1
|
Gobbato T, Volpato GA, Sartorel A, Bonchio M. A breath of sunshine: oxygenic photosynthesis by functional molecular architectures. Chem Sci 2023; 14:12402-12429. [PMID: 38020375 PMCID: PMC10646967 DOI: 10.1039/d3sc03780k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
The conversion of light into chemical energy is the game-changer enabling technology for the energetic transition to renewable and clean solar fuels. The photochemistry of interest includes the overall reductive/oxidative splitting of water into hydrogen and oxygen and alternatives based on the reductive conversion of carbon dioxide or nitrogen, as primary sources of energy-rich products. Devices capable of performing such transformations are based on the integration of three sequential core functions: light absorption, photo-induced charge separation, and the photo-activated breaking/making of molecular bonds via specific catalytic routes. The key to success does not rely simply on the individual components' performance, but on their optimized integration in terms of type, number, geometry, spacing, and linkers dictating the photosynthetic architecture. Natural photosynthesis has evolved along this concept, by integrating each functional component in one specialized "body" (from the Greek word "soma") to enable the conversion of light quanta with high efficiency. Therefore, the natural "quantasome" represents the key paradigm to inspire man-made constructs for artificial photosynthesis. The case study presented in this perspective article deals with the design of artificial photosynthetic systems for water oxidation and oxygen production, engineered as molecular architectures then rendered on electrodic surfaces. Water oxidation to oxygen is indeed the pervasive oxidative reaction used by photosynthetic organisms, as the source of reducing equivalents (electrons and protons) to be delivered for the processing of high-energy products. Considering the vast and abundant supply of water (including seawater) as a renewable source on our planet, this is also a very appealing option for photosynthetic energy devices. We will showcase the progress in the last 15 years (2009-2023) in the strategies for integrating functional building blocks as molecular photosensitizers, multi-redox water oxidation catalysts and semiconductor materials, highlighting how additional components such as redox mediators, hydrophilic/hydrophobic pendants, and protective layers can impact on the overall photosynthetic performance. Emerging directions consider the modular tuning of the multi-component device, in order to target a diversity of photocatalytic oxidations, expanding the scope of the primary electron and proton sources while enhancing the added-value of the oxidation product beyond oxygen: the selective photooxidation of organics combines the green chemistry vision with renewable energy schemes and is expected to explode in coming years.
Collapse
Affiliation(s)
- Thomas Gobbato
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| | - Giulia Alice Volpato
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| | - Andrea Sartorel
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| | - Marcella Bonchio
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
- ITM-CNR Section of Padova, INSTM Unit of Padova via Marzolo 1 35131 Padova Italy
| |
Collapse
|
2
|
Fereiro JA, Bendikov T, Herrmann A, Pecht I, Sheves M, Cahen D. Protein Orientation Defines Rectification of Electronic Current via Solid-State Junction of Entire Photosystem-1 Complex. J Phys Chem Lett 2023; 14:2973-2982. [PMID: 36940422 DOI: 10.1021/acs.jpclett.2c03700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We demonstrate that the direction of current rectification via one of nature's most efficient light-harvesting systems, the photosystem 1 complex (PS1), can be controlled by its orientation on Au substrates. Molecular self-assembly of the PS1 complex using four different linkers with distinct functional head groups that interact by electrostatic and hydrogen bonds with different surface parts of the entire protein PS1 complex was used to tailor the PS1 orientation. We observe an orientation-dependent rectification in the current-voltage characteristics for linker/PS1 molecule junctions. Results of an earlier study using a surface two-site PS1 mutant complex having its orientation set by covalent binding to the Au substrate supports our conclusion. Current-voltage-temperature measurements on the linker/PS1 complex indicate off-resonant tunneling as the main electron transport mechanism. Our ultraviolet photoemission spectroscopy results highlight the importance of the protein orientation for the energy level alignment and provide insight into the charge transport mechanism via the PS1 transport chain.
Collapse
Affiliation(s)
- Jerry A Fereiro
- Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot 7610001, Israel
- School of Chemistry, Indian Inst. of Science Education & Research, Thiruvananthapuram 695551, Kerala, India
| | - Tatyana Bendikov
- Department of Chemical Research Support, Weizmann Inst. of Science, Rehovot 7610001, Israel
| | - Andreas Herrmann
- DWI - Leibniz-Institute for Interactive Materials, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Israel Pecht
- Department of Immunology & Regenerative Biology, Weizmann Inst. of Science, Rehovot 7610001, Israel
| | - Mordechai Sheves
- Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot 7610001, Israel
| | - David Cahen
- Department of Molecular Chemistry & Materials Science, Weizmann Inst. of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Liu XL, Hu YY, Li K, Chen MQ, Wang P. Reconstituted LH2 in multilayer membranes induced by poly-L-lysine: structure of supramolecular and electronic states. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
4
|
Schumacher I, Menghini D, Ovinnikov S, Hauenstein M, Fankhauser N, Zipfel C, Hörtensteiner S, Aubry S. Evolution of chlorophyll degradation is associated with plant transition to land. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1473-1488. [PMID: 34931727 PMCID: PMC9306834 DOI: 10.1111/tpj.15645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 05/27/2023]
Abstract
Chlorophyll, the central pigment of photosynthesis, is highly photo‐active and degraded enzymatically during leaf senescence. Merging comparative genomics and metabolomics, we evaluate the extent to which the chlorophyll detoxification pathway has evolved in Viridiplantae. We argue that cytosolic detoxification of phyllobilins in particular was a critical process to the green lineage’s transition to land.
