1
|
Tian Y, Shi Z, Cai J, Hou C, Wang X, Zhu H, Peng B, Shi K, Li X, Gong S, Chen WX. Levetiracetam may be an unsuitable choice for patients with PRRT2-associated self-limited infantile epilepsy. BMC Pediatr 2023; 23:529. [PMID: 37880614 PMCID: PMC10601096 DOI: 10.1186/s12887-023-04212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/26/2023] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION Self-limited infantile epilepsy (SeLIE) is a benign epilepsy. Previous studies have shown that monotherapy with most antiseizure medications can effectively relieve seizures in patients with SeLIE, but the efficacy of levetiracetam has not been investigated. OBJECTIVE This study aimed to investigate the efficacy of levetiracetam in the treatment of SeLIE patients with PRRT2 mutations. METHODS The clinical data of 39 SeLIE patients (21 males and 18 females, aged 4.79 ± 1.60 months) with pathogenic variants in PRRT2 or 16p11.2 microdeletion were retrospectively analyzed. Based on the use of initial antiseizure medication (ASM), the patients were classified into two groups: Levetiracetam group (LEG) and Other ASMs group (OAG). The difference of efficacy between the two groups was compared. RESULTS Among the 39 SeLIE patients, 16 were LEG (10 males and 6 females, aged 5.25 ± 2.07 months), with whom two obtained a seizure-free status (12.50%) and 14 ineffective or even deteriorated (87.50%). Among the 14 ineffective or deteriorated cases, 13 were seizure-controlled after replacing levetiracetam with other ASMs including topiramate, oxcarbazepine, lamotrigine, and valproate, and the remaining one finally achieved remission at age 3. Of the 39 patients, 23 were OAG (11 males and 12 females; aged 4.48 ± 1.12 months), of whom 22 achieved seizure remission, except for one patient who was ineffective with topiramate initially and relieved by oxcarbazepine instead. Although there were no significant differences in gender and age of onset between the two groups, the effective rate was significantly different (12.50% in LEG vs. 95.65% in OAG) (P < 0.01). CONCLUSION The findings showed that patients with SeLIE caused by the PRRT2 mutations did not benefit from the use of levetiracetam, but could benefit from other ASMs.
Collapse
Affiliation(s)
- Yang Tian
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Zhen Shi
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Jiahao Cai
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Chi Hou
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xiuying Wang
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Haixia Zhu
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Binwei Peng
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Kaili Shi
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xiaojing Li
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Sitang Gong
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
- Department of Pediartic, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, Guangzhou, 510623, China.
| | - Wen-Xiong Chen
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jin Sui Road, Guangzhou, 510623, China.
| |
Collapse
|
2
|
Lin W. Translating Genetic Discovery into a Mechanistic Understanding of Pediatric Movement Disorders: Lessons from Genetic Dystonias and Related Disorders. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200018. [PMID: 37288166 PMCID: PMC10242408 DOI: 10.1002/ggn2.202200018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 06/09/2023]
Abstract
The era of next-generation sequencing has increased the pace of gene discovery in the field of pediatric movement disorders. Following the identification of novel disease-causing genes, several studies have aimed to link the molecular and clinical aspects of these disorders. This perspective presents the developing stories of several childhood-onset movement disorders, including paroxysmal kinesigenic dyskinesia, myoclonus-dystonia syndrome, and other monogenic dystonias. These stories illustrate how gene discovery helps focus the research efforts of scientists trying to understand the mechanisms of disease. The genetic diagnosis of these clinical syndromes also helps clarify the associated phenotypic spectra and aids the search for additional disease-causing genes. Collectively, the findings of previous studies have led to increased recognition of the role of the cerebellum in the physiology and pathophysiology of motor control-a common theme in many pediatric movement disorders. To fully exploit the genetic information garnered in the clinical and research arenas, it is crucial that corresponding multi-omics analyses and functional studies also be performed at scale. Hopefully, these integrated efforts will provide us with a more comprehensive understanding of the genetic and neurobiological bases of movement disorders in childhood.
