1
|
Liu MH, Guo X, Sun ML, Li JL, Liu SH, Chen YZ, Wang DY, Wang L, Li YZ, Yao J, Li Y, Pan YQ. Rapid detection of human cytomegalovirus by multienzyme isothermal rapid amplification and lateral flow dipsticks. Front Cell Infect Microbiol 2024; 14:1430302. [PMID: 39099883 PMCID: PMC11294213 DOI: 10.3389/fcimb.2024.1430302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Human cytomegalovirus (HCMV) is the most common viral infection seen in newborns. The major route of transmission for acquired human cytomegalovirus infection is breast milk from mothers who are HCMV seropositive to the infants. Thus, a rapid, economical, and simple method to perform HCMV test in breast milk is crucial and necessary for preventing acquired HCMV infection, especially in underdeveloped regions with limited laboratory resources. Methods In this study, an effective technique for the detection of HCMV was constructed by combining multienzyme isothermal rapid amplification (MIRA) and lateral flow chromatography strip (LFD). Primers for the conserved HCMV sequence UL83 were utilized for MIRA-LFD testing. Results Our results showed that the entire MIRA reaction could be completed in 12 minutes at 37°C, and LFD outcomes could be observed visibly after 10 minutes. The detection sensitivity of this method reached 50 copy/μl. Samples of breast milk were examined to compare MIRA-LFD and conventional qPCR. The accuracy of MIRA-LFD was 100%. Discussion The straightforward, rapid, economic features of the test can provide the significant advantages for the prevention of breast milk-acquired cytomegalovirus infection, particularly in resource-limited locations with high seroprevalence of cytomegalovirus.
Collapse
Affiliation(s)
- Ming-hui Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xiaochong Guo
- Laboratory Animal Center, China Medical University, Shenyang, China
| | - Mao-ling Sun
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jia-lun Li
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Shu-han Liu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Yun-zhou Chen
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Dong-yi Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lan Wang
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Yu-zhang Li
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Yang Li
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-qing Pan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Rodrigues V, Honrado M, Santos J, Pinto MA, Amaral JS. Development of a loop-mediated isothermal amplification assay for the rapid detection of Styphnolobium japonicum (L.) Schott as an adulterant of Ginkgo biloba (L.). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155322. [PMID: 38569291 DOI: 10.1016/j.phymed.2023.155322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 04/05/2024]
Abstract
BACKGROUND Species adulteration is a concern in herbal products, especially when plant substitutes of lower economic value replace valuable botanicals. Styphnolobium japonicum is well known as a potential adulterant of Ginkgo biloba, which is one of the most demanded medicinal plants due to its wide use in pharmaceuticals, food supplements, and traditional medicine. Despite bearing some resemblance to ginkgo's flavonol composition, S. japonicum lacks many of G. biloba's desired therapeutic properties. To prevent adulteration practices, it is crucial to implement rigorous quality control measures, including fast and simple diagnostic tools that can be used on-field. PURPOSE This study aims to develop for the first time a species-specific loop-mediated isothermal amplification (LAMP) method for the fast identification of S. japonicum in ginkgo-containing products. METHODS A set of four specific primers (SjF3, SjB3, SjFIP, and SjBIP) and loop primers (SjLF and SjLB) were designed for a LAMP based assay using the 5.8S partial sequence and the internal transcribed spacer 2 of nuclear ribosomal DNA of S. japonicum. RESULTS The successful amplification of the LAMP assay was inspected through visual detection, with the highest intensity recorded at the optimal conditions set at 68 °C for 40 min. The primers showed high specificity and were able to accurately discriminate S. japonicum from G. biloba and 49 other species of medicinal plants. Furthermore, the proposed LAMP assay proved to be fast, selective, and highly sensitive, as demonstrated by the absolute and relative limits of detection, which were reached at 0.5 pg for S. japonicum DNA and 0.01 % S. japonicum in G. biloba, respectively. CONCLUSIONS This novel approach allows easy identification and discrimination of S. japonicum as a potential adulterant of G. biloba, thus being a useful tool for quality control. Compared to chromatographic or PCR-based methods, the assay proved to be fast, sensitive and did not require expensive equipment, thus offering the possibly usage in field analysis.