Collapse
Affiliation(s)
- Isabel Schumacher
- Department of Plant and Microbial BiologyUniversity of ZürichZürich8008Switzerland
| | - Damian Menghini
- Department of Plant and Microbial BiologyUniversity of ZürichZürich8008Switzerland
| | - Serguei Ovinnikov
- Department of Plant and Microbial BiologyUniversity of ZürichZürich8008Switzerland
| | - Mareike Hauenstein
- Department of Plant and Microbial BiologyUniversity of ZürichZürich8008Switzerland
| | - Niklaus Fankhauser
- Department of Plant and Microbial BiologyUniversity of ZürichZürich8008Switzerland
| | - Cyril Zipfel
- Department of Plant and Microbial BiologyUniversity of ZürichZürich8008Switzerland
| | - Stefan Hörtensteiner
- Department of Plant and Microbial BiologyUniversity of ZürichZürich8008Switzerland
| | - Sylvain Aubry
- Department of Plant and Microbial BiologyUniversity of ZürichZürich8008Switzerland
| |
Collapse
|
5
|
Davankov VA. The Riddle of Atmospheric Oxygen: Photosynthesis or Photolysis? RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421100046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract
The stoichiometry of the photosynthetic reaction requires that the quantities of the end products (organic biomaterial and free oxygen) be equal. However, the correct balance of the amounts of oxygen and organic matter that could have been produced by green plants on the land and in the ocean since the emergence of unique oxygenic photosynthetic systems (no more than 2.7 billion years ago) is virtually impossible, since the vast majority of oxygen was lost in oxidizing the initially reducing matter of the planet, and the bulk of organic carbon is scattered in sedimentary rocks. In recent decades, convincing information has been obtained in favor of the large-scale photolysis of water molecules in the upper atmosphere with the scattering of light hydrogen into space and the retention of heavier oxygen by gravity. This process has been operating continuously since the formation of the Earth. It is accompanied by huge losses of water and the oxidation of salts of ferrous iron and sulfide sulfur in the oceans and methane in the atmosphere. The main stages of the evolution of the atmosphere and surface layers of the Earth’s crust are analyzed for the first time in this work by considering the parallel processes of photosynthesis and photolysis. Large-scale photolysis of water also provides consistent explanations for the main stages in the evolution of the nearest planets of our Solar System.
Collapse
|
6
|
Abstract
Tremendous chemical diversity is the hallmark of plants and is supported by highly complex biochemical machinery. Plant metabolic enzymes originated and were transferred from eukaryotic and prokaryotic ancestors and further diversified by the unprecedented rates of gene duplication and functionalization experienced in land plants. Unlike microbes, which have frequent horizontal gene transfer events and multiple inputs of energy and organic carbon, land plants predominantly rely on organic carbon generated from CO2 and have experienced very few, if any, gene transfers during their recent evolutionary history. As such, plant metabolic networks have evolved in a stepwise manner and on existing networks under various evolutionary constraints. This review aims to take a broader view of plant metabolic evolution and lay a framework to further explore evolutionary mechanisms of the complex metabolic network. Understanding the underlying metabolic and genetic constraints is also an empirical prerequisite for rational engineering and redesigning of plant metabolic pathways.
Collapse
Affiliation(s)
- Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
7
|
Bag P. Light Harvesting in Fluctuating Environments: Evolution and Function of Antenna Proteins across Photosynthetic Lineage. PLANTS (BASEL, SWITZERLAND) 2021; 10:1184. [PMID: 34200788 PMCID: PMC8230411 DOI: 10.3390/plants10061184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
Photosynthesis is the major natural process that can harvest and harness solar energy into chemical energy. Photosynthesis is performed by a vast number of organisms from single cellular bacteria to higher plants and to make the process efficient, all photosynthetic organisms possess a special type of pigment protein complex(es) that is (are) capable of trapping light energy, known as photosynthetic light-harvesting antennae. From an evolutionary point of view, simpler (unicellular) organisms typically have a simple antenna, whereas higher plants possess complex antenna systems. The higher complexity of the antenna systems provides efficient fine tuning of photosynthesis. This relationship between the complexity of the antenna and the increasing complexity of the organism is mainly related to the remarkable acclimation capability of complex organisms under fluctuating environmental conditions. These antenna complexes not only harvest light, but also provide photoprotection under fluctuating light conditions. In this review, the evolution, structure, and function of different antenna complexes, from single cellular organisms to higher plants, are discussed in the context of the ability to acclimate and adapt to cope under fluctuating environmental conditions.
Collapse
Affiliation(s)
- Pushan Bag
- Department of Plant Physiology, Umeå Plant Science Centre, UPSC, Umeå University, 90736 Umeå, Sweden
| |
Collapse
|
8
|
Çoruh O, Frank A, Tanaka H, Kawamoto A, El-Mohsnawy E, Kato T, Namba K, Gerle C, Nowaczyk MM, Kurisu G. Cryo-EM structure of a functional monomeric Photosystem I from Thermosynechococcus elongatus reveals red chlorophyll cluster. Commun Biol 2021; 4:304. [PMID: 33686186 PMCID: PMC7940658 DOI: 10.1038/s42003-021-01808-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
A high-resolution structure of trimeric cyanobacterial Photosystem I (PSI) from Thermosynechococcus elongatus was reported as the first atomic model of PSI almost 20 years ago. However, the monomeric PSI structure has not yet been reported despite long-standing interest in its structure and extensive spectroscopic characterization of the loss of red chlorophylls upon monomerization. Here, we describe the structure of monomeric PSI from Thermosynechococcus elongatus BP-1. Comparison with the trimer structure gave detailed insights into monomerization-induced changes in both the central trimerization domain and the peripheral regions of the complex. Monomerization-induced loss of red chlorophylls is assigned to a cluster of chlorophylls adjacent to PsaX. Based on our findings, we propose a role of PsaX in the stabilization of red chlorophylls and that lipids of the surrounding membrane present a major source of thermal energy for uphill excitation energy transfer from red chlorophylls to P700.
Collapse
Affiliation(s)
- Orkun Çoruh
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Anna Frank
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Hideaki Tanaka
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akihiro Kawamoto
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Eithar El-Mohsnawy
- Department of Botany and Microbiology, Faculty of Science, Kafrelsheikh University, Kafr Al Sheikh, Egypt
| | - Takayuki Kato
- Laboratory of CryoEM Structural Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- RIKEN Center for Biosystems Dynamics Research and SPring-8 Center, Suita, Osaka, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, Japan
| | - Christoph Gerle
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany.
| | - Genji Kurisu
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
9
|
Stephens S, Mahadevan R, Allen DG. Engineering Photosynthetic Bioprocesses for Sustainable Chemical Production: A Review. Front Bioeng Biotechnol 2021; 8:610723. [PMID: 33490053 PMCID: PMC7820810 DOI: 10.3389/fbioe.2020.610723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Microbial production of chemicals using renewable feedstocks such as glucose has emerged as a green alternative to conventional chemical production processes that rely primarily on petroleum-based feedstocks. The carbon footprint of such processes can further be reduced by using engineered cells that harness solar energy to consume feedstocks traditionally considered to be wastes as their carbon sources. Photosynthetic bacteria utilize sophisticated photosystems to capture the energy from photons to generate reduction potential with such rapidity and abundance that cells often cannot use it fast enough and much of it is lost as heat and light. Engineering photosynthetic organisms could enable us to take advantage of this energy surplus by redirecting it toward the synthesis of commercially important products such as biofuels, bioplastics, commodity chemicals, and terpenoids. In this work, we review photosynthetic pathways in aerobic and anaerobic bacteria to better understand how these organisms have naturally evolved to harness solar energy. We also discuss more recent attempts at engineering both the photosystems and downstream reactions that transfer reducing power to improve target chemical production. Further, we discuss different methods for the optimization of photosynthetic bioprocess including the immobilization of cells and the optimization of light delivery. We anticipate this review will serve as an important resource for future efforts to engineer and harness photosynthetic bacteria for chemical production.
