry and hydrophobicity of the cavities. Second, experimental and computational studies that investigate the interactions between water and inorganic materials, such as carbon nanotubes (1D confinement), charged metal or metal oxide surfaces (2D), zeolites and metal-organic frameworks (3D) and ions/solvent molecules (0D), are reviewed to demonstrate the opportunity to create confined water structures with unique H-bonding network properties. Third, the role of H-bonding structure and dynamics in governing the activation free energy, reorganization energy and pre-exponential factor for (electro)catalysis are discussed. We highlight emerging opportunities to enhance proton-coupled electron transfer by optimizing interfacial H-bond networks to regulate reaction kinetics for the decarbonization of chemicals and fuels.
Collapse
Affiliation(s)
- Tao Wang
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Haldrian Iriawan
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jiayu Peng
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Reshma R Rao
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
- Grantham Institute - Climate Change and the Environment, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - Botao Huang
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Daniel Zheng
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Davide Menga
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Abhishek Aggarwal
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shuai Yuan
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - John Eom
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yirui Zhang
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kaylee McCormack
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeffrey Grossman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yang Shao-Horn
- Electrochemical Energy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Chen L, Fidler AP, McKillop AM, Weichman ML. Exploring the impact of vibrational cavity coupling strength on ultrafast CN + c-C 6H 12 reaction dynamics. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2591-2599. [PMID: 39678655 PMCID: PMC11635944 DOI: 10.1515/nanoph-2023-0747] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/10/2024] [Indexed: 12/17/2024]
Abstract
Molecular polaritons, hybrid light-matter states resulting from strong cavity coupling of optical transitions, may provide a new route to guide chemical reactions. However, demonstrations of cavity-modified reactivity in clean benchmark systems are still needed to clarify the mechanisms and scope of polariton chemistry. Here, we use transient absorption to observe the ultrafast dynamics of CN radicals interacting with a cyclohexane (c-C6H12) and chloroform (CHCl3) solvent mixture under vibrational strong coupling of a C-H stretching mode of c-C6H12. By modulating the c-C6H12:CHCl3 ratio, we explore how solvent complexation and hydrogen (H)-abstraction processes proceed under collective cavity coupling strengths ranging from 55 to 85 cm-1. Reaction rates remain unchanged for all extracavity, on-resonance, and off-resonance cavity coupling conditions, regardless of coupling strength. These results suggest that insufficient vibrational cavity coupling strength may not be the determining factor for the negligible cavity effects observed previously in H-abstraction reactions of CN with CHCl3.
Collapse
Affiliation(s)
- Liying Chen
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Ashley P. Fidler
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
3
|
Fidler AP, Chen L, McKillop AM, Weichman ML. Ultrafast dynamics of CN radical reactions with chloroform solvent under vibrational strong coupling. J Chem Phys 2023; 159:164302. [PMID: 37870135 DOI: 10.1063/5.0167410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/21/2023] [Indexed: 10/24/2023] Open
Abstract
Polariton chemistry may provide a new means to control molecular reactivity, permitting remote, reversible modification of reaction energetics, kinetics, and product yields. A considerable body of experimental and theoretical work has already demonstrated that strong coupling between a molecular vibrational mode and the confined electromagnetic field of an optical cavity can alter chemical reactivity without external illumination. However, the mechanisms underlying cavity-altered chemistry remain unclear in large part because the experimental systems examined previously are too complex for detailed analysis of their reaction dynamics. Here, we experimentally investigate photolysis-induced reactions of cyanide radicals with strongly-coupled chloroform (CHCl3) solvent molecules and examine the intracavity rates of photofragment recombination, solvent complexation, and hydrogen abstraction. We use a microfluidic optical cavity fitted with dichroic mirrors to facilitate vibrational strong coupling (VSC) of the C-H stretching mode of CHCl3 while simultaneously permitting optical access at visible wavelengths. Ultrafast transient absorption experiments performed with cavities tuned on- and off-resonance reveal that VSC of the CHCl3 C-H stretching transition does not significantly modify any measured rate constants, including those associated with the hydrogen abstraction reaction. This work represents, to the best of our knowledge, the first experimental study of an elementary bimolecular reaction under VSC. We discuss how the conspicuous absence of cavity-altered effects in this system may provide insights into the mechanisms of modified ground state reactivity under VSC and help bridge the divide between experimental results and theoretical predictions in vibrational polariton chemistry.
