1
|
Jiang N, Darù A, Kunstelj Š, Vitillo JG, Czaikowski ME, Filatov AS, Wuttig A, Gagliardi L, Anderson JS. Catalytic, Spectroscopic, and Theoretical Studies of Fe 4S 4-Based Coordination Polymers as Heterogenous Coupled Proton-Electron Transfer Mediators for Electrocatalysis. J Am Chem Soc 2024; 146:12243-12252. [PMID: 38651361 DOI: 10.1021/jacs.4c03726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Iron-sulfur clusters play essential roles in biological systems, and thus synthetic [Fe4S4] clusters have been an area of active research. Recent studies have demonstrated that soluble [Fe4S4] clusters can serve as net H atom transfer mediators, improving the activity and selectivity of a homogeneous Mn CO2 reduction catalyst. Here, we demonstrate that incorporating these [Fe4S4] clusters into a coordination polymer enables heterogeneous H atom transfer from an electrode surface to a Mn complex dissolved in solution. A previously reported solution-processable Fe4S4-based coordination polymer was successfully deposited on the surfaces of different electrodes. The coated electrodes serve as H atom transfer mediators to a soluble Mn CO2 reduction catalyst displaying good product selectivity for formic acid. Furthermore, these electrodes are recyclable with a minimal decrease in activity after multiple catalytic cycles. The heterogenization of the mediator also enables the characterization of solution-phase and electrode surface species separately. Surface enhanced infrared absorption spectroscopy (SEIRAS) reveals spectroscopic signatures for an in situ generated active Mn-H species, providing a more complete mechanistic picture for this system. The active species, reaction mechanism, and the protonation sites on the [Fe4S4] clusters were further confirmed by density functional theory calculations. The observed H atom transfer reactivity of these coordination polymer-coated electrodes motivates additional applications of this composite material in reductive H atom transfer electrocatalysis.
Collapse
Affiliation(s)
- Ningxin Jiang
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Andrea Darù
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Špela Kunstelj
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Jenny G Vitillo
- Department of Science and High Technology and INSTM, Università degli Studi dell'Insubria, Como 22100, Italy
| | - Maia E Czaikowski
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Anna Wuttig
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Laura Gagliardi
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
- Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, Chicago,Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| |
Collapse
|
2
|
Li X, Mitchell S, Fang Y, Li J, Perez-Ramirez J, Lu J. Advances in heterogeneous single-cluster catalysis. Nat Rev Chem 2023; 7:754-767. [PMID: 37814032 DOI: 10.1038/s41570-023-00540-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/11/2023]
Abstract
Heterogeneous single-cluster catalysts (SCCs) comprising atomically precise and isolated metal clusters stabilized on appropriately chosen supports offer exciting prospects for enabling novel chemical reactions owing to their broad structural diversity with unparalled opportunities for engineering their properties. Although the pioneering work revealed intriguing performance trends of size-selected metal clusters deposited on supports, synthetic and analytical challenges hindered a thorough understanding of surface chemistry under realistic conditions. This Review underscores the importance of considering the cluster environment in SCCs, encompassing the development of robust metal-support interactions, precise control over the ligand sphere, the influence of reaction media and dynamic behaviour, to uncover new reactivities. Through examples, we illustrate the criticality of tailoring the entire catalytic ensemble in SCCs to achieve stable and selective performance with practically relevant metal coverages. This expansion in application scope transcends from model reactions to complex and technically relevant reactions. Furthermore, we provide a perspective on the opportunities and future directions for SCC design within this rapidly evolving field.
Collapse
Affiliation(s)
- Xinzhe Li
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Yiyun Fang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing, China.
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, China.
| | - Javier Perez-Ramirez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Nhat PV, Si NT, Fielicke A, Kiselev VG, Nguyen MT. A new look at the structure of the neutral Au 18 cluster: hollow versus filled golden cage. Phys Chem Chem Phys 2023; 25:9036-9042. [PMID: 36919716 DOI: 10.1039/d2cp05422a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The geometry of the neutral Au18 gold cluster was probed by a combination of quantum chemical calculations and far-infrared multiple photon dissociation (FIR-MPD) spectroscopy of a Kr messenger complex. Two low-lying isomers are identified to potentially contribute to the experimental IR spectrum, both being derived from a star-like Au17 structure upon capping with one extra Au atom either inside (18_1) or outside (18_5) the star. In particular, the present detection of structure 18_1 by DFT computations where a golden cage encapsulates an endohedral Au atom, is intriguing as a stable core-shell isomer has, to our knowledge, never been found before for such small neutral gold clusters. DFT and local coupled-cluster (DLPNO and PNO-CCSD(T)) computations indicate that both Au18 isomers are close to each other, within ∼3 kcal mol-1, on the energy scale. Although the exact energy ordering is again method-dependent and remains, at present, inconclusive, the most striking spectral signatures of both isomers are related to vibrational modes localized at atoms capping the inner pentaprism sub-structure that result in prominent peaks centered at ∼80 cm-1, close to the most prominent experimental feature found at 78 cm-1. The calculated IR spectra of both core-shell and hollow isomers are very similar to each other and both agree comparably well with the experimental FIR-MPD spectra of the Au18Kr1,2 complexes.
Collapse
Affiliation(s)
- Pham Vu Nhat
- Department of Chemistry, Can Tho University, Can Tho, Vietnam.,Molecular and Materials Modeling Laboratory, Can Tho University, Can Tho, Vietnam
| | - Nguyen Thanh Si
- Department of Chemistry, Can Tho University, Can Tho, Vietnam
| | - André Fielicke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin, Germany
| | - Vitaly G Kiselev
- Novosibirsk State University, 1 Pirogova Str., 630090 Novosibirsk, Russia.,Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
| | - Minh Tho Nguyen
- Institute for Computational Science and Technology (ICST), Ho Chi Minh City, Vietnam.
| |
Collapse
|
4
|
Poths P, Hong Z, Li G, Anderson SL, Alexandrova AN. "Magic" Sinter-Resistant Cluster Sizes of Pt n Supported on Alumina. J Phys Chem Lett 2022; 13:11044-11050. [PMID: 36413781 DOI: 10.1021/acs.jpclett.2c03114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Subnano cluster catalysts, while highly promising due to unique activity, selectivity, and atom-efficiency, are limited in wider applications, as they are prone to deactivation via sintering. Even size-selection, which was previously shown to reduce sintering of nanoparticles, cannot reduce the sintering of highly fluxional subnano clusters due to their inherent isomeric diversity. Here, we use a combination of theory and experiment to show that Pt clusters on Al2O3 exhibit size-dependent sintering resistance. We furthermore show that Pt4/Al2O3 and Pt7/Al2O3 are "magic" sinter-resistant cluster sizes. Their stability is attributed to the greater degree of bulk-like crystallinity of the dominant isomers. In addition, we identify different spatial signatures characteristic of the sintering of clusters with differing sintering stabilities.