Collapse
Affiliation(s)
- Sheida Stephens
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - D Grant Allen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Huang C, Li A, Chen X, Wang T. Understanding the Role of Metal-Organic Frameworks in Surface-Enhanced Raman Scattering Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004802. [PMID: 32985111 DOI: 10.1002/smll.202004802] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/18/2020] [Indexed: 05/14/2023]
Abstract
Metal-organic frameworks (MOFs), built from organic linkers and metal ions/clusters, have emerged as highly promising materials for wide applications. Combining highly porous crystalline MOFs with the surface-enhanced Raman scattering (SERS) technique can achieve unprecedented advantages of high selectivity, high sensitivity, and expedience in analysis and detection. In this critical review, the aim is to present a comprehensive review of recent advances in understanding of the roles of MOFs in MOF-SERS systems, particularly their structure-to-property correlation. Key examples are selected from representative literature to illustrate critical concepts and the MOF-based property-dependent applications are particularly emphasized. Finally, the barriers, future trends, and prospects for further advances in MOF-SERS platforms are also discussed.
Collapse
Affiliation(s)
- Chuanhui Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing, 100190, P. R. China
| | - Ailin Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing, 100190, P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| |
Collapse
|
11
|
Dmitrieva VA, Tyutereva EV, Voitsekhovskaja OV. Singlet Oxygen in Plants: Generation, Detection, and Signaling Roles. Int J Mol Sci 2020; 21:E3237. [PMID: 32375245 PMCID: PMC7247340 DOI: 10.3390/ijms21093237] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/17/2023] Open
Abstract
Singlet oxygen (1O2) refers to the lowest excited electronic state of molecular oxygen. It easily oxidizes biological molecules and, therefore, is cytotoxic. In plant cells, 1O2 is formed mostly in the light in thylakoid membranes by reaction centers of photosystem II. In high concentrations, 1O2 destroys membranes, proteins and DNA, inhibits protein synthesis in chloroplasts leading to photoinhibition of photosynthesis, and can result in cell death. However, 1O2 also acts as a signal relaying information from chloroplasts to the nucleus, regulating expression of nuclear genes. In spite of its extremely short lifetime, 1O2 can diffuse from the chloroplasts into the cytoplasm and the apoplast. As shown by recent studies, 1O2-activated signaling pathways depend not only on the levels but also on the sites of 1O2 production in chloroplasts, and can activate two types of responses, either acclimation to high light or programmed cell death. 1O2 can be produced in high amounts also in root cells during drought stress. This review summarizes recent advances in research on mechanisms and sites of 1O2 generation in plants, on 1O2-activated pathways of retrograde- and cellular signaling, and on the methods to study 1O2 production in plants.
Collapse
Affiliation(s)
| | | | - Olga V. Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg 197376, Russia; (V.A.D.); (E.V.T.)
| |
Collapse
|
12
|
Patty CHL, Ten Kate IL, Buma WJ, van Spanning RJM, Steinbach G, Ariese F, Snik F. Circular Spectropolarimetric Sensing of Vegetation in the Field: Possibilities for the Remote Detection of Extraterrestrial Life. ASTROBIOLOGY 2019; 19:1221-1229. [PMID: 31361507 DOI: 10.1089/ast.2019.2050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Homochirality is a generic and unique property of all biochemical life, and the fractional circular polarization of light it induces therefore constitutes a potentially unambiguous biosignature. However, while high-quality circular polarimetric spectra can be easily and quickly obtained in the laboratory, accurate measurements in the field are much more challenging due to large changes in illumination and target movement. In this study, we measured various targets in the field, up to distances of a few kilometers, using the dedicated circular spectropolarimeter TreePol. We show how photosynthetic life can readily be distinguished from abiotic matter. We underline the potential of circular polarization signals as a remotely accessible means to characterize and monitor terrestrial vegetation, for example, for agriculture and forestry. In addition, we discuss the potential of circular polarization for the remote detection of extraterrestrial life.
Collapse
Affiliation(s)
- C H Lucas Patty
- Amsterdam Institute for Molecules, Medicine and Systems (AIMMS), VU Amsterdam, Amsterdam, The Netherlands
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Biofotonika R&D Ltd., Szeged, Hungary
| | - Inge Loes Ten Kate
- Department of Earth Sciences, Utrecht University, Budapestlaan 4, Utrecht 3584 CD, The Netherlands
| | - Wybren Jan Buma
- HIMS, Photonics group, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Rob J M van Spanning
- Amsterdam Institute for Molecules, Medicine and Systems (AIMMS), VU Amsterdam, Amsterdam, The Netherlands
| | - Gábor Steinbach
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Freek Ariese
- LaserLaB, VU Amsterdam, Amsterdam, The Netherlands
| | - Frans Snik
- Leiden Observatory, Leiden University, Leiden, The Netherlands
| |
Collapse
|
13
|
Hamilton TL. The trouble with oxygen: The ecophysiology of extant phototrophs and implications for the evolution of oxygenic photosynthesis. Free Radic Biol Med 2019; 140:233-249. [PMID: 31078729 DOI: 10.1016/j.freeradbiomed.2019.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/03/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
The ability to harvest light to drive chemical reactions and gain energy provided microbes access to high energy electron donors which fueled primary productivity, biogeochemical cycles, and microbial evolution. Oxygenic photosynthesis is often cited as the most important microbial innovation-the emergence of oxygen-evolving photosynthesis, aided by geologic events, is credited with tipping the scale from a reducing early Earth to an oxygenated world that eventually lead to complex life. Anoxygenic photosynthesis predates oxygen-evolving photosynthesis and played a key role in developing and fine-tuning the photosystem architecture of modern oxygenic phototrophs. The release of oxygen as a by-product of metabolic activity would have caused oxidative damage to anaerobic microbiota that evolved under the anoxic, reducing conditions of early Earth. Photosynthetic machinery is particularly susceptible to the adverse effects of oxygen and reactive oxygen species and these effects are compounded by light. As a result, phototrophs employ additional detoxification mechanisms to mitigate oxidative stress and have evolved alternative oxygen-dependent enzymes for chlorophyll biosynthesis. Phylogenetic reconstruction studies and biochemical characterization suggest photosynthetic reactions centers, particularly in Cyanobacteria, evolved to both increase efficiency of electron transfer and avoid photodamage caused by chlorophyll radicals that is acute in the presence of oxygen. Here we review the oxygen and reactive oxygen species detoxification mechanisms observed in extant anoxygenic and oxygenic photosynthetic bacteria as well as the emergence of these mechanisms over evolutionary time. We examine the distribution of phototrophs in modern systems and phylogenetic reconstructions to evaluate the emergence of mechanisms to mediate oxidative damage and highlight changes in photosystems and reaction centers, chlorophyll biosynthesis, and niche space in response to oxygen production. This synthesis supports an emergence of H2S-driven anoxygenic photosynthesis in Cyanobacteria prior to the evolution of oxygenic photosynthesis and underscores a role for the former metabolism in fueling fine-tuning of the oxygen evolving complex and mechanisms to repair oxidative damage. In contrast, we note the lack of elaborate mechanisms to deal with oxygen in non-cyanobacterial anoxygenic phototrophs suggesting these microbes have occupied similar niche space throughout Earth's history.