Collapse
Affiliation(s)
- Ashley P Fidler
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Liying Chen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | - Marissa L Weichman
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
4
|
Jung J, Shin J, Dzhaparova A, Park JK, Lim M. Photoexcitation dynamics of bromodiphenyl ethers in acetonitrile-d 3 studied by femtosecond time-resolved infrared spectroscopy. Phys Chem Chem Phys 2022; 24:9203-9212. [PMID: 35388852 DOI: 10.1039/d2cp00063f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficient decomposition of polybrominated diphenyl ethers (PBDEs), onetime prevalent flame retardants, is central to the reduction of their harmful effects on human health. PBDE photodecomposition is a promising method, but its mechanism and products are not well understood. The photoexcitation dynamics of 3- and 4-bromodiphenyl ethers (BDE-2 and BDE-3) in CD3CN were studied from 0.3 ps to 10 μs using time-resolved infrared spectroscopy. An excitation at 267 nm dissociated the Br atom from BDE-2 and BDE-3 within 0.3 ps and 14 ± 3 ps, respectively, producing a radical compound (R) and a Br atom. About 85% of R formed an intermediate (IM) that weakly interacted with the Br atom and the surrounding CD3CN solvent in 7-12 ps. The remaining R separated from the dissociated Br and underwent slow geminate rebinding (GR) with Br within 35 to 54 ns. The IM competitively engaged in GR with the interacting Br in 40-60 ps or formed CD3CN-bound radical compounds (RS) in 100-130 ps. The RS further degraded via either the dissociation of CD3-producing a cyano-bound diphenyl ether (DE) in 150 or 550 ns-or the deuterium abstraction of CD3CN in 180 or 430 ns-producing a deuterated DE. Overall, 33 ± 3 (22 ± 3)% of the photoexcited BDE-2 (BDE-3) decomposed in CD3CN under 267 nm excitation. Efficient binding of the CD3CN solvent to R deterred the yield-diminishing GR and slowed the rate of product formation. The observed photoexcitation dynamics of BDE suggest methods for the efficient decomposition of PBDE.
Collapse
Affiliation(s)
- Jisik Jung
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | - Juhyang Shin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | - Alina Dzhaparova
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | - Jin Kyoon Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
5
|
Liu Y, Li J. Quantitative Dynamics of the N 2O + C 2H 2 → Oxadiazole Reaction: A Model for 1,3-Dipolar Cycloadditions. ACS OMEGA 2020; 5:23343-23350. [PMID: 32954185 PMCID: PMC7496009 DOI: 10.1021/acsomega.0c03210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The reaction N2O + C2H2 → oxadiazole has been considered as a prototype for 1,3-dipolar cycloadditions. Here, we report a comprehensive dynamical study of this important reaction on a full-dimensional potential energy surface, which is fitted to about 64 000 high-level ab initio data by a machine learning approach. Comprehensive dynamical simulations are carried out to provide quantitative chemical insight into its reaction dynamics. In addition to confirming the enhancement effect of the N2O bending mode on the reactivity, intricate mode specificity effects of other vibrational modes in reactants are revealed for the first time. The asymmetric stretching mode of N2O and the C-C-H bending mode of C2H2 show no effect. All remaining modes can enhance the reactivity. In particular, the vibrational excitation of the N2O symmetric stretching mode shows similar enhancement effect on the title reaction, compared to its bending mode excitation. Detailed analysis reveals that the concerted mechanism dominates with the reactants propelled sufficiently close to each other to yield product. This study advances our understanding of the chemical dynamics of the title reaction.