Collapse
Affiliation(s)
- Vânia Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Mónica Honrado
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal; LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Joana Santos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M Alice Pinto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Joana S Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal.
| |
Collapse
|
3
|
Zou Y, Mason MG, Botella JR. A low-cost, portable, dual-function readout device for amplification-based point-of-need diagnostics. Appl Environ Microbiol 2023; 89:e0090223. [PMID: 38047632 PMCID: PMC10734478 DOI: 10.1128/aem.00902-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/25/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE The first critical step in timely disease management is rapid disease identification, which is ideally on-site detection. Of all the technologies available for disease identification, nucleic acid amplification-based diagnostics are often used due to their specificity, sensitivity, adaptability, and speed. However, the modules to interpret amplification results rapidly, reliably, and easily in resource-limited settings at point-of-need (PON) are in high demand. Therefore, we developed a portable, low-cost, and easy-to-perform device that can be used for amplification readout at PON to enable rapid yet reliable disease identification by users with minimal training.
Collapse
Affiliation(s)
- Yiping Zou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael Glenn Mason
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jose Ramon Botella
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Strachan S, Chakraborty M, Sallam M, Bhuiyan SA, Ford R, Nguyen NT. Maximising Affordability of Real-Time Colorimetric LAMP Assays. MICROMACHINES 2023; 14:2101. [PMID: 38004958 PMCID: PMC10673270 DOI: 10.3390/mi14112101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Molecular diagnostics have become indispensable in healthcare, agriculture, and environmental monitoring. This diagnostic form can offer rapid and precise identification of pathogens and biomarkers. However, traditional laboratory-based molecular testing methods can be expensive and require specialised training, limiting their accessibility in resource-limited settings and on-site applications. To overcome these challenges, this study proposes an innovative approach to reducing costs and complexity in portable colorimetric loop-mediated isothermal amplification (LAMP) devices. The research evaluates different resistive heating systems to create an energy-efficient, cost-effective, and compact device to heat a polydimethylsiloxane (PDMS) block for precise temperature control during LAMP reactions. By combining this novel heating system with an off-the-shelf red-green-blue (RGB) sensor to detect and quantify colour changes, the integrated system can accurately detect Leifsonia xyli subsp. xyli, the bacteria responsible for ratoon stunting disease (RSD) in sugarcane. The experimental validation of this system demonstrates its ability to detect the target pathogen in real time, making it an important development for low cost, portable, and easy-to-use molecular diagnostics in healthcare, agriculture, and environmental monitoring applications.
Collapse
Affiliation(s)
- Simon Strachan
- School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia; (M.C.); (M.S.); (R.F.)
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia; (S.A.B.); (N.-T.N.)
| | - Moutoshi Chakraborty
- School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia; (M.C.); (M.S.); (R.F.)
- Centre for Planetary Health and Food Security, Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia
| | - Mohamed Sallam
- School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia; (M.C.); (M.S.); (R.F.)
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia; (S.A.B.); (N.-T.N.)
- Griffith Institute for Drug Discovery, Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia
| | - Shamsul A. Bhuiyan
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia; (S.A.B.); (N.-T.N.)
- Sugar Research Australia, Woodford, QLD 4514, Australia
| | - Rebecca Ford
- School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia; (M.C.); (M.S.); (R.F.)
- Centre for Planetary Health and Food Security, Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Brisbane, QLD 4111, Australia; (S.A.B.); (N.-T.N.)