Collapse
Affiliation(s)
- Trinity L Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA; Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
14
|
Chaudhary S, Jabre I, Reddy ASN, Staiger D, Syed NH. Perspective on Alternative Splicing and Proteome Complexity in Plants. TRENDS IN PLANT SCIENCE 2019; 24:496-506. [PMID: 30852095 DOI: 10.1016/j.tplants.2019.02.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/28/2019] [Accepted: 02/08/2019] [Indexed: 05/02/2023]
Abstract
Alternative splicing (AS) generates multiple transcripts from the same gene, however, AS contribution to proteome complexity remains elusive in plants. AS is prevalent under stress conditions in plants, but it is counterintuitive why plants would invest in protein synthesis under declining energy supply. We propose that plants employ AS not only to potentially increasing proteomic complexity, but also to buffer against the stress-responsive transcriptome to reduce the metabolic cost of translating all AS transcripts. To maximise efficiency under stress, plants may make fewer proteins with disordered domains via AS to diversify substrate specificity and maintain sufficient regulatory capacity. Furthermore, we suggest that chromatin state-dependent AS engenders short/long-term stress memory to mediate reproducible transcriptional response in the future.
Collapse
Affiliation(s)
- Saurabh Chaudhary
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK; These authors contributed equally to this work
| | - Ibtissam Jabre
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK; These authors contributed equally to this work
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Naeem H Syed
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK.
| |
Collapse
|
15
|
Selective oxidation of B800 bacteriochlorophyll a in photosynthetic light-harvesting protein LH2. Sci Rep 2019; 9:3636. [PMID: 30842503 PMCID: PMC6403449 DOI: 10.1038/s41598-019-40082-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/04/2019] [Indexed: 11/15/2022] Open
Abstract
Engineering chlorophyll (Chl) pigments that are bound to photosynthetic light-harvesting proteins is one promising strategy to regulate spectral coverage for photon capture and to improve the photosynthetic efficiency of these proteins. Conversion from the bacteriochlorophyll (BChl) skeleton (7,8,17,18-tetrahydroporphyrin) to the Chl skeleton (17,18-dihydroporphyrin) produces the most drastic change of the spectral range of absorption by light-harvesting proteins. We demonstrated in situ selective oxidation of B800 BChl a in light-harvesting protein LH2 from a purple bacterium Rhodoblastus acidophilus by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. The newly formed pigment, 3-acetyl Chl a, interacted with the LH2 polypeptides in the same manner as native B800. B850 BChl a was not oxidized in this reaction. CD spectroscopy indicated that the B850 orientation and the content of the α-helices were unchanged by the B800 oxidation. The nonameric circular arrangement of the oxidized LH2 protein was visualized by AFM; its diameter was almost the same as that of native LH2. The in situ oxidation of B800 BChl a in LH2 protein with no structural change will be useful not only for manipulation of the photofunctional properties of photosynthetic pigment-protein complexes but also for understanding the substitution of BChl to Chl pigments in the evolution from bacterial to oxygenic photosynthesis.
Collapse
|
16
|
|
17
|
Sim HYF, Lee HK, Han X, Koh CSL, Phan‐Quang GC, Lay CL, Kao Y, Phang IY, Yeow EKL, Ling XY. Concentrating Immiscible Molecules at Solid@MOF Interfacial Nanocavities to Drive an Inert Gas–Liquid Reaction at Ambient Conditions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Howard Yi Fan Sim
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Hiang Kwee Lee
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
- Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way Innovis, #08-03, Singapore 138634 Singapore
| | - Xuemei Han
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Charlynn Sher Lin Koh
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Gia Chuong Phan‐Quang
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Chee Leng Lay
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
- Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way Innovis, #08-03, Singapore 138634 Singapore
| | - Ya‐Chuan Kao
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - In Yee Phang
- Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way Innovis, #08-03, Singapore 138634 Singapore
| | - Edwin K. L. Yeow
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
18
|
Sim HYF, Lee HK, Han X, Koh CSL, Phan-Quang GC, Lay CL, Kao YC, Phang IY, Yeow EKL, Ling XY. Concentrating Immiscible Molecules at Solid@MOF Interfacial Nanocavities to Drive an Inert Gas-Liquid Reaction at Ambient Conditions. Angew Chem Int Ed Engl 2018; 57:17058-17062. [PMID: 30382604 DOI: 10.1002/anie.201809813] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 11/07/2022]
Abstract
Gas-liquid reactions form the basis of our everyday lives, yet they still suffer poor reaction efficiency and are difficult to monitor in situ, especially at ambient conditions. Now, an inert gas-liquid reaction between aniline and CO2 is driven at 1 atm and 298 K by selectively concentrating these immiscible reactants at the interface between metal-organic framework and solid nanoparticles (solid@MOF). Real-time reaction SERS monitoring and simulations affirm the formation of phenylcarbamic acid, which was previously undetectable because they are unstable for post-reaction treatments. The solid@MOF ensemble gives rise to a more than 28-fold improvement to reaction efficiency as compared to ZIF-only and solid-only platforms, emphasizing that the interfacial nanocavities in solid@MOF are the key to enhance the gas-liquid reaction. Our strategy can be integrated with other functional materials, thus opening up new opportunities for ambient-operated gas-liquid applications.