Collapse
Affiliation(s)
- Wei‐Sheng Lin
- Department of PediatricsTaipei Veterans General HospitalTaipei11217Taiwan
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipei112304Taiwan
| |
Collapse
|
3
|
Scott RC, Menendez de la Prida L, Mahoney JM, Kobow K, Sankar R, de Curtis M. WONOEP APPRAISAL: The many facets of epilepsy networks. Epilepsia 2018; 59:1475-1483. [PMID: 30009398 DOI: 10.1111/epi.14503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2018] [Indexed: 12/20/2022]
Abstract
The brain is a complex system composed of networks of interacting elements, from genes to circuits, whose function (and dysfunction) is not derivable from the superposition of individual components. Epilepsy is frequently described as a network disease, but to date, there is no standardized framework within which network concepts applicable to all levels from genes to whole brain can be used to generate deeper insights into the pathogenesis of seizures or the associated morbidities. To address this shortcoming, the Neurobiology Commission of the International League Against Epilepsy dedicated a Workshop on Neurobiology of Epilepsy (XIV WONOEP 2017) with the aim of formalizing network concepts as they apply to epilepsy and to critically discuss whether and how such concepts could augment current research endeavors. Here, we review concepts and strategies derived by considering epilepsy as a disease of different network hierarchies that range from genes to clinical phenotypes. We propose that the concept of networks is important for understanding epilepsy and is critical for developing new study designs. These approaches could ultimately facilitate the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Rod C Scott
- Department of Neurological Sciences, University of Vermont, Burlington, VT, USA.,Neurology Unit, Great Ormond Street Hospital NHS Trust, London, UK
| | | | - J Matt Mahoney
- Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
| | - Katja Kobow
- Institute of Neuropathology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Raman Sankar
- Division of Pediatric Neurology, David Geffen School of Medicine and Mattel Children's Hospital UCLA, Los Angeles, CA, USA.,Department of Neurology, David Geffen School of Medicine and Mattel Children's Hospital UCLA, Los Angeles, CA, USA
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Carlo Besta Neurological Institute, Milano, Italy
| |
Collapse
|
4
|
Kenry, Liu B. Conductive Polymer‐Based Functional Structures for Neural Therapeutic Applications. CONJUGATED POLYMERS FOR BIOLOGICAL AND BIOMEDICAL APPLICATIONS 2018:243-267. [DOI: 10.1002/9783527342747.ch9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
5
|
Erro R, Bhatia KP, Espay AJ, Striano P. The epileptic and nonepileptic spectrum of paroxysmal dyskinesias: Channelopathies, synaptopathies, and transportopathies. Mov Disord 2017; 32:310-318. [PMID: 28090678 DOI: 10.1002/mds.26901] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Historically, the syndrome of primary paroxysmal dyskinesias was considered a group of disorders as a result of ion channel dysfunction. This proposition was primarily based on the discovery of mutations in ion channels, which caused other episodic neurological disorders such as epilepsy and migraine and also supported by the frequent association between paroxysmal dyskinesias and epilepsy. However, the discovery of the genes responsible for the 3 classic forms of paroxysmal dyskinesias disproved this ion channel theory. On the other hand, novel gene mutations implicating ion channels have been recently reported to produce episodic movement disorders clinically similar to the classic paroxysmal dyskinesias. Here, we review the clinical and pathophysiological aspects of the paroxysmal dyskinesias, further proposing a pathophysiological framework according to which they can be classified as synaptopathies (proline-rich transmembrane protein 2 and myofibrillogenesis regulator gene), channelopathies (calcium-activated potassium channel subunit alpha-1 and voltage-gated sodium channel type 8), or transportopathies (solute carrier family 2 member 1). This proposal might serve to explain similarities and differences among the various paroxysmal dyskinesias in terms of clinical features, treatment response, and natural history. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roberto Erro