Collapse
|
6
|
Park S, Lee T, Shin J, Yoon H, Pak Y, Lim M. Conformer-Specific Photodissociation Dynamics of CF2ICF2I in Solution Probed by Time-Resolved Infrared Spectroscopy. J Phys Chem B 2020; 124:8640-8650. [DOI: 10.1021/acs.jpcb.0c06241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Taegon Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Juhyang Shin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Hojeong Yoon
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Youngshang Pak
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
7
|
Ma X, Maier J, Wenzel M, Friedrich A, Steffen A, Marder TB, Mitrić R, Brixner T. Direct observation of o-benzyne formation in photochemical hexadehydro-Diels-Alder ( hν-HDDA) reactions. Chem Sci 2020; 11:9198-9208. [PMID: 34123168 PMCID: PMC8163437 DOI: 10.1039/d0sc03184d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reactive ortho-benzyne derivatives are believed to be the initial products of liquid-phase [4 + 2]-cycloadditions between a 1,3-diyne and an alkyne via what is known as a hexadehydro-Diels–Alder (HDDA) reaction. The UV/VIS spectroscopic observation of o-benzyne derivatives and their photochemical dynamics in solution, however, have not been reported previously. Herein, we report direct UV/VIS spectroscopic evidence for the existence of an o-benzyne in solution, and establish the dynamics of its formation in a photoinduced reaction. For this purpose, we investigated a bis-diyne compound using femtosecond transient absorption spectroscopy in the ultraviolet/visible region. In the first step, we observe excited-state isomerization on a sub-10 ps time scale. For identification of the o-benzyne species formed within 50–70 ps, and the corresponding photochemical hexadehydro-Diels–Alder (hν-HDDA) reactions, we employed two intermolecular trapping strategies. In the first case, the o-benzyne was trapped by a second bis-diyne, i.e., self-trapping. The self-trapping products were then identified in the transient absorption experiments by comparing their spectral features to those of the isolated products. In the second case, we used perylene for trapping and reconstructed the spectrum of the trapping product by removing the contribution of irrelevant species from the experimentally observed spectra. Taken together, the UV/VIS spectroscopic data provide a consistent picture for o-benzyne derivatives in solution as the products of photo-initiated HDDA reactions, and we deduce the time scales for their formation. We report the transient ultraviolet/visible absorption spectrum of an o-benzyne species in solution for the first time.![]()
Collapse
Affiliation(s)
- Xiaonan Ma
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany .,Institute of Molecular Plus, Tianjin University No. 92 Weijin Road, Nankai District 300072 Tianjin China
| | - Jan Maier
- Institut für Anorganische Chemie, Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Michael Wenzel
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie, Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Andreas Steffen
- Institut für Anorganische Chemie, Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany .,Institut für Anorganische Chemie, Technische Universität Dortmund Otto-Hahn-Str.6 44227 Dortmund Germany
| | - Todd B Marder
- Institut für Anorganische Chemie, Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
8
|
Angulo G, Rosspeintner A. Bimolecular photo-induced electron transfer enlightened by diffusion. J Chem Phys 2020; 153:040902. [PMID: 32752717 DOI: 10.1063/5.0014384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photochemical electron transfer between freely diffusing molecules has been studied extensively. Here, we try to elucidate how much these works have contributed to the understanding of electron transfer. To this end, we have revisited the work performed in the experimental and theoretical areas of concern from the beginning of the 20th century up to the present day. We present a critical look at the major contributions and compile the current picture of a variety of phenomena around electron transfer in solution. This is based on two main developments, besides the theory of Marcus: encounter theories of diffusion and laser techniques in time-resolved spectroscopy.
Collapse
Affiliation(s)
- Gonzalo Angulo
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
9
|
Zhang X, Harvey JN. EVB and polarizable MM study of energy relaxation in fluorine–acetonitrile reactions. Phys Chem Chem Phys 2019; 21:14331-14340. [DOI: 10.1039/c8cp06686h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many-body effects can impact on rates of energy transfer from a ‘hot’ DF solute to acetonitrile solvent.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- Department of Chemistry and Division of Quantum Chemistry and Physical Chemistry
- KU Leuven
- B-3001 Leuven
- Belgium
| | - Jeremy N. Harvey
- Department of Chemistry and Division of Quantum Chemistry and Physical Chemistry
- KU Leuven
- B-3001 Leuven
- Belgium
| |
Collapse
|
10
|
Park S, Shin J, Yoon H, Pak Y, Lim M. Complete photodissociation dynamics of CF2I2in solution. Phys Chem Chem Phys 2019; 21:6859-6867. [DOI: 10.1039/c9cp00507b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoexcited CF2I2in c-C6H12undergoes various secondary reactions including complex and isomer formation, after ultrafast two- or three-body dissociations.
Collapse
Affiliation(s)
- Seongchul Park
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 46241
- Korea
| | - Juhyang Shin
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 46241
- Korea
| | - Hojeong Yoon
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 46241
- Korea
| | - Youngshang Pak
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 46241
- Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 46241
- Korea
| |
Collapse
|
11
|
Ma X, Wenzel M, Schmitt HC, Flock M, Reusch E, Mitrić R, Fischer I, Brixner T. Disentangling the photochemistry of benzocyclobutenedione. Phys Chem Chem Phys 2018; 20:15434-15444. [PMID: 29799041 DOI: 10.1039/c8cp01937a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ultrafast photophysics and photochemistry of benzocyclobutenedione (BCBD) dissolved in dichloromethane is investigated by transient absorption spectroscopy in both the IR and the UV/Vis regime. The molecule is excited at 300 nm to the S3 (ππ*) state and a time scale from roughly 100 fs to several nanoseconds is covered. The initially excited S3 deactivates quickly to the lower-lying S1 (nπ*) state. Three parallel photochemical reaction pathways starting in the S1 state that compete with deactivation to S0 are identified in the transient IR spectra, two of them consisting of a sequence of steps. DFT/TDDFT calculations of the normal modes of the reactant and various photoproducts support the analysis of the transient spectra. The rapid internal conversion (IC) to the S1 state of BCBD is followed by a sub-picosecond vibrational relaxation (VR) to S1 (ν = 0). In parallel BCBD loses one carbonyl group and forms benzocyclopropenone, which subsequently rearranges to cyclopentadienylidene ketene. Ring opening in the S1 (ν = 0) state produces vibrationally hot bisketene, which cools within 22 ps. This reaction competes with the intramolecular rearrangement to singlet oxacarbene, which subsequently converts into the triplet carbene via intersystem crossing (ISC). The late-time product identified in the transient UV/Vis spectra is probably due to dimerization of the carbene. Molecular dynamics (MD) simulations of the early-time photochemistry of BCBD successfully reproduce the formation of the three main photoproducts.
Collapse
Affiliation(s)
- Xiaonan Ma
- Institute for Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Athokpam B, Ramesh SG. Alkyl hydrogen atom abstraction reactions of the CN radical with ethanol. J Chem Phys 2018; 148:134503. [PMID: 29626852 DOI: 10.1063/1.5021634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a study of the abstraction of alkyl hydrogen atoms from the β and α positions of ethanol by the CN radical in solution using the Empirical Valence Bond (EVB) method. We have built separate 2 × 2 EVB models for the Hβ and Hα reactions, where the atom transfer is parameterized using ab initio calculations. The intra- and intermolecular potentials of the reactant and product molecules were modelled with the General AMBER Force Field, with some modifications. We have carried out the dynamics in water and chloroform, which are solvents of contrasting polarity. We have computed the potential of mean force for both abstractions in each of the solvents. They are found to have a small and early barrier along the reaction coordinate with a large energy release. Analyzing the solvent structure around the reaction system, we have found two solvents to have little effect on either reaction. Simulating the dynamics from the transition state, we also study the fate of the energies in the HCN vibrational modes. The HCN molecule is born vibrationally hot in the CH stretch in both reactions and additionally in the HCN bends for the Hα abstraction reaction. In the early stage of the dynamics, we find that the CN stretch mode gains energy at the expense of the energy in CH stretch mode.
Collapse
Affiliation(s)
- Bijyalaxmi Athokpam
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sai G Ramesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Abstract
The dynamics of chemical reactions in liquid solutions are now amenable to direct study using ultrafast laser spectroscopy techniques and advances in computer simulation methods. The surrounding solvent affects the chemical reaction dynamics in numerous ways, which include: (i) formation of complexes between reactants and solvent molecules; (ii) modifications to transition state energies and structures relative to the reactants and products; (iii) coupling between the motions of the reacting molecules and the solvent modes, and exchange of energy; (iv) solvent caging of reactants and products; and (v) structural changes to the solvation shells in response to the changing chemical identity of the solutes, on timescales which may be slower than the reactive events. This article reviews progress in the study of bimolecular chemical reaction dynamics in solution, concentrating on reactions which occur on ground electronic states. It illustrates this progress with reference to recent experimental and computational studies, and considers how the various ways in which a solvent affects the chemical reaction dynamics can be unravelled. Implications are considered for research in fields such as mechanistic synthetic chemistry.