Collapse
Affiliation(s)
- Patricia Poths
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zixiang Hong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Guangjing Li
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Scott L Anderson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Darù A, Martín-Fernández C, Harvey JN. Iron-Catalyzed Kumada Cross-Coupling Reaction Involving Fe 8Me 12– and Related Clusters: A Computational Study. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrea Darù
- Department of Chemistry, Scripps Research, La Jolla, California92037, United States
| | | | - Jeremy N. Harvey
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, LeuvenB-3001, Belgium
| |
Collapse
|
6
|
Mahmud GA, Zhang H, Douglas JF. The Dynamics of Metal Nanoparticles on a Supporting Interacting Substrate. J Chem Phys 2022; 157:114505. [DOI: 10.1063/5.0105208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The interaction strength of the nanoparticles NPs with the supporting substrate can greatly influence both the rate and selectivity of catalytic reactions, but the origins of these changes in reactivity arising from the combined effects of NP structure and composition, and NP-substrate interaction are currently not well-understood. Since the dynamics of the NPs are implicated in many NP-based catalytic processes, we investigate how the supporting substrate alters the dynamics of representative Cu NPs on a model graphene substrate, and a formal extension of this model in which the interaction strength between the NPs and the substrate is varied. We particularly emphasize how the substrate interaction strength alters the local mobility and potential energy fluctuations in the NP interfacial region, given the potential relevance of such fluctuations to NP reactivity. We find the NP melting temperature Tm progressively shifts downward with an increasing NP-substrate interaction strength, and that this change in NP thermodynamic stability is mirrored by changes in local mobility and potential energy fluctuations in the interfacial region that can be described as "colored noise". Atomic diffusivity D in the "free" and substrate NP interfacial regions is quantified and observed variations are rationalized by the localization model linking D to the mean square atomic displacement on a "caging" timescale on the order of a ps. In summary, we find the supporting substrate strongly modulates the stability and dynamics of supported NPs, effects that have evident practical relevance for understanding changes in NP catalytic behavior derived from the supporting substrate.
Collapse
Affiliation(s)
- Gazi Arif Mahmud
- Chemical and Materials Engineering, University of Alberta, Canada
| | - Hao Zhang
- Chemical and Materials Engineering, University of Alberta, Canada
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, United States of America
| |
Collapse
|
7
|
Zhang W, Starr FW, Beers KL, Douglas JF. Reactive Molecular Dynamics Simulations of the Depolymerization of Polyethylene Using Graphene-Oxide-Supported Platinum Nanoparticles. J Phys Chem A 2022; 126:3167-3173. [PMID: 35533406 DOI: 10.1021/acs.jpca.2c01167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While plastic materials offer many benefits to society, the slow degradation and difficulty in recycling plastics raise important environmental and sustainability concerns. Traditional recycling efforts often lead to materials with inferior properties and correspondingly lower value, making them uneconomical to recycle. Recent efforts have shown promising chemical pathways for converting plastic materials into a wide range of value-added products, feedstocks or monomers. This is commonly referred to as "chemical recycling". Here, we use reactive molecular dynamics (MD) simulations to study the catalytic process of depolymerization of polyethylene (PE) using platinum (Pt) nanoparticles (NPs) in comparison to PE pyrolysis (thermal degradation). We apply a simple kinetic model to our MD results for the catalytic reaction rate as a function of temperature, from which we obtain the activation energy of the reaction, which shows the that the Pt NPs reduce the barrier for depolymerization. We further evaluate the molecular mass distribution of the reaction products to gain insight into the influence of the Pt NPs on reaction selectivity. Our results demonstrate the potential for the reactive MD method to help the design of recycling approaches for polymer materials.
Collapse
Affiliation(s)
- Wengang Zhang
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.,Department of Physics, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Francis W Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Kathryn L Beers
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jack F Douglas
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
8
|
Sun JJ, Fan QY, Jin X, Liu JL, Liu TT, Ren B, Cheng J. Size-dependent phase transitions boost catalytic activity of sub-nanometer gold clusters. J Chem Phys 2022; 156:144304. [DOI: 10.1063/5.0084165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The characterization and identification of the dynamics of cluster catalysis are crucial to unraveling the origin of catalytic activity. However, the dynamical catalytic effects during the reaction process remain unclear. Herein, we investigate the dynamic coupling effect of elementary reactions with the structural fluctuations of sub-nanometer Au clusters with different sizes using ab initio molecular dynamics and the free energy calculation method. It was found that the adsorption-induced solid-to-liquid phase transitions of the cluster catalysts give rise to abnormal entropy increase, facilitating the proceeding of reaction, and this phase transition catalysis exists in a range of clusters with different sizes. Moreover, clusters with different sizes show different transition temperatures, resulting in a non-trivial size effect. These results unveil the dynamic effect of catalysts and help understand cluster catalysis to design better catalysts rationally.
Collapse
Affiliation(s)
- Juan-Juan Sun
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qi-Yuan Fan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Jin
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing-Li Liu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tong-Tong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
9
|
Ugartemendia A, Mercero JM, de Cózar A, Jimenez-Izal E. Does the Composition in PtGe Clusters Play any Role in Fighting CO Poisoning?. J Chem Phys 2022; 156:174301. [DOI: 10.1063/5.0089179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The high catalytic activity of Pt is accompanied by a high affinity for CO, making it extremely susceptible to poisoning. Such CO poisoning limits the use of proton exchange membrane fuel cells. In this work, using state-of-the-art global minima search techniques and exhaustive electronic structure characterization, the dopant concentration is pinpointed as a crucial factor to improve the CO tolerance of Pt catalysts. By investigating PtGe nanoclusters of different size and composition we found that, for those clusters with roughly the same amount of Pt and Ge, the binding to CO is weakened significantly. The uniqueness of the PtGe equimolar clusters is traced down to the electronic effects. The strong covalency and electrostatic stabilization arising from the advantageous Pt-Ge mixing, make the equimolar clusters highly resistant towards CO poisoning and therefore, more durable. Importantly, the novel catalysts are not only more resistant to deactivation, but they remain catalytically active towards hydrogen oxidation. Representative clusters are additionally deposited on graphene with a pentagon-octagon-pentagon (5-8-5) reconstructed divacancy. The remarkable results of free-standing clusters hold true for surface mounted clusters, in which the interaction with CO is dramatically weakened for those compounds with 1:1 Pt:Ge ratio. Our results demonstrate that Ge can be a promising alloying agent to mitigate the deactivation of Pt and that the dopant concentration is a critical factor in the design of advanced catalysts.