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, Institute of Neurology, London, UK.,Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, Institute of Neurology, London, UK
| | - Alberto J Espay
- Gardner Neuroscience Institute, Department of Neurology, Gardner Center for Parkinson's disease and Movement Disorders, University of Cincinnati, Ohio, USA
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute, Genova, Italy
| |
Collapse
|
6
|
Kozlovskii VL, Neznanov NG. [Evolutionary aspects of psychopathology and perspectives of psychopharmacology]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:116-123. [PMID: 27166490 DOI: 10.17116/jnevro201611621116-123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The authors consider the general conception of the pathogenesis of mental diseases based on the disruption of interactions between local neuronal networks. The development of mental disorders provoked by environmental factors is thought to disturb the activity of small groups of neurons with genetically determined module activity. It is hypothesized that the interaction of modules determines the forms of this activity that are of evolutionary origin predicting behavioral programs of familial inheritance and "personified" behavioral response. In this case, possibilities of pharmacological treatment of mental disorders are limited by the modulation of neurochemical processes controlling more simple fragments of behavioral response. This should be taken into consideration in the development of new psychopharmacological medications.
Collapse
Affiliation(s)
- V L Kozlovskii
- Bekhterev St. Petersburg Research Psychoneurological Institute, St. Petersburg
| | - N G Neznanov
- Bekhterev St. Petersburg Research Psychoneurological Institute, St. Petersburg
| |
Collapse
|
7
|
Ebrahimi-Fakhari D, Saffari A, Westenberger A, Klein C. The evolving spectrum ofPRRT2-associated paroxysmal diseases. Brain 2015; 138:3476-95. [DOI: 10.1093/brain/awv317] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/30/2015] [Indexed: 02/01/2023] Open
|
8
|
Gardiner AR, Jaffer F, Dale RC, Labrum R, Erro R, Meyer E, Xiromerisiou G, Stamelou M, Walker M, Kullmann D, Warner T, Jarman P, Hanna M, Kurian MA, Bhatia KP, Houlden H. The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain 2015; 138:3567-80. [PMID: 26598494 PMCID: PMC4655345 DOI: 10.1093/brain/awv310] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/27/2015] [Indexed: 12/21/2022] Open
Abstract
The contributions of different genes to inherited paroxysmal movement disorders are incompletely understood. Gardiner et al. identify mutations in 47% of 145 individuals with paroxysmal dyskinesias, with PRRT2 mutations in 35%, SLC2A1 in 10% and PNKD in 2%. New mutations expand the associated phenotypes and implicate overlapping mechanisms. Paroxysmal dyskinesia can be subdivided into three clinical syndromes: paroxysmal kinesigenic dyskinesia or choreoathetosis, paroxysmal exercise-induced dyskinesia, and paroxysmal non-kinesigenic dyskinesia. Each subtype is associated with the known causative genes PRRT2, SLC2A1 and PNKD, respectively. Although separate screening studies have been carried out on each of the paroxysmal dyskinesia genes, to date there has been no large study across all genes in these disorders and little is known about the pathogenic mechanisms. We analysed all three genes (the whole coding regions of SLC2A1 and PRRT2 and exons one and two of PNKD) in a series of 145 families with paroxysmal dyskinesias as well as in a series of 53 patients with familial episodic ataxia and hemiplegic migraine to investigate the mutation frequency and type and the genetic and phenotypic spectrum. We examined the mRNA expression in brain regions to investigate how selective vulnerability could help explain the phenotypes and analysed the effect of mutations on patient-derived mRNA. Mutations in the PRRT2, SLC2A1 and PNKD genes were identified in 72 families in the entire study. In patients with paroxysmal movement disorders 68 families had mutations (47%) out of 145 patients. PRRT2 mutations were identified in 35% of patients, SLC2A1 mutations in 10%, PNKD in 2%. Two PRRT2 mutations were in familial hemiplegic migraine or episodic ataxia, one SLC2A1 family had episodic ataxia and one PNKD family had familial hemiplegic migraine alone. Several previously unreported mutations were identified. The phenotypes associated with PRRT2 mutations included a high frequency of migraine and hemiplegic migraine. SLC2A1 mutations were associated with variable phenotypes including paroxysmal kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, episodic ataxia and myotonia and we identified a novel PNKD gene deletion in familial hemiplegic migraine. We found that some PRRT2 loss-of-function mutations cause nonsense mediated decay, except when in the last exon, whereas missense mutations do not affect mRNA. In the PNKD family with a novel deletion, mRNA was truncated losing the C-terminus of PNKD-L and still likely loss-of-function, leading to a reduction of the inhibition of exocytosis, and similar to PRRT2, an increase in vesicle release. This study highlights the frequency, novel mutations and clinical and molecular spectrum of PRRT2, SLC2A1 and PNKD mutations as well as the phenotype–genotype overlap among these paroxysmal movement disorders. The investigation of paroxysmal movement disorders should always include the analysis of all three genes, but around half of our paroxysmal series remain genetically undefined implying that additional genes are yet to be identified. The contributions of different genes to inherited paroxysmal movement disorders are incompletely understood. Gardiner et al. identify mutations in 47% of 145 individuals with paroxysmal dyskinesias, with PRRT2 mutations in 35%, SLC2A1 in 10% and PNKD in 2%. New mutations expand the associated phenotypes and implicate overlapping mechanisms.
Collapse
Affiliation(s)
- Alice R Gardiner
- 1 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Fatima Jaffer
- 1 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Russell C Dale
- 3 Paediatrics and Child Health, Children's Hospital, Westmead, University of Sydney, Australia
| | - Robyn Labrum
- 4 Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Roberto Erro
- 5 Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Esther Meyer
- 6 Developmental Neurosciences, UCL Institute of Child Health, London WC1N 3JH, UK
| | - Georgia Xiromerisiou
- 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 7 Department of Neurology, Papageorgiou Hospital, Thessaloniki University of Athens, Greece
| | - Maria Stamelou
- 5 Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 8 Department of Neurology University of Athens, Greece 9 Department of Neurology, Philipps University, Marburg, Germany
| | - Matthew Walker
- 10 Department of Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Dimitri Kullmann
- 10 Department of Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Tom Warner
- 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Paul Jarman
- 5 Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mike Hanna
- 1 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Manju A Kurian
- 6 Developmental Neurosciences, UCL Institute of Child Health, London WC1N 3JH, UK 11 Department of Neurology, Great Ormond Street Hospital, London WC1N, UK
| | - Kailash P Bhatia
- 5 Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Henry Houlden
- 1 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 4 Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
9
|
Protein mutated in paroxysmal dyskinesia interacts with the active zone protein RIM and suppresses synaptic vesicle exocytosis. Proc Natl Acad Sci U S A 2015; 112:2935-41. [PMID: 25730884 DOI: 10.1073/pnas.1501364112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Paroxysmal nonkinesigenic dyskinesia (PNKD) is an autosomal dominant episodic movement disorder precipitated by coffee, alcohol, and stress. We previously identified the causative gene but the function of the encoded protein remains unknown. We also generated a PNKD mouse model that revealed dysregulated dopamine signaling in vivo. Here, we show that PNKD interacts with synaptic active zone proteins Rab3-interacting molecule (RIM)1 and RIM2, localizes to synapses, and modulates neurotransmitter release. Overexpressed PNKD protein suppresses release, and mutant PNKD protein is less effective than wild-type at inhibiting exocytosis. In PNKD KO mice, RIM1/2 protein levels are reduced and synaptic strength is impaired. Thus, PNKD is a novel synaptic protein with a regulatory role in neurotransmitter release.
Collapse
|