Collapse
Affiliation(s)
- Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
14
|
Pandit S, Hornung B, Dunning GT, Preston TJ, Brazener K, Orr-Ewing AJ. Primary vs. secondary H-atom abstraction in the Cl-atom reaction with n-pentane. Phys Chem Chem Phys 2018; 19:1614-1626. [PMID: 27995254 DOI: 10.1039/c6cp07164c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Velocity map imaging (VMI) measurements and quasi-classical trajectory (QCT) calculations on a newly developed, global potential energy surface (PES) combine to reveal the detailed mechanisms of reaction of Cl atoms with n-pentane. Images of the HCl (v = 0, J = 1, 2 and 3) products of reaction at a mean collision energy of 33.5 kJ mol-1 determine the centre-of-mass frame angular scattering and kinetic energy release distributions. The HCl products form with relative populations of J = 0-5 levels that fit to a rotational temperature of 138 ± 13 K. Product kinetic energy release distributions agree well with those derived from a previous VMI study of the pentyl radical co-product [Estillore et al., J. Chem. Phys. 2010, 132, 164313], but the angular distributions show more pronounced forward scattering. The QCT calculations reproduce many of the experimental observations, and allow comparison of the site-specific dynamics of abstraction of primary and secondary H-atoms. They also quantify the relative reactivity towards Cl atoms of the three different H-atom environments in n-pentane.
Collapse
Affiliation(s)
- Shubhrangshu Pandit
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Balázs Hornung
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Greg T Dunning
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Thomas J Preston
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Kristian Brazener
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
15
|
Valverde D, da Costa Ludwig ZM, da Costa CR, Ludwig V, Georg HC. Zwitterionization of glycine in water environment: Stabilization mechanism and NMR spectral signatures. J Chem Phys 2018; 148:024305. [PMID: 29331136 DOI: 10.1063/1.5006645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
At physiological conditions, myriads of biomolecules (e.g., amino acids, peptides, and proteins) exist predominantly in the zwitterionic structural form and their biological functions will result in these conditions. However these geometrical structures are inaccessible energetically in the gas phase, and at this point, stabilization of amino-acids in physiological conditions is still under debate. In this paper, the electronic properties of a glycine molecule in the liquid environment were studied by performing a relaxation of the glycine geometry in liquid water using the free energy gradient method combined with a sequential quantum mechanics/molecular mechanics approach. A series of Monte Carlo Metropolis simulations of the glycine molecule embedded in liquid water, followed by only a quantum mechanical calculation in each of them were carried out. Both the local and global liquid environments were emphasized to obtain nuclear magnetic resonance (NMR) parameters for the glycine molecule in liquid water. The results of the equilibrium structure in solution and the systematic study of the hydrogen bonds were used to discard the direct proton transfer from the carboxyl group to the ammonium group of the glycine molecule in water solution. The calculations of the Density Functional Theory (DFT) were performed to study the polarization of the solvent in the parameters of nuclear magnetic resonance of the glycine molecule in liquid water. DFT calculations predicted isotropic chemical changes on the H, C, N, and O atoms of glycine in liquid water solution which agree with the available experimental data.
Collapse
Affiliation(s)
- Danillo Valverde
- Instituto de Física, Universidade Federal de Goiás, CP 131, 74001-970 Goiânia, GO, Brazil
| | | | | | - Valdemir Ludwig
- Departamento de Física, Universidade Federal de Juiz de Fora, CP 36036-330 Juiz de Fora, MG, Brazil
| | - Herbert C Georg
- Instituto de Física, Universidade Federal de Goiás, CP 131, 74001-970 Goiânia, GO, Brazil
| |
Collapse
|
16
|
|
17
|
Affiliation(s)
- Jennifer Meyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Roland Wester
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
18
|
Koyama D, Orr-Ewing AJ. Photochemical reaction dynamics of 2,2'-dithiobis(benzothiazole): direct observation of the addition product of an aromatic thiyl radical to an alkene with time-resolved vibrational and electronic absorption spectroscopy. Phys Chem Chem Phys 2017; 18:12115-27. [PMID: 27076054 DOI: 10.1039/c6cp01290f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photochemical reaction dynamics of the benzothiazole-2-thiyl (BS) radical, produced by 330 nm ultraviolet photolysis of 2,2'-dithiobis(benzothiazole) (BSSB), are examined on the picosecond time scale. The initial addition product of a thiol-ene reaction between the BS radical and styrene is directly observed by transient vibrational absorption spectroscopy (TVAS). Transient electronic absorption spectroscopy (TEAS) in the ultraviolet and visible spectral regions reveals rapid formation of the ground state BS radical with a time constant of ∼200 fs. The photolytically generated BS radical decays through geminate recombination to the parent molecule BSSB and competitive formation of a BS radical dimer with a rate coefficient of (3.7 ± 0.2) × 10(10) M(-1) s(-1) in methanol, and thereafter (36 ± 1)% of the initially formed BS radicals survive at the longest time delay (1.3 ns). In styrene solution, in contrast to methanol and toluene solutions, kinetic traces of the BS radical show an additional decay with a time constant of 305 ± 13 ps, and a broad band at 345-500 nm grows with the same time constant, suggesting a bimolecular reaction of the BS radical with styrene. The TVAS measurements reveal an absorption band of the ground state BS radical at 1301 cm(-1) in toluene solution, and the band decays with a time constant of 294 ± 32 ps in styrene solution. Two product bands grow at 1239 cm(-1) and 1429 cm(-1) with respective time constants of 312 ± 68 ps and 325 ± 33 ps, and are attributed to the addition product BS-St radical formed from the BS radical and styrene. A bimolecular reaction rate coefficient of kreact = (3.8 ± 0.2) × 10(8) M(-1) s(-1) is deduced and 22 ± 1% of the initially formed BS radicals are converted to the BS-St radical in neat styrene solution.
Collapse
Affiliation(s)
- Daisuke Koyama
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
19
|
Shin JY, Shaloski MA, Crim FF, Case AS. First Evidence of Vibrationally Driven Bimolecular Reactions in Solution: Reactions of Br Atoms with Dimethylsulfoxide and Methanol. J Phys Chem B 2017; 121:2486-2494. [DOI: 10.1021/acs.jpcb.7b00035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jae Yoon Shin
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Michael A. Shaloski
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - F. Fleming Crim
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Amanda S. Case
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
20
|
Carrascosa E, Meyer J, Wester R. Imaging the dynamics of ion–molecule reactions. Chem Soc Rev 2017; 46:7498-7516. [DOI: 10.1039/c7cs00623c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A range of ion–molecule reactions have been studied in the last years using the crossed-beam ion imaging technique, from charge transfer and proton transfer to nucleophilic substitution and elimination.
Collapse
Affiliation(s)
- Eduardo Carrascosa
- Institut für Ionenphysik und Angewandte Physik
- Universität Innsbruck
- 6020 Innsbruck
- Austria
| | - Jennifer Meyer
- Institut für Ionenphysik und Angewandte Physik
- Universität Innsbruck
- 6020 Innsbruck
- Austria
| | - Roland Wester
- Institut für Ionenphysik und Angewandte Physik
- Universität Innsbruck
- 6020 Innsbruck
- Austria
| |
Collapse
|
21
|
Koyama D, Donaldson PM, Orr-Ewing AJ. Femtosecond to microsecond observation of the photochemical reaction of 1,2-di(quinolin-2-yl)disulfide with methyl methacrylate. Phys Chem Chem Phys 2017; 19:12981-12991. [DOI: 10.1039/c7cp01784g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple radical reaction steps have been observed in a continuous sequence with sub-picosecond to microsecond transient absorption spectroscopy.
Collapse
Affiliation(s)
- Daisuke Koyama
- School of Chemistry
- University of Bristol
- Cantock's Close
- Bristol BS8 1TS
- UK
| | - Paul M. Donaldson
- Central Laser Facility
- Research Complex at Harwell
- Science and Technology Facilities Council
- Rutherford Appleton Laboratory
- Didcot
| | | |
Collapse
|
22
|
Andreoni W, Pietrucci F. CO 2 capture in amine solutions: modelling and simulations with non-empirical methods. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:503003. [PMID: 27798409 DOI: 10.1088/0953-8984/28/50/503003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Absorption in aqueous amine solutions is the most advanced technology for the capture of CO2, although suffering from drawbacks that do not allow exploitation on large scale. The search for optimum solvents has been pursued with empirical methods and has also motivated a number of computational approaches over the last decade. However, a deeper level of understanding of the relevant chemical reactions in solution is required so as to contribute to this effort. We present here a brief critical overview of the most recent applications of computer simulations using ab initio methods. Comparison of their outcome shows a strong dependence on the structural models employed to represent the molecular systems in solution and on the strategy used to simulate the reactions. In particular, the results of very recent ab initio molecular dynamics augmented with metadynamics are summarized, showing the crucial role of water, which has been so far strongly underestimated both in the calculations and in the interpretation of experimental data. Indications are given for advances in computational approaches that are necessary if meant to contribute to the rational design of new solvents.