Collapse
Affiliation(s)
- Andoni Ugartemendia
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, University of the Basque Country - Gipuzkoa Campus, Spain
| | - Jose M Mercero
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Spain
| | - Abel de Cózar
- Organic Chemistry I, University of the Basque Country - Gipuzkoa Campus, Spain
| | | |
Collapse
|
10
|
Toward accurate and efficient dynamic computational strategy for heterogeneous catalysis: Temperature-dependent thermodynamics and kinetics for the chemisorbed on-surface CO. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Steiner M, Reiher M. Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Top Catal 2022; 65:6-39. [PMID: 35185305 PMCID: PMC8816766 DOI: 10.1007/s11244-021-01543-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
Autonomous computations that rely on automated reaction network elucidation algorithms may pave the way to make computational catalysis on a par with experimental research in the field. Several advantages of this approach are key to catalysis: (i) automation allows one to consider orders of magnitude more structures in a systematic and open-ended fashion than what would be accessible by manual inspection. Eventually, full resolution in terms of structural varieties and conformations as well as with respect to the type and number of potentially important elementary reaction steps (including decomposition reactions that determine turnover numbers) may be achieved. (ii) Fast electronic structure methods with uncertainty quantification warrant high efficiency and reliability in order to not only deliver results quickly, but also to allow for predictive work. (iii) A high degree of autonomy reduces the amount of manual human work, processing errors, and human bias. Although being inherently unbiased, it is still steerable with respect to specific regions of an emerging network and with respect to the addition of new reactant species. This allows for a high fidelity of the formalization of some catalytic process and for surprising in silico discoveries. In this work, we first review the state of the art in computational catalysis to embed autonomous explorations into the general field from which it draws its ingredients. We then elaborate on the specific conceptual issues that arise in the context of autonomous computational procedures, some of which we discuss at an example catalytic system. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11244-021-01543-9.
Collapse
Affiliation(s)
- Miguel Steiner
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
12
|
Sumaria V, Sautet P. CO organization at ambient pressure on stepped Pt surfaces: first principles modeling accelerated by neural networks. Chem Sci 2021; 12:15543-15555. [PMID: 35003583 PMCID: PMC8654054 DOI: 10.1039/d1sc03827c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Step and kink sites at Pt surfaces have crucial importance in catalysis. We employ a high dimensional neural network potential (HDNNP) trained using first-principles calculations to determine the adsorption structure of CO under ambient conditions (T = 300 K and P = 1 atm) on these surfaces. To thoroughly explore the potential energy surface (PES), we use a modified basin hopping method. We utilize the explored PES to identify the adsorbate structures and show that under the considered conditions several low free energy structures exist. Under the considered temperature and pressure conditions, the step edge (or kink) is totally occupied by on-top CO molecules. We show that the step structure and the structure of CO molecules on the step dictate the arrangement of CO molecules on the lower terrace. On surfaces with (111) steps, like Pt(553), CO forms quasi-hexagonal structures on the terrace with the top site preferred, with on average two top site CO for one multiply bonded CO, while in contrast surfaces with (100) steps, like Pt(557), present a majority of multiply bonded CO on their terrace. Short terraced surfaces, like Pt(643), with square (100) steps that are broken by kink sites constrain the CO arrangement parallel to the step edge. Overall, this effort provides detailed analysis on the influence of the step edge structure, kink sites, and terrace width on the organization of CO molecules on non-reconstructed stepped surfaces, yielding initial structures for understanding restructuring events driven by CO at high coverages and ambient pressure.
Collapse
Affiliation(s)
- Vaidish Sumaria
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles CA 90094 USA
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles CA 90094 USA .,Department of Chemistry and Biochemistry, University of California Los Angeles CA 90094 USA
| |
Collapse
|
13
|
Ugartemendia A, Peeters K, Ferrari P, de Cózar A, Mercero JM, Janssens E, Jimenez-Izal E. Doping Platinum with Germanium: An Effective Way to Mitigate the CO Poisoning. Chemphyschem 2021; 22:1603-1610. [PMID: 34058042 DOI: 10.1002/cphc.202100407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 11/12/2022]
Abstract
The vulnerability towards CO poisoning is a major drawback affecting the efficiency and long-term performance of platinum catalysts in fuel cells. In the present work, by a combination of density functional theory calculations and mass spectrometry experiments, we test and explain the promotional effect of Ge on Pt catalysts with higher resistance to deactivation via CO poisoning. A thorough exploration of the configurational space of gas-phase Ptn + and GePtn-1 + (n=5-9) clusters using global minima search techniques and the subsequent electronic structure analysis reveals that germanium doping reduces the binding strength between Pt and CO by hindering the 2π-back-donation. Importantly, the clusters remain catalytically active towards H2 dissociation. The ability of Ge to weaken the Pt-CO interaction was confirmed by mass spectrometry experiments. Ge can be a promising alloying agent to tune the selectivity and improve the durability of Pt particles, thus opening the way to novel catalytic alternatives for fuel cells.
Collapse
Affiliation(s)
- Andoni Ugartemendia
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
| | - Kristien Peeters
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Piero Ferrari
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Abel de Cózar
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Euskadi, Spain
| | - Jose M Mercero
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
| | - Ewald Janssens
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Elisa Jimenez-Izal
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Euskadi, Spain
| |
Collapse
|
14
|
Gálvez-González LE, Posada-Amarillas A, Paz-Borbón LO. Structure, Energetics, and Thermal Behavior of Bimetallic Re-Pt Clusters. J Phys Chem A 2021; 125:4294-4305. [PMID: 34008972 DOI: 10.1021/acs.jpca.0c11303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bimetallic Re-Pt is a widely used catalyst in petroleum reforming to obtain high-octane gasoline, but experimental and theoretical information of such systems at the subnanometer scale-namely, as cluster aggregates-is currently lacking. Thus, in this work, we performed a density functional theory-based global optimization study to determine the physicochemical properties of the most stable Re-Pt gas-phase clusters up to six atoms for all compositions. Our results indicate that in these putative global minima (GM) geometries, Re atoms tend to aggregate, while most Pt atoms remain separated from each other. This is even observed in Pt-rich clusters-an indication of the strength of the Re-Re and Re-Pt bonds over pure Pt-Pt ones-due to a strong, directional hybridization of the Re half-filled 5d and the nearly full Pt 5d states. We observe that doping monometallic Pt clusters even with a single Re atom increases their binding energy values and widens the bimetallic cluster highest occupied molecular orbital-lowest unoccupied molecular orbital gap. As catalysis occurs at elevated temperatures, we explore the concept of cluster fluxionality for Re-Pt minima in terms of the calculated isomer occupation probability, P(T). This allows us to quantify the abundance of GM and low-energy isomer configurations as a function of temperature. This is done at size 5 atoms due to the wide isomer observed variety. Our calculations indicate that for pure Re5, the P(T) of the GM configuration substantially decreases after 750 K. Especially, for Re4Pt1, the GM is the dominant structure up to nearly 700 K when the second-energy isomer becomes the stable one. Although no ordering changes are seen for Re3Pt2, Re2Pt3, and Re1Pt4, we do observe a structural transition-between the GM and the second isomer-for pure Pt5 above 1000 K. We expect this type of combined first-principles analysis to add to the overall, continuous understanding of the stability and energetics of ultrafine and highly-dispersed Re-Pt petroleum-reforming catalysts and the scarce available information on this particular bimetallic system.
Collapse
Affiliation(s)
- Luis E Gálvez-González
- Programa de Doctorado en Ciencias (Física), División de Ciencias Exactas y Naturales, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000, Mexico
| | - Alvaro Posada-Amarillas
- Departamento de Investigación en Física, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000, Mexico
| | - Lauro Oliver Paz-Borbón
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
15
|
Zandkarimi B, Poths P, Alexandrova AN. When Fluxionality Beats Size Selection: Acceleration of Ostwald Ripening of Sub‐Nano Clusters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Borna Zandkarimi
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Patricia Poths
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles CA 90095 USA
- California NanoSystems Institute 570 Westwood Plaza Los Angeles CA 90095 USA
| |
Collapse
|
16
|
Zandkarimi B, Poths P, Alexandrova AN. When Fluxionality Beats Size Selection: Acceleration of Ostwald Ripening of Sub-Nano Clusters. Angew Chem Int Ed Engl 2021; 60:11973-11982. [PMID: 33651898 DOI: 10.1002/anie.202100107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/19/2021] [Indexed: 11/06/2022]
Abstract
Size selection was demonstrated to suppress Ostwald ripening of supported catalytic nanoparticles. When the supported clusters are subnanometer in size and highly fluxional, such as Pt clusters on the rutile TiO2 (110) surface, this paradigm breaks down, and the established theory of sintering needs a revision. At temperatures characteristic of catalysis (i.e. 700 K), sub-nano clusters thermally populate many low-energy metastable isomers. As these isomers all have different geometric and electronic structures, and thus, formation and dissociation energies (in lieu of surface energy), Ostwald ripening is not suppressed, despite the size-selection. However, some clusters arise as magic numbers in terms of sintering stability at the ensemble level. Acceleration of sintering by metastable species persists though weakens in polydisperse cluster systems. We propose a competing pathways theory for sintering, which at the atomistic level describes the found size-specific sintering behavior.
Collapse
Affiliation(s)
- Borna Zandkarimi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Patricia Poths
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA, 90095, USA.,California NanoSystems Institute, 570 Westwood Plaza, Los Angeles, CA, 90095, USA
| |
Collapse
|
17
|
Morales‐García Á, Viñes F, Gomes JRB, Illas F. Concepts, models, and methods in computational heterogeneous catalysis illustrated through
CO
2
conversion. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ángel Morales‐García
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona Barcelona Spain
| | - Francesc Viñes
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona Barcelona Spain
| | - José R. B. Gomes
- CICECO—Aveiro Institute of Materials, Department of Chemistry University of Aveiro Aveiro Portugal
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona Barcelona Spain
| |
Collapse
|
18
|
Hou G, Faragó E, Buzsáki D, Nyulászi L, Höltzl T, Janssens E. Observation of the Reaction Intermediates of Methanol Dehydrogenation by Cationic Vanadium Clusters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gao‐Lei Hou
- Quantum Solid-State Physics Department of Physics and Astronomy KU Leuven Celestijnenlaan 200D 3001 Leuven Belgium
| | - Endre Faragó
- Department of Inorganic and Analytical Chemistry MTA-BME Computer Driven Chemistry Research Group Budapest University of Technology and Economics Szent Gellért tér 4 1111 Budapest Hungary
| | - Dániel Buzsáki
- Department of Inorganic and Analytical Chemistry MTA-BME Computer Driven Chemistry Research Group Budapest University of Technology and Economics Szent Gellért tér 4 1111 Budapest Hungary
| | - László Nyulászi
- Department of Inorganic and Analytical Chemistry MTA-BME Computer Driven Chemistry Research Group Budapest University of Technology and Economics Szent Gellért tér 4 1111 Budapest Hungary
| | - Tibor Höltzl
- Department of Inorganic and Analytical Chemistry MTA-BME Computer Driven Chemistry Research Group Budapest University of Technology and Economics Szent Gellért tér 4 1111 Budapest Hungary
- Furukawa Electric Institute of Technology Késmárk utca 28/A 1158 Budapest Hungary
| | - Ewald Janssens
- Quantum Solid-State Physics Department of Physics and Astronomy KU Leuven Celestijnenlaan 200D 3001 Leuven Belgium
| |
Collapse
|
19
|
Hou G, Faragó E, Buzsáki D, Nyulászi L, Höltzl T, Janssens E. Observation of the Reaction Intermediates of Methanol Dehydrogenation by Cationic Vanadium Clusters. Angew Chem Int Ed Engl 2021; 60:4756-4763. [DOI: 10.1002/anie.202011109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/09/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Gao‐Lei Hou
- Quantum Solid-State Physics Department of Physics and Astronomy KU Leuven Celestijnenlaan 200D 3001 Leuven Belgium
| | - Endre Faragó
- Department of Inorganic and Analytical Chemistry MTA-BME Computer Driven Chemistry Research Group Budapest University of Technology and Economics Szent Gellért tér 4 1111 Budapest Hungary
| | - Dániel Buzsáki
- Department of Inorganic and Analytical Chemistry MTA-BME Computer Driven Chemistry Research Group Budapest University of Technology and Economics Szent Gellért tér 4 1111 Budapest Hungary
| | - László Nyulászi
- Department of Inorganic and Analytical Chemistry MTA-BME Computer Driven Chemistry Research Group Budapest University of Technology and Economics Szent Gellért tér 4 1111 Budapest Hungary
| | - Tibor Höltzl
- Department of Inorganic and Analytical Chemistry MTA-BME Computer Driven Chemistry Research Group Budapest University of Technology and Economics Szent Gellért tér 4 1111 Budapest Hungary
- Furukawa Electric Institute of Technology Késmárk utca 28/A 1158 Budapest Hungary
| | - Ewald Janssens
- Quantum Solid-State Physics Department of Physics and Astronomy KU Leuven Celestijnenlaan 200D 3001 Leuven Belgium
| |
Collapse
|
20
|
Abstract
The unprecedented ability of computations to probe atomic-level details of catalytic systems holds immense promise for the fundamentals-based bottom-up design of novel heterogeneous catalysts, which are at the heart of the chemical and energy sectors of industry. Here, we critically analyze recent advances in computational heterogeneous catalysis. First, we will survey the progress in electronic structure methods and atomistic catalyst models employed, which have enabled the catalysis community to build increasingly intricate, realistic, and accurate models of the active sites of supported transition-metal catalysts. We then review developments in microkinetic modeling, specifically mean-field microkinetic models and kinetic Monte Carlo simulations, which bridge the gap between nanoscale computational insights and macroscale experimental kinetics data with increasing fidelity. We finally review the advancements in theoretical methods for accelerating catalyst design and discovery. Throughout the review, we provide ample examples of applications, discuss remaining challenges, and provide our outlook for the near future.
Collapse
Affiliation(s)
- Benjamin W J Chen
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lang Xu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
21
|
Castillo CE, Algarra AG. The Mechanism of the Intramolecular Hydrocarbyl Metathesis within a Planar Triruthenium Cluster: Combining Core Flexibility with Hydride Mobility. Chemistry 2020; 26:13880-13889. [PMID: 32476172 DOI: 10.1002/chem.202001539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 11/12/2022]
Abstract
The transition metal catalysed formation and cleavage of C-C bonds is of utmost importance in synthetic chemistry. While most of the existing homogeneous catalysts are mononuclear, knowledge of the behaviour of polynuclear species is much more limited. By using computational methods, here we shed light into the mechanistic details of the thermally-induced isomerization of Cp*3 Ru3 (μ-H)2 (μ3 -η2 -pentyne)(μ3 -pentylidyne) (2) into Cp*3 Ru3 (μ-H)2 (μ3 -η2 -octyne)(μ3 -ethylidyne) (3), a process that involves the migration of a C3 fragment between the hydrocarbyl ligands and across the plane formed by the three Ru centres. Our results show this to be a complex transformation that comprises of five individual rearrangements in an A→B→A→B→A order. Each so-called rearrangement A consists of the CH migration from the μ3 -η2 -alkyne into the μ3 -alkylidine ligand in the other side of the Ru3 plane. This process is facilitated by the cluster's ability to adopt open-core structures in which one Ru-Ru bond is broken and a new C-C bond is formed. In contrast, rearrangements B do not involve the formation or cleavage of C-C bonds, nor do they require the opening of the cluster core. Instead, they consist of the isomerization of the μ3 -η2 -alkyne and μ3 -alkylidyne ligands on each side of the triruthenium plane into μ3 -alkylidyne and μ3 -η2 -alkyne, respectively. Such transformation implies the migration of three H atoms within the hydrocarbyl ligands, and in this case, it is aided by the cluster's ability to behave as a H reservoir. All in all, this study highlights the plasticity of these Ru3 clusters, whereby Ru-Ru, Ru-C, Ru-H, C-C, and C-H bonds are formed and broken with surprising ease.
Collapse
Affiliation(s)
- Carmen E Castillo
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y, Química Inorgánica, Instituto de Biomoléculas (INBIO), Facultad de Ciencias, Universidad de Cádiz, Apartado 40, 11510, Puerto Real, Cádiz, Spain
| | - Andrés G Algarra
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y, Química Inorgánica, Instituto de Biomoléculas (INBIO), Facultad de Ciencias, Universidad de Cádiz, Apartado 40, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
22
|
Morato-Márquez J, Godavarthi S, Espinosa-González CG, Torres-Torres JG, Rodríguez-Domínguez A, Muñoz-Castro A, Ortiz-Chi F, Rodríguez-Kessler P. Structural characterization and electronic properties of Ru-doped Cun (n = 1–12) clusters. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Collinge G, Yuk SF, Nguyen MT, Lee MS, Glezakou VA, Rousseau R. Effect of Collective Dynamics and Anharmonicity on Entropy in Heterogenous Catalysis: Building the Case for Advanced Molecular Simulations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01501] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Greg Collinge
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Simuck F. Yuk
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Manh-Thuong Nguyen
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Mal-Soon Lee
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vassiliki-Alexandra Glezakou
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Roger Rousseau
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
24
|
Dittner M, Hartke B. Globally optimal catalytic fields for a Diels-Alder reaction. J Chem Phys 2020; 152:114106. [PMID: 32199410 DOI: 10.1063/1.5142839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In a previous paper [M. Dittner and B. Hartke, J. Chem. Theory Comput. 14, 3547 (2018)], we introduced a preliminary version of our GOCAT (globally optimal catalyst) concept in which electrostatic catalysts are designed for arbitrary reactions by global optimization of distributed point charges that surround the reaction. In this first version, a pre-defined reaction path was kept fixed. This unrealistic assumption allowed for only small catalytic effects. In the present work, we extend our GOCAT framework by a sophisticated and robust on-the-fly reaction path optimization, plus further concomitant algorithm adaptions. This allows smaller and larger excursions from a pre-defined reaction path under the influence of the GOCAT point-charge surrounding, all the way to drastic mechanistic changes. In contrast to the restricted first GOCAT version, this new version is able to address real-life catalysis. We demonstrate this by applying it to the electrostatic catalysis of a prototypical Diels-Alder reaction. Without using any prior information, this procedure re-discovers theoretically and experimentally established features of electrostatic catalysis of this very reaction, including a field-dependent transition from the synchronous, concerted textbook mechanism to a zwitterionic two-step mechanism, and diastereomeric discrimination by suitable electric field components.