| |
Collapse
|
5
|
Zhu Y, Liu J, Liu S, Zhu X, Wu J, Zhou Q, He J, Wang H, Gao W. CRISPR/Cas12a-assisted visible fluorescence for pseudo dual nucleic acid detection based on an integrated chip. Anal Chim Acta 2023; 1280:341860. [PMID: 37858552 DOI: 10.1016/j.aca.2023.341860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND A false negative result is one of the major problems in nucleic acid detection. Failure to screen positive samples for pathogens or viruses poses a risk to public health. This situation will lead to more serious consequences for infectious pathogens or viruses. At present, the common solution is to introduce exogenous or endogenous internal control. Because it amplifies and is detected separately from the target gene, it cannot avoid false negative results caused by DNA extraction failure or reagent inactivation. There is an urgent need for a simple and reliable method to solve the false negative problem of nucleic acid detection. RESULTS We established a chip and an on-chip detection method for the integrated detection of target genes and internal control using the CRISPR system in LAMP amplification products. The chip is processed from a low-cost PMMA board and has three chambers and some channels. After adding the sample, the chip only needs to be rotated twice, and the sample enters three chambers successively depending on its gravity for dual LAMP reaction and CRISPR detections. With a portable LED blue light exciter, visual fluorescence detection is realized. Whether the detection result is positive, negative, or invalid can be determined according to the fluorescence in the CRISPR chamber for target gene and CRISPR chamber for internal control. In this study, the detection of Salmonella enterica in Fenneropenaeus chinensis was taken as an example. The results showed good specificity and sensitivity. It could detect as low as 15 copies/μL of Salmonella enterica. SIGNIFICANCE The on-chip detection solves the problem of aerosol contamination and false negative results. It has the advantages of high sensitivity, high specificity, high accuracy, and low cost. This research will advance the development of nucleic acid detection technology, providing a new and reliable strategy for POCT detection of pathogenic bacteria and viruses.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianlin Liu
- Department of Information Technology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Shanna Liu
- Department of Information Technology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Xinjian Zhu
- Department of Information Technology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China.
| | - Qingli Zhou
- Department of Information Technology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China.
| | - Jinsong He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huanying Wang
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| | - Wenwen Gao
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| |
Collapse
|
6
|
Burman S, Mason MG, Hintzsche J, Zou Y, Gibbs L, MacGillycuddy L, Magarey RC, Botella JR. Changing the diagnostic paradigm for sugarcane: development of a mill-based diagnostic for ratoon stunting disease in crude cane juice. FRONTIERS IN PLANT SCIENCE 2023; 14:1257894. [PMID: 37905170 PMCID: PMC10613498 DOI: 10.3389/fpls.2023.1257894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023]
Abstract
The availability of efficient diagnostic methods is crucial to monitor the incidence of crop diseases and implement effective management strategies. One of the most important elements in diagnostics, especially in large acreage crops, is the sampling strategy as hundreds of thousands of individual plants can grow in a single farm, making it difficult to assess disease incidence in field surveys. This problem is compounded when there are no external disease symptoms, as in the case for the ratoon stunting disease (RSD) in sugarcane. We have developed an alternative approach of disease surveillance by using the crude cane juice expressed at the sugar factory (mill). For this purpose, we optimized DNA extraction and amplification conditions for the bacterium Leifsonia xyli subsp xyli, the causal agent of RSD. The use of nucleic acid dipsticks and LAMP isothermal amplification allows to perform the assays at the mills, even in the absence of molecular biology laboratories. Our method has been validated using the qPCR industry standard and shows higher sensitivity. This approach circumvents sampling limitations, providing RSD incidence evaluation on commercial crops and facilitating disease mapping across growing regions. There is also potential is to extend the technology to other sugarcane diseases as well as other processed crops.
Collapse
Affiliation(s)
- Sriti Burman
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - Michael G. Mason
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica Hintzsche
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - Yiping Zou
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - Lucy Gibbs
- Sugar Research Australia, Brisbane, QLD, Australia
| | | | | | - José R. Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Rubio-Monterde A, Quesada-González D, Merkoçi A. Toward Integrated Molecular Lateral Flow Diagnostic Tests Using Advanced Micro- and Nanotechnology. Anal Chem 2023; 95:468-489. [PMID: 36413136 DOI: 10.1021/acs.analchem.2c04529] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ana Rubio-Monterde
- Paperdrop Diagnostics S.L., MRB, Campus UAB, 08193 Bellaterra, Spain.,Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, 08193 Barcelona, Spain
| | | | - Arben Merkoçi
- Paperdrop Diagnostics S.L., MRB, Campus UAB, 08193 Bellaterra, Spain.,Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, 08193 Barcelona, Spain.,The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08036 Bellaterra, Barcelona Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|