Collapse
Affiliation(s)
- Wanda Andreoni
- Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland. CompuNet, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | | |
Collapse
|
23
|
Shin JY, Case AS, Crim FF. Comparative Study of Cl-Atom Reactions in Solution Using Time-Resolved Vibrational Spectroscopy. J Phys Chem B 2016; 120:3920-31. [DOI: 10.1021/acs.jpcb.6b01765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jae Yoon Shin
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Amanda S. Case
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - F. Fleming Crim
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
24
|
Coulter P, Grubb MP, Koyama D, Sazanovich IV, Greetham GM, Orr-Ewing AJ. Recombination, Solvation and Reaction of CN Radicals Following Ultraviolet Photolysis of ICN in Organic Solvents. J Phys Chem A 2015; 119:12911-23. [DOI: 10.1021/acs.jpca.5b10716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Philip Coulter
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Michael P. Grubb
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Daisuke Koyama
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Igor V. Sazanovich
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot,
Oxfordshire, OX11 0QX, U.K
| | - Gregory M. Greetham
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot,
Oxfordshire, OX11 0QX, U.K
| | - Andrew J. Orr-Ewing
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| |
Collapse
|
25
|
Koyama D, Coulter P, Grubb MP, Greetham GM, Clark IP, Orr-Ewing AJ. Reaction Dynamics of CN Radicals in Acetonitrile Solutions. J Phys Chem A 2015; 119:12924-34. [DOI: 10.1021/acs.jpca.5b10720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daisuke Koyama
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Philip Coulter
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Michael P. Grubb
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Gregory M. Greetham
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Ian P. Clark
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Andrew J. Orr-Ewing
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| |
Collapse
|
26
|
Dunning GT, Preston TJ, Greaves SJ, Greetham GM, Clark IP, Orr-Ewing AJ. Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution. J Phys Chem A 2015; 119:12090-101. [PMID: 26192334 PMCID: PMC4685429 DOI: 10.1021/acs.jpca.5b05624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transient electronic and vibrational absorption spectroscopy unravel the mechanisms and dynamics of bimolecular reactions of CN radicals with acetone in deuterated chloroform solutions. The CN radicals are produced by ultrafast ultraviolet photolysis of dissolved ICN. Two reactive forms of CN radicals are distinguished by their electronic absorption bands: "free" (uncomplexed) CN radicals, and "solvated" CN radicals that are complexed with solvent molecules. The lifetimes of the free CN radicals are limited to a few picoseconds following their photolytic production because of geminate recombination to ICN and INC, complexation with CDCl3 molecules, and reaction with acetone. The acetone reaction occurs with a rate coefficient of (8.0 ± 0.5) × 10(10) M(-1) s(-1) and transient vibrational spectra in the C═N and C═O stretching regions reveal that both the nascent HCN and 2-oxopropyl (CH3C(O)CH2) radical products are vibrationally excited. The rate coefficient for the reaction of solvated CN with acetone is 40 times slower than for free CN, with a rate coefficient of (2.0 ± 0.9) × 10(9) M(-1) s(-1) obtained from the rise in the HCN product v1(C═N stretch) IR absorption band. Evidence is also presented for CN complexes with acetone that are more strongly bound than the CN-CDCl3 complexes because of CN interactions with the carbonyl group. The rates of reactions of these more strongly associated radicals are slower still.
Collapse
Affiliation(s)
- Greg T Dunning
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Thomas J Preston
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Stuart J Greaves
- School of Engineering and Physical Sciences, Heriot-Watt University , Edinburgh EH14 4AS, U.K
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory , Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory , Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|