Collapse
Affiliation(s)
- Mark Dittner
- Institute for Physical Chemistry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Bernd Hartke
- Institute for Physical Chemistry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| |
Collapse
|
25
|
Gorey TJ, Zandkarimi B, Li G, Baxter ET, Alexandrova AN, Anderson SL. Coking-Resistant Sub-Nano Dehydrogenation Catalysts: PtnSnx/SiO2 (n = 4, 7). ACS Catal 2020. [DOI: 10.1021/acscatal.0c00668] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Timothy J. Gorey
- Chemistry Department, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Borna Zandkarimi
- Chemistry and Biochemistry, University of California, Los Angeles, California, United States
| | - Guangjing Li
- Chemistry Department, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Eric T. Baxter
- Chemistry Department, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Anastassia N. Alexandrova
- Chemistry and Biochemistry, University of California, Los Angeles, California, United States
- California NanoSystems Institute, Los Angeles, California 90095, United States
| | - Scott L. Anderson
- Chemistry Department, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
26
|
Zhang Z, Zandkarimi B, Alexandrova AN. Ensembles of Metastable States Govern Heterogeneous Catalysis on Dynamic Interfaces. Acc Chem Res 2020; 53:447-458. [PMID: 31977181 DOI: 10.1021/acs.accounts.9b00531] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heterogeneous catalysis is at the heart of the chemical industry. Being able to tune and design efficient catalysts for processes of interest is of the utmost importance, and for this, a molecular-level understanding of heterogeneous catalysts is the first step and indeed a prime focus of modern catalysis research. For a long time, the single most thermodynamically stable structure of the catalytic interface attained under the reaction conditions had been envisioned as the reactive phase. However, some catalytic interfaces continue to undergo structural dynamics in the steady state, triggered by high temperatures and pressures and binding and changing reagents. Among particularly dynamic interfaces are such widely used catalysts as crystalline and amorphous surfaced supporting (sub)nanometallic clusters. Recently, it became clear that this dynamic fluxionality causes the supported clusters to populate many distinct structural and stoichiometric states under catalytic conditions. Hence, the catalytic interface should be viewed as an evolving statistical ensemble of many structures (rather than one structure). Every member in the ensemble contributes to the properties of the catalyst differently, in proportion to its probability of being populated. This new notion flips the established paradigm and calls for a new theory, new modeling approaches, operando measurements, and updated design strategies. The statistical ensemble nature of surface-supported subnanocluster catalysts can be exemplified by oxide-supported and adsorbate-covered Pt, Pd, Cu, and CuPd clusters, which are catalytic toward oxidative and nonoxidative dehydrogenation. They have access to a variety of 3D and quasi-2D shapes. The compositions of their thermal ensembles are dependent on the cluster size, leading to size-specific catalytic activities and the famous "every atom counts" phenomenon. The support and adsorbates affect catalyst structures, and the state of the reacting species causes the ensemble to change in every reaction intermediate. The most stable member of the ensemble dominates the thermodynamic properties of the corresponding intermediate, whereas the kinetics can be determined by more active but less populated metastable catalyst states, and that suggests that many earlier studies might have overlooked the actual active sites. Both effects depend on the relative time scales of catalyst restructuring and reaction dynamics. The catalyst may routinely operate off-equilibrium. Ensemble phenomena lead to surprising exceptions from established rules of catalysis, such as scaling relations and Arrhenius behavior. Catalyst deactivation is also an ensemble property, and its extent of mitigation can be predicted through the new paradigm. These findings were enabled by advances in theory, such as global optimization and subsequent utilization of multiple local minima and pathways sampling as well as operando catalyst characterization. The fact that the per-site and per-species resolution is needed for the description and prediction of catalyst properties gives theory the central role in catalysis research, as most experiments provide ensemble-average information and cannot detect the crucial minority species that may be responsible for the catalytic activity.
Collapse
Affiliation(s)
- Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Borna Zandkarimi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- California NanoSystems Institute, 570 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
27
|
Affiliation(s)
- Marco Foscato
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Vidar R. Jensen
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
28
|
Halder A, Ha M, Zhai H, Yang B, Pellin MJ, Seifert S, Alexandrova AN, Vajda S. Oxidative Dehydrogenation of Cyclohexane by Cu
vs
Pd Clusters: Selectivity Control by Specific Cluster Dynamics. ChemCatChem 2020. [DOI: 10.1002/cctc.201901795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Avik Halder
- Materials Science Division Argonne National Laboratory Lemont IL-60439 USA
| | - Mai‐Anh Ha
- Department of Chemistry and Biochemistry University of California Los Angeles CA-90095 USA
| | - Huanchen Zhai
- Department of Chemistry and Biochemistry University of California Los Angeles CA-90095 USA
| | - Bing Yang
- Materials Science Division Argonne National Laboratory Lemont IL-60439 USA
| | - Michael J. Pellin
- Materials Science Division Argonne National Laboratory Lemont IL-60439 USA
| | - Sönke Seifert
- X-ray Science Division Argonne National Laboratory Lemont IL-60439 USA
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry University of California Los Angeles CA-90095 USA
- California NanoSystems Institute Los Angeles CA-90095 USA
| | - Stefan Vajda
- Materials Science Division Argonne National Laboratory Lemont IL-60439 USA
- Institute for Molecular Engineering The University of Chicago Chicago IL-60637 USA
- Department of Nanocatalysis J. Heyrovský Institute of Physical Chemistry Czech Academy of Sciences Prague 8 18223 Czech Republic
| |
Collapse
|
29
|
Ahmed M, Kostko O. From atoms to aerosols: probing clusters and nanoparticles with synchrotron based mass spectrometry and X-ray spectroscopy. Phys Chem Chem Phys 2020; 22:2713-2737. [DOI: 10.1039/c9cp05802h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synchrotron radiation provides insight into spectroscopy and dynamics in clusters and nanoparticles.
Collapse
Affiliation(s)
- Musahid Ahmed
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Oleg Kostko
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| |
Collapse
|
30
|
Li XN, Jiang LX, Wang LN, Ou SH, Zhang MQ, Yang Y, Ma TM, He SG. An Eight-Atom Iridium-Aluminum Oxide Cluster IrAlO 6+ Catalytically Oxidizes Six CO Molecules. J Phys Chem Lett 2019; 10:7850-7855. [PMID: 31790248 DOI: 10.1021/acs.jpclett.9b03056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fundamental understanding regarding oxygen storage capacity involving how and why an active site can buffer a large number of oxygen atoms in redox processes is vital to the design of advanced oxygen storage materials, while it is challenging because of the complexity of heterogeneous catalysis. Herein, we identified that an eight-atom iridium-aluminum oxide cluster IrAlO6+ can transfer all the oxygen atoms to catalytically oxidize six CO molecules. This finding represents a breakthrough in cluster catalysis where at most three oxygen atoms from a heteronuclear metal oxide cluster can be catalytically involved in CO oxidation. We found that oxygen prefers to be stored on aluminum to form an O3-• radical in the energetically unfavorable IrAlO6+ isomer and generate the low-coordinated iridium that is pivotal to capturing CO and triggering the catalysis. The powerful electron cycling capability of iridium and the cooperative iridium-aluminum interplay are emphasized to drive the oxygen atom-transfer behavior.
Collapse
Affiliation(s)
- Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Li-Xue Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Li Na Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Shu-Hua Ou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- School of Chemistry and Chemical Engineering , South China University of Technology , 381 Wushan Road, Tianhe District , Guangzhou 510641 , China
| | - Mei-Qi Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Tong-Mei Ma
- School of Chemistry and Chemical Engineering , South China University of Technology , 381 Wushan Road, Tianhe District , Guangzhou 510641 , China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| |
Collapse
|
31
|
Callahan T, Masi D, Xiao D. Designing Catalytic Sites on Surfaces with Optimal H-Atom Binding via Atom Doping Using the Inverse Molecular Design Approach. J Phys Chem B 2019; 123:10252-10259. [PMID: 31701747 DOI: 10.1021/acs.jpcb.9b07828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It remains a general challenge to computationally design optimal catalytic structures based on earth-abundant metals for hydrogenation. Here, we demonstrate an effective computational approach based on inverse molecular design to deterministically design optimal catalytic sites on the Cu(100) surface through the doping of Fe and/or Zn, and a stable Zn-doped Cu(100) surface was found with minimal binding energy to H atoms. By the calculations at the level of density functional theory, the optimized catalyst sites are verified to be valid on the Cu(100) surface in an infinite periodic system. We analyze the electronic structure cause of the optimal binding sites using the analysis of the density of states. In addition, we use a Cu29Zn3 atomic cluster, where such an optimum catalytic site is valid on the Cu(100) surface, to understand the role of doped Zn atoms on lowering the H atom binding energy. We found that in the atomic cluster, the atomic orbitals of surface Zn-atoms show less participation in the binding of H atoms, compared to the atomic orbitals of surface Cu atoms. Our study provides valuable chemistry insights on designing catalytic structures using earth-abundant metals, and it may lead to the development of novel Cu-based earth-abundant alloys in bulk, nanoparticles, atomic clusters, or single-atom catalysts for important catalytic applications such as lignin degradation or CO2 conversion.
Collapse
Affiliation(s)
- Trevor Callahan
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical Engineering , University of New Haven , West Haven , Connecticut 06516 , United States
| | - Daniel Masi
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical Engineering , University of New Haven , West Haven , Connecticut 06516 , United States
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical Engineering , University of New Haven , West Haven , Connecticut 06516 , United States
| |
Collapse
|
32
|
Chen BWJ, Stamatakis M, Mavrikakis M. Kinetic Isolation between Turnovers on Au18 Nanoclusters: Formic Acid Decomposition One Molecule at a Time. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Benjamin W. J. Chen
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Michail Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
33
|
Iyemperumal SK, Fenton TG, Gillingham SL, Carl AD, Grimm RL, Li G, Deskins NA. The stability and oxidation of supported atomic-size Cu catalysts in reactive environments. J Chem Phys 2019. [DOI: 10.1063/1.5110300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Satish Kumar Iyemperumal
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Thomas G. Fenton
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | - Alexander D. Carl
- Department of Chemistry & Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Ronald L. Grimm
- Department of Chemistry & Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Gonghu Li
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - N. Aaron Deskins
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| |
Collapse
|
34
|
Frei MS, Mondelli C, García-Muelas R, Kley KS, Puértolas B, López N, Safonova OV, Stewart JA, Curulla Ferré D, Pérez-Ramírez J. Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO 2 hydrogenation. Nat Commun 2019; 10:3377. [PMID: 31358766 PMCID: PMC6662860 DOI: 10.1038/s41467-019-11349-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/26/2019] [Indexed: 11/22/2022] Open
Abstract
Metal promotion is broadly applied to enhance the performance of heterogeneous catalysts to fulfill industrial requirements. Still, generating and quantifying the effect of the promoter speciation that exclusively introduces desired properties and ensures proximity to or accommodation within the active site and durability upon reaction is very challenging. Recently, In2O3 was discovered as a highly selective and stable catalyst for green methanol production from CO2. Activity boosting by promotion with palladium, an efficient H2-splitter, was partially successful since palladium nanoparticles mediate the parasitic reverse water-gas shift reaction, reducing selectivity, and sinter or alloy with indium, limiting metal utilization and robustness. Here, we show that the precise palladium atoms architecture reached by controlled co-precipitation eliminates these limitations. Palladium atoms replacing indium atoms in the active In3O5 ensemble attract additional palladium atoms deposited onto the surface forming low-nuclearity clusters, which foster H2 activation and remain unaltered, enabling record productivities for 500 h.
Collapse
Affiliation(s)
- Matthias S Frei
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Cecilia Mondelli
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Rodrigo García-Muelas
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Klara S Kley
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Begoña Puértolas
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Olga V Safonova
- Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Joseph A Stewart
- Total Research & Technology Feluy, Zone Industrielle Feluy C, 7181, Seneffe, Belgium
| | - Daniel Curulla Ferré
- Total Research & Technology Feluy, Zone Industrielle Feluy C, 7181, Seneffe, Belgium
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
| |
Collapse
|
35
|
Jimenez-Izal E, Liu JY, Alexandrova AN. Germanium as key dopant to boost the catalytic performance of small platinum clusters for alkane dehydrogenation. J Catal 2019. [DOI: 10.1016/j.jcat.2019.04.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Zandkarimi B, Alexandrova AN. Surface‐supported cluster catalysis: Ensembles of metastable states run the show. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1420] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Borna Zandkarimi
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles California
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles California
- California NanoSystems Institute University of California, Los Angeles Los Angeles California
| |
Collapse
|
37
|
Munir A, Joya KS, Ul Haq T, Babar NUA, Hussain SZ, Qurashi A, Ullah N, Hussain I. Metal Nanoclusters: New Paradigm in Catalysis for Water Splitting, Solar and Chemical Energy Conversion. CHEMSUSCHEM 2019; 12:1517-1548. [PMID: 30485695 DOI: 10.1002/cssc.201802069] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/20/2018] [Indexed: 05/12/2023]
Abstract
A sustainable future demands innovative breakthroughs in science and technology today, especially in the energy sector. Earth-abundant resources can be explored and used to develop renewable and sustainable resources of energy to meet the ever-increasing global energy demand. Efficient solar-powered conversion systems exploiting inexpensive and robust catalytic materials for the photo- and photo-electro-catalytic water splitting, photovoltaic cells, fuel cells, and usage of waste products (such as CO2 ) as chemical fuels are appealing solutions. Many electrocatalysts and nanomaterials have been extensively studied in this regard. Low overpotentials, catalytic stability, and accessibility remain major challenges. Metal nanoclusters (NCs, ≤3 nm) with dimensions between molecule and nanoparticles (NPs) are innovative materials in catalysis. They behave like a "superatom" with exciting size- and facet-dependent properties and dynamic intrinsic characteristics. Being an emerging field in recent scientific endeavors, metal NCs are believed to replace the natural photosystem II for the generation of green electrons in a viable way to facilitate the challenging catalytic processes in energy-conversion schemes. This Review aims to discuss metal NCs in terms of their unique physicochemical properties, possible synthetic approaches by wet chemistry, and various applications (mostly recent advances in the electrochemical and photo-electrochemical water splitting cycle and the oxygen reduction reaction in fuel cells). Moreover, the significant role that MNCs play in dye-sensitized solar cells and nanoarrays as a light-harvesting antenna, the electrochemical reduction of CO2 into fuels, and concluding remarks about the present and future perspectives of MNCs in the frontiers of surface science are also critically reviewed.
Collapse
Affiliation(s)
- Akhtar Munir
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| | - Khurram Saleem Joya
- Department of Chemistry, University of Engineering and Technology (UET-Lahore), GT Road, Lahore-, 54890, Punjab, Punjab, Pakistan
- Department of Chemistry, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Tanveer Ul Haq
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| | - Noor-Ul-Ain Babar
- Department of Chemistry, University of Engineering and Technology (UET-Lahore), GT Road, Lahore-, 54890, Punjab, Punjab, Pakistan
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| | - Ahsanulhaq Qurashi
- Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Najeeb Ullah
- US-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), University of Engineering & Technology (UET-Peshawar),Jamrud Road, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| |
Collapse
|
38
|
A Systematic Study on Bond Activation Energies of NO, N 2
, and O 2
on Hexamers of Eight Transition Metals. ChemCatChem 2019. [DOI: 10.1002/cctc.201801595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Yun J, Zhu C, Wang Q, Hu Q, Yang G. Catalytic conversions of atmospheric sulfur dioxide and formation of acid rain over mineral dusts: Molecular oxygen as the oxygen source. CHEMOSPHERE 2019; 217:18-25. [PMID: 30396046 DOI: 10.1016/j.chemosphere.2018.10.201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
Sulfur dioxide (SO2) ranks as a major air pollutant and is likely to generate acid rain. When molecular oxygen is the oxygen source, the regular surfaces of gibbsite (one of the most abundant mineral dusts) show no reactivity for SO2 conversions to H2SO4, while the partially dehydrated (100) surface with coordination-unsaturated Al sites becomes catalytically effective. Because of the easy availability of molecular oxygen, results manifest that acid rain can form under all atmospheric conditions and may account for the high conversion ratio of atmospheric SO2. The (100) and (001) surfaces show divergent catalytic effects, and hydrolysis is always the rate-limiting step. Path A (hydrolysis and then oxidation) is preferred for (100) surface, whereas a third path with obviously lower activation barriers is presented for (001) surface, which is non-existent for (100) surface. Atomic oxygen originating from the dissociation of molecular oxygen is catalytically active for (100) surface, while the active site of (001) surface fails to be recovered, suggesting that SO2 conversions over gibbsite surfaces are facet-controlled. This work also offers an environmentally friendly route for production of H2SO4 (one of the essential compounds in chemical industry), directly using molecular oxygen as the oxygen source.
Collapse
Affiliation(s)
- Jiena Yun
- College of Resources and Environment & Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, Southwest University, Chongqing 400715, China
| | - Chang Zhu
- College of Resources and Environment & Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, Southwest University, Chongqing 400715, China
| | - Qian Wang
- College of Resources and Environment & Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, Southwest University, Chongqing 400715, China
| | - Qiaoli Hu
- College of Resources and Environment & Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, Southwest University, Chongqing 400715, China
| | - Gang Yang
- College of Resources and Environment & Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, Southwest University, Chongqing 400715, China.
| |
Collapse
|
40
|
Prabhakaran V, Lang Z, Clotet A, Poblet JM, Johnson GE, Laskin J. Controlling the Activity and Stability of Electrochemical Interfaces Using Atom-by-Atom Metal Substitution of Redox Species. ACS NANO 2019; 13:458-466. [PMID: 30521751 DOI: 10.1021/acsnano.8b06813] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the molecular-level properties of electrochemically active ions at operating electrode-electrolyte interfaces (EEI) is key to the rational development of high-performance nanostructured surfaces for applications in energy technology. Herein, an electrochemical cell coupled with ion soft landing is employed to examine the effect of "atom-by-atom" metal substitution on the activity and stability of well-defined redox-active anions, PMo xW12- xO403- ( x = 0, 1, 2, 3, 6, 9, or 12) at nanostructured ionic liquid EEI. A striking observation made by in situ electrochemical measurements and further supported by theoretical calculations is that the substitution of only one to three tungsten atoms by molybdenum atoms in the PW12O403- anions results in a substantial spike in their first reduction potential. Specifically, PMo3W9O403- showed the highest redox activity in both in situ electrochemical measurements and as part of a functional redox supercapacitor device, making it a "super-active redox anion" compared with all other PMo xW12- xO403- species. Electronic structure calculations showed that metal substitution in PMo xW12- xO403- causes the lowest unoccupied molecular orbital (LUMO) to protrude locally, making it the "active site" for reduction of the anion. Several critical factors contribute to the observed trend in redox activity including (i) multiple isomeric structures populated at room temperature, which affect the experimentally determined reduction potential; (ii) substantial decrease of the LUMO energy upon replacement of W atoms with more-electronegative Mo atoms; and (iii) structural relaxation of the reduced species produced after the first reduction step. Our results illustrate a path to achieving superior performance of technologically relevant EEIs in functional nanoscale devices through understanding of the molecular-level electronic properties of specific electroactive species with "atom-by-atom" precision.
Collapse
Affiliation(s)
- Venkateshkumar Prabhakaran
- Physical Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Zhongling Lang
- Department de Quı́mica Fı́sica Inorgànica , Universitat Rovira i Virgili , Marcel·lí Domingo 1 , Tarragona 43007 , Spain
| | - Anna Clotet
- Department de Quı́mica Fı́sica Inorgànica , Universitat Rovira i Virgili , Marcel·lí Domingo 1 , Tarragona 43007 , Spain
| | - Josep M Poblet
- Department de Quı́mica Fı́sica Inorgànica , Universitat Rovira i Virgili , Marcel·lí Domingo 1 , Tarragona 43007 , Spain
| | - Grant E Johnson
- Physical Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Julia Laskin
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
41
|
Parrish KA, King M, Ligare MR, Johnson GE, Hernández H. Role of sterics in phosphine-ligated gold clusters. Phys Chem Chem Phys 2019; 21:1689-1699. [DOI: 10.1039/c8cp04961k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study examined the solution-phase exchange reactions of triphenylphosphine (PPh3) ligands on Au8L72+ (L = PPh3) gold clusters with three different tolyl ligands using electrospray ionization mass spectrometry to provide insight into how steric differences in the phosphines influence the extent of ligand exchange and the stability of the resulting mixed-phosphine clusters.
Collapse
Affiliation(s)
| | - Mary King
- Department of Chemistry
- University of Texas at Austin
- Austin
- USA
| | - Marshall R. Ligare
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Grant E. Johnson
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | | |
Collapse
|