Collapse
Affiliation(s)
- Howard Yi Fan Sim
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Hiang Kwee Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xuemei Han
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Charlynn Sher Lin Koh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Gia Chuong Phan-Quang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Chee Leng Lay
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Ya-Chuan Kao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - In Yee Phang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Edwin K L Yeow
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
19
|
Hartzell S, Bartlett M, Yin J, Porporato A. Similarities in the evolution of plants and cars. PLoS One 2018; 13:e0198044. [PMID: 29958287 PMCID: PMC6025855 DOI: 10.1371/journal.pone.0198044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/12/2018] [Indexed: 11/18/2022] Open
Abstract
While one system is animate and the other inanimate, both plants and cars are powered by a highly successful process which has evolved in a changing environment. Each process (the photosynthetic pathway and the car engine, respectively) originated from a basic scheme and evolved greater efficiency by adding components to the existing structure, which has remained largely unchanged. Here we present a comparative analysis of two variants on the original C3 photosynthetic pathway (C4 and CAM) and two variants on the internal combustion engine (the turbocharger and the hybrid electric vehicle). We compare the timeline of evolution, the interaction between system components, and the effects of environmental conditions on both systems. This analysis reveals striking similarities in the development of these processes, providing insight as to how complex systems—both natural and built—evolve and adapt to changing environmental conditions in a modular fashion.
Collapse
Affiliation(s)
- Samantha Hartzell
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, United States of America
- Princeton Environmental Institute, Princeton University, Princeton, NJ, United States of America
| | - Mark Bartlett
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, United States of America
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, United States of America
| | - Jun Yin
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, United States of America
- Princeton Environmental Institute, Princeton University, Princeton, NJ, United States of America
| | - Amilcare Porporato
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, United States of America
- Princeton Environmental Institute, Princeton University, Princeton, NJ, United States of America
- * E-mail:
| |
Collapse
|
20
|
Walker SI, Bains W, Cronin L, DasSarma S, Danielache S, Domagal-Goldman S, Kacar B, Kiang NY, Lenardic A, Reinhard CT, Moore W, Schwieterman EW, Shkolnik EL, Smith HB. Exoplanet Biosignatures: Future Directions. ASTROBIOLOGY 2018; 18:779-824. [PMID: 29938538 PMCID: PMC6016573 DOI: 10.1089/ast.2017.1738] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/13/2018] [Indexed: 05/08/2023]
Abstract
We introduce a Bayesian method for guiding future directions for detection of life on exoplanets. We describe empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those emerging from better understanding stellar environment, planetary climate and geophysics, geochemical cycling, the universalities of physics and chemistry, the contingencies of evolutionary history, the properties of life as an emergent complex system, and the mechanisms driving the emergence of life. We provide examples for how the Bayesian formalism could guide future search strategies, including determining observations to prioritize or deciding between targeted searches or larger lower resolution surveys to generate ensemble statistics and address how a Bayesian methodology could constrain the prior probability of life with or without a positive detection. Key Words: Exoplanets-Biosignatures-Life detection-Bayesian analysis. Astrobiology 18, 779-824.
Collapse
Affiliation(s)
- Sara I. Walker
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona
- ASU-Santa Fe Institute Center for Biosocial Complex Systems, Arizona State University, Tempe, Arizona
- Blue Marble Space Institute of Science, Seattle, Washington
| | - William Bains
- EAPS (Earth, Atmospheric and Planetary Science), MIT, Cambridge, Massachusetts
- Rufus Scientific Ltd., Royston, United Kingdom
| | - Leroy Cronin
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sebastian Danielache
- Department of Materials and Life Science, Faculty of Science and Technology, Sophia University, Tokyo, Japan
- Earth Life Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Shawn Domagal-Goldman
- NASA Goddard Space Flight Center, Greenbelt, Maryland
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, University of Washington, Seattle, Washington
| | - Betul Kacar
- Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- NASA Astrobiology Institute, Reliving the Past Team, University of Montana, Missoula, Montana
- Department of Molecular and Cell Biology, University of Arizona, Tucson, Arizona
- Department of Astronomy and Steward Observatory, University of Arizona, Tucson, Arizona
| | - Nancy Y. Kiang
- NASA Goddard Institute for Space Studies, New York, New York
| | - Adrian Lenardic
- Department of Earth Science, Rice University, Houston, Texas
| | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
- NASA Astrobiology Institute, Alternative Earths Team, University of California, Riverside, California
| | - William Moore
- Department of Atmospheric and Planetary Sciences, Hampton University, Hampton, Virginia
- National Institute of Aerospace, Hampton, Virginia
| | - Edward W. Schwieterman
- Blue Marble Space Institute of Science, Seattle, Washington
- NASA Astrobiology Institute, Virtual Planetary Laboratory Team, University of Washington, Seattle, Washington
- NASA Astrobiology Institute, Alternative Earths Team, University of California, Riverside, California
- Department of Earth Sciences, University of California, Riverside, California
- NASA Postdoctoral Program, Universities Space Research Association, Columbia, Maryland
| | - Evgenya L. Shkolnik
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - Harrison B. Smith
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| |
Collapse
|
21
|
Martin WF, Bryant DA, Beatty JT. A physiological perspective on the origin and evolution of photosynthesis. FEMS Microbiol Rev 2018; 42:205-231. [PMID: 29177446 PMCID: PMC5972617 DOI: 10.1093/femsre/fux056] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
Abstract
The origin and early evolution of photosynthesis are reviewed from an ecophysiological perspective. Earth's first ecosystems were chemotrophic, fueled by geological H2 at hydrothermal vents and, required flavin-based electron bifurcation to reduce ferredoxin for CO2 fixation. Chlorophyll-based phototrophy (chlorophototrophy) allowed autotrophs to generate reduced ferredoxin without electron bifurcation, providing them access to reductants other than H2. Because high-intensity, short-wavelength electromagnetic radiation at Earth's surface would have been damaging for the first chlorophyll (Chl)-containing cells, photosynthesis probably arose at hydrothermal vents under low-intensity, long-wavelength geothermal light. The first photochemically active pigments were possibly Zn-tetrapyrroles. We suggest that (i) after the evolution of red-absorbing Chl-like pigments, the first light-driven electron transport chains reduced ferredoxin via a type-1 reaction center (RC) progenitor with electrons from H2S; (ii) photothioautotrophy, first with one RC and then with two, was the bridge between H2-dependent chemolithoautotrophy and water-splitting photosynthesis; (iii) photothiotrophy sustained primary production in the photic zone of Archean oceans; (iv) photosynthesis arose in an anoxygenic cyanobacterial progenitor; (v) Chl a is the ancestral Chl; and (vi), anoxygenic chlorophototrophic lineages characterized so far acquired, by horizontal gene transfer, RCs and Chl biosynthesis with or without autotrophy, from the architects of chlorophototrophy-the cyanobacterial lineage.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, University of Düsseldorf, D-40225 Düsseldorf, Germany
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - J Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
22
|
Cyanobacterial photosynthesis under sulfidic conditions: insights from the isolate Leptolyngbya sp. strain hensonii. ISME JOURNAL 2018; 12:568-584. [PMID: 29328062 PMCID: PMC5776472 DOI: 10.1038/ismej.2017.193] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/01/2017] [Accepted: 10/09/2017] [Indexed: 01/10/2023]
Abstract
We report the isolation of a pinnacle-forming cyanobacterium isolated from a microbial mat covering the sediment surface at Little Salt Spring—a flooded sinkhole in Florida with a perennially microoxic and sulfidic water column. The draft genome of the isolate encodes all of the enzymatic machinery necessary for both oxygenic and anoxygenic photosynthesis, as well as genes for methylating hopanoids at the C-2 position. The physiological response of the isolate to H2S is complex: (i) no induction time is necessary for anoxygenic photosynthesis; (ii) rates of anoxygenic photosynthesis are regulated by both H2S and irradiance; (iii) O2 production is inhibited by H2S concentrations as low as 1 μM and the recovery rate of oxygenic photosynthesis is dependent on irradiance; (iv) under the optimal light conditions for oxygenic photosynthesis, rates of anoxygenic photosynthesis are nearly double those of oxygenic photosynthesis. We hypothesize that the specific adaptation mechanisms of the isolate to H2S emerged from a close spatial interaction with sulfate-reducing bacteria. The new isolate, Leptolyngbya sp. strain hensonii, is not closely related to other well-characterized Cyanobacteria that can perform anoxygenic photosynthesis, which further highlights the need to characterize the diversity and biogeography of metabolically versatile Cyanobacteria. The isolate will be an ideal model organism for exploring the adaptation of Cyanobacteria to sulfidic conditions.
Collapse
|
23
|
|
24
|
Khadka B, Adeolu M, Blankenship RE, Gupta RS. Novel insights into the origin and diversification of photosynthesis based on analyses of conserved indels in the core reaction center proteins. PHOTOSYNTHESIS RESEARCH 2017; 131:159-171. [PMID: 27638319 DOI: 10.1007/s11120-016-0307-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
The evolution and diversification of different types of photosynthetic reaction centers (RCs) remains an important unresolved problem. We report here novel sequence features of the core proteins from Type I RCs (RC-I) and Type II RCs (RC-II) whose analyses provide important insights into the evolution of the RCs. The sequence alignments of the RC-I core proteins contain two conserved inserts or deletions (indels), a 3 amino acid (aa) indel that is uniquely found in all RC-I homologs from Cyanobacteria (both PsaA and PsaB) and a 1 aa indel that is specifically shared by the Chlorobi and Acidobacteria homologs. Ancestral sequence reconstruction provides evidence that the RC-I core protein from Heliobacteriaceae (PshA), lacking these indels, is most closely related to the ancestral RC-I protein. Thus, the identified 3 aa and 1 aa indels in the RC-I protein sequences must have been deletions, which occurred, respectively, in an ancestor of the modern Cyanobacteria containing a homodimeric form of RC-I and in a common ancestor of the RC-I core protein from Chlorobi and Acidobacteria. We also report a conserved 1 aa indel in the RC-II protein sequences that is commonly shared by all homologs from Cyanobacteria but not found in the homologs from Chloroflexi, Proteobacteria and Gemmatimonadetes. Ancestral sequence reconstruction provides evidence that the RC-II subunits lacking this indel are more similar to the ancestral RC-II protein. The results of flexible structural alignments of the indel-containing region of the RC-II protein with the homologous region in the RC-I core protein, which shares structural similarity with the RC-II homologs, support the view that the 1 aa indel present in the RC-II homologs from Cyanobacteria is a deletion, which was not present in the ancestral form of the RC-II protein. Our analyses of the conserved indels found in the RC-I and RC-II proteins, thus, support the view that the earliest photosynthetic lineages with living descendants likely contained only a single RC (RC-I or RC-II), and the presence of both RC-I and RC-II in a linked state, as found in the modern Cyanobacteria, is a derivation from these earlier phototrophs.
Collapse
Affiliation(s)
- Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Mobolaji Adeolu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Robert E Blankenship
- Department of Biology and Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| |
Collapse
|
25
|
Abstract
![]()
The field of organic
photovoltaics has developed rapidly over the
last 2 decades, and small solar cells with power conversion efficiencies
of 13% have been demonstrated. Light absorbed in the organic layers
forms tightly bound excitons that are split into free electrons and
holes using heterojunctions of electron donor and acceptor materials,
which are then extracted at electrodes to give useful electrical power.
This review gives a concise description of the fundamental processes
in photovoltaic devices, with the main emphasis on the characterization
of energy transfer and its role in dictating device architecture,
including multilayer planar heterojunctions, and on the factors that
impact free carrier generation from dissociated excitons. We briefly
discuss harvesting of triplet excitons, which now attracts substantial
interest when used in conjunction with singlet fission. Finally, we
introduce the techniques used by researchers for characterization
and engineering of bulk heterojunctions to realize large photocurrents,
and examine the formed morphology in three prototypical blends.
Collapse
Affiliation(s)
- Gordon J Hedley
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews , North Haugh, St Andrews, Fife KY16 9SS, U.K
| | - Arvydas Ruseckas
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews , North Haugh, St Andrews, Fife KY16 9SS, U.K
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews , North Haugh, St Andrews, Fife KY16 9SS, U.K
| |
Collapse
|
26
|
The Cosmic Zoo: The (Near) Inevitability of the Evolution of Complex, Macroscopic Life. Life (Basel) 2016; 6:life6030025. [PMID: 27376334 PMCID: PMC5041001 DOI: 10.3390/life6030025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/17/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022] Open
Abstract
Life on Earth provides a unique biological record from single-cell microbes to technologically intelligent life forms. Our evolution is marked by several major steps or innovations along a path of increasing complexity from microbes to space-faring humans. Here we identify various major key innovations, and use an analytical toolset consisting of a set of models to analyse how likely each key innovation is to occur. Our conclusion is that once the origin of life is accomplished, most of the key innovations can occur rather readily. The conclusion for other worlds is that if the origin of life can occur rather easily, we should live in a cosmic zoo, as the innovations necessary to lead to complex life will occur with high probability given sufficient time and habitat. On the other hand, if the origin of life is rare, then we might live in a rather empty universe.
Collapse
|
27
|
Beal NJ, O'Malley PJ. Manganese Oxidation State Assignment for Manganese Catalase. J Am Chem Soc 2016; 138:4358-61. [PMID: 27007277 DOI: 10.1021/jacs.6b02600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxidation state assignment of the manganese ions present in the superoxidized manganese (III/IV) catalase active site is determined by comparing experimental and broken symmetry density functional theory calculated (14)N, (17)O, and (1)H hyperfine couplings. Experimental results have been interpreted to indicate that the substrate water is coordinated to the Mn(III) ion. However, by calculating hyperfine couplings for both scenarios we show that water is coordinated to the Mn(IV) ion and that the assigned oxidation states of the two manganese ions present in the site are the opposite of that previously proposed based on experimental measurements alone.
Collapse
Affiliation(s)
- Nathan J Beal
- School of Chemistry, The University of Manchester , Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Patrick J O'Malley
- School of Chemistry, The University of Manchester , Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
28
|
Gupta RS, Khadka B. Evidence for the presence of key chlorophyll-biosynthesis-related proteins in the genus Rubrobacter (Phylum Actinobacteria) and its implications for the evolution and origin of photosynthesis. PHOTOSYNTHESIS RESEARCH 2016; 127:201-18. [PMID: 26174026 DOI: 10.1007/s11120-015-0177-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/06/2015] [Indexed: 05/18/2023]
Abstract
Homologs showing high degree of sequence similarity to the three subunits of the protochlorophyllide oxidoreductase enzyme complex (viz. BchL, BchN, and BchB), which carries out a central role in chlorophyll-bacteriochlorophyll (Bchl) biosynthesis, are uniquely found in photosynthetic organisms. The results of BLAST searches and homology modeling presented here show that proteins exhibiting a high degree of sequence and structural similarity to the BchB and BchN proteins are also present in organisms from the high G+C Gram-positive phylum of Actinobacteria, specifically in members of the genus Rubrobacter (R. x ylanophilus and R. r adiotolerans). The results presented exclude the possibility that the observed BLAST hits are for subunits of the nitrogenase complex or the chlorin reductase complex. The branching in phylogenetic trees and the sequence characteristics of the Rubrobacter BchB/BchN homologs indicate that these homologs are distinct from those found in other photosynthetic bacteria and that they may represent ancestral forms of the BchB/BchN proteins. Although a homolog showing high degree of sequence similarity to the BchL protein was not detected in Rubrobacter, another protein, belonging to the ParA/Soj/MinD family, present in these bacteria, exhibits high degree of structural similarity to the BchL. In addition to the BchB/BchN homologs, Rubrobacter species also contain homologs showing high degree of sequence similarity to different subunits of magnesium chelatase (BchD, BchH, and BchI) as well as proteins showing significant similarity to the BchP and BchG proteins. Interestingly, no homologs corresponding to the BchX, BchY, and BchZ proteins were detected in the Rubrobacter species. These results provide the first suggestive evidence that some form of photosynthesis either exists or was anciently present within the phylum Actinobacteria (high G+C Gram-positive) in members of the genus Rubrobacter. The significance of these results concerning the origin of the Bchl-based photosynthesis is also discussed.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| | - Bijendra Khadka
- Department of Biochemistry, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| |
Collapse
|
29
|
Najafpour MM, Renger G, Hołyńska M, Moghaddam AN, Aro EM, Carpentier R, Nishihara H, Eaton-Rye JJ, Shen JR, Allakhverdiev SI. Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chem Rev 2016; 116:2886-936. [PMID: 26812090 DOI: 10.1021/acs.chemrev.5b00340] [Citation(s) in RCA: 337] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
All cyanobacteria, algae, and plants use a similar water-oxidizing catalyst for water oxidation. This catalyst is housed in Photosystem II, a membrane-protein complex that functions as a light-driven water oxidase in oxygenic photosynthesis. Water oxidation is also an important reaction in artificial photosynthesis because it has the potential to provide cheap electrons from water for hydrogen production or for the reduction of carbon dioxide on an industrial scale. The water-oxidizing complex of Photosystem II is a Mn-Ca cluster that oxidizes water with a low overpotential and high turnover frequency number of up to 25-90 molecules of O2 released per second. In this Review, we discuss the atomic structure of the Mn-Ca cluster of the Photosystem II water-oxidizing complex from the viewpoint that the underlying mechanism can be informative when designing artificial water-oxidizing catalysts. This is followed by consideration of functional Mn-based model complexes for water oxidation and the issue of Mn complexes decomposing to Mn oxide. We then provide a detailed assessment of the chemistry of Mn oxides by considering how their bulk and nanoscale properties contribute to their effectiveness as water-oxidizing catalysts.
Collapse
Affiliation(s)
| | - Gernot Renger
- Institute of Chemistry, Max-Volmer-Laboratory of Biophysical Chemistry, Technical University Berlin , Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Małgorzata Hołyńska
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg , Hans-Meerwein-Straße, D-35032 Marburg, Germany
| | | | - Eva-Mari Aro
- Department of Biochemistry and Food Chemistry, University of Turku , 20014 Turku, Finland
| | - Robert Carpentier
- Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières , C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - Hiroshi Nishihara
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1, Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago , P.O. Box 56, Dunedin 9054, New Zealand
| | - Jian-Ren Shen
- Photosynthesis Research Center, Graduate School of Natural Science and Technology, Faculty of Science, Okayama University , Okayama 700-8530, Japan.,Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences , Beijing 100093, China
| | - Suleyman I Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences , Botanicheskaya Street 35, Moscow 127276, Russia.,Institute of Basic Biological Problems, Russian Academy of Sciences , Pushchino, Moscow Region 142290, Russia.,Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University , Leninskie Gory 1-12, Moscow 119991, Russia
| |
Collapse
|
30
|
Zhao L, Qu R, Li A, Ma R, Shi L. Cooperative self-assembly of porphyrins with polymers possessing bioactive functions. Chem Commun (Camb) 2016; 52:13543-13555. [DOI: 10.1039/c6cc05449h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review covers recent research on design strategies for the cooperative self-assembly of porphyrins with polymers and its implementation as bioactive assembly.
Collapse
Affiliation(s)
- Lizhi Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes
- School of Materials Science and Engineering
- Tianjin Polytechnic University
- Tianjin
- P. R. China
| | - Rui Qu
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Rujiang Ma
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
31
|
Hamilton TL, Bryant DA, Macalady JL. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans. Environ Microbiol 2015; 18:325-40. [PMID: 26549614 PMCID: PMC5019231 DOI: 10.1111/1462-2920.13118] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 12/27/2022]
Abstract
Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well-preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane-derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earth's surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earth's redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earth's history, and oxygenic photosynthesis is the largest source of O2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co-occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low-oxygen environments, including in water columns as well as mats, throughout much of Earth's history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic photosynthesis, including the activity of metabolically versatile cyanobacteria, played an important role in delaying the oxygenation of Earth's surface ocean during the Proterozoic Eon.
Collapse
Affiliation(s)
- Trinity L Hamilton
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Jennifer L Macalady
- Penn State Astrobiology Research Center (PSARC), Department of Geosciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
32
|
Makarova KS, Galperin MY, Koonin EV. Comparative genomic analysis of evolutionarily conserved but functionally uncharacterized membrane proteins in archaea: Prediction of novel components of secretion, membrane remodeling and glycosylation systems. Biochimie 2015; 118:302-12. [PMID: 25583072 PMCID: PMC5898192 DOI: 10.1016/j.biochi.2015.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/02/2015] [Indexed: 01/03/2023]
Abstract
A systematic comparative genomic analysis of all archaeal membrane proteins that have been projected to the last archaeal common ancestor gene set led to the identification of several novel components of predicted secretion, membrane remodeling, and protein glycosylation systems. Among other findings, most crenarchaea have been shown to encode highly diverged orthologs of the membrane insertase YidC, which is nearly universal in bacteria, eukaryotes, and euryarchaea. We also identified a vast family of archaeal proteins, including the C-terminal domain of N-glycosylation protein AglD, as membrane flippases homologous to the flippase domain of bacterial multipeptide resistance factor MprF, a bifunctional lysylphosphatidylglycerol synthase and flippase. Additionally, several proteins were predicted to function as membrane transporters. The results of this work, combined with our previous analyses, reveal an unexpected diversity of putative archaeal membrane-associated functional systems that remain to be functionally characterized. A more general conclusion from this work is that the currently available collection of archaeal (and bacterial) genomes could be sufficient to identify (almost) all widespread functional modules and develop experimentally testable predictions of their functions.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
33
|
Cardona T. A fresh look at the evolution and diversification of photochemical reaction centers. PHOTOSYNTHESIS RESEARCH 2015; 126:111-34. [PMID: 25512103 PMCID: PMC4582080 DOI: 10.1007/s11120-014-0065-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/05/2014] [Indexed: 05/18/2023]
Abstract
In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
34
|
Röling WF, Aerts JW, Patty CL, ten Kate IL, Ehrenfreund P, Direito SO. The Significance of Microbe-Mineral-Biomarker Interactions in the Detection of Life on Mars and Beyond. ASTROBIOLOGY 2015; 15:492-507. [PMID: 26060985 PMCID: PMC4490593 DOI: 10.1089/ast.2014.1276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The detection of biomarkers plays a central role in our effort to establish whether there is, or was, life beyond Earth. In this review, we address the importance of considering mineralogy in relation to the selection of locations and biomarker detection methodologies with characteristics most promising for exploration. We review relevant mineral-biomarker and mineral-microbe interactions. The local mineralogy on a particular planet reflects its past and current environmental conditions and allows a habitability assessment by comparison with life under extreme conditions on Earth. The type of mineral significantly influences the potential abundances and types of biomarkers and microorganisms containing these biomarkers. The strong adsorptive power of some minerals aids in the preservation of biomarkers and may have been important in the origin of life. On the other hand, this strong adsorption as well as oxidizing properties of minerals can interfere with efficient extraction and detection of biomarkers. Differences in mechanisms of adsorption and in properties of minerals and biomarkers suggest that it will be difficult to design a single extraction procedure for a wide range of biomarkers. While on Mars samples can be used for direct detection of biomarkers such as nucleic acids, amino acids, and lipids, on other planetary bodies remote spectrometric detection of biosignatures has to be relied upon. The interpretation of spectral signatures of photosynthesis can also be affected by local mineralogy. We identify current gaps in our knowledge and indicate how they may be filled to improve the chances of detecting biomarkers on Mars and beyond.
Collapse
Affiliation(s)
- Wilfred F.M. Röling
- Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Joost W. Aerts
- Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - C.H. Lucas Patty
- Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, the Netherlands
| | - Inge Loes ten Kate
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| | - Pascale Ehrenfreund
- Space Policy Institute, George Washington University, Washington, DC, USA
- Leiden Observatory, University of Leiden, Leiden, the Netherlands
| | - Susana O.L. Direito
- Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, the Netherlands
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
35
|
Biogenesis of light harvesting proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:861-71. [PMID: 25687893 DOI: 10.1016/j.bbabio.2015.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 11/20/2022]
Abstract
The LHC family includes nuclear-encoded, integral thylakoid membrane proteins, most of which coordinate chlorophyll and xanthophyll chromophores. By assembling with the core complexes of both photosystems, LHCs form a flexible peripheral moiety for enhancing light-harvesting cross-section, regulating its efficiency and providing protection against photo-oxidative stress. Upon its first appearance, LHC proteins underwent evolutionary diversification into a large protein family with a complex genetic redundancy. Such differentiation appears as a crucial event in the adaptation of photosynthetic organisms to changing environmental conditions and land colonization. The structure of photosystems, including nuclear- and chloroplast-encoded subunits, presented the cell with a number of challenges for the control of the light harvesting function. Indeed, LHC-encoding messages are translated in the cytosol, and pre-proteins imported into the chloroplast, processed to their mature size and targeted to the thylakoids where are assembled with chromophores. Thus, a tight coordination between nuclear and plastid gene expression, in response to environmental stimuli, is required to adjust LHC composition during photoacclimation. In recent years, remarkable progress has been achieved in elucidating structure, function and regulatory pathways involving LHCs; however, a number of molecular details still await elucidation. In this review, we will provide an overview on the current knowledge on LHC biogenesis, ranging from organization of pigment-protein complexes to the modulation of gene expression, import and targeting to the photosynthetic membranes, and regulation of LHC assembly and turnover. Genes controlling these events are potential candidate for biotechnological applications aimed at optimizing light use efficiency of photosynthetic organisms. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
|
36
|
Bains W, Seager S, Zsom A. Photosynthesis in hydrogen-dominated atmospheres. Life (Basel) 2014; 4:716-44. [PMID: 25411926 PMCID: PMC4284464 DOI: 10.3390/life4040716] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 12/20/2022] Open
Abstract
The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life.
Collapse
Affiliation(s)
- William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| | - Andras Zsom
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
37
|
Abstract
Chlorophylls are magnesium-tetrapyrrole molecules that play essential roles in photosynthesis. All chlorophylls have similar five-membered ring structures, with variations in the side chains and/or reduction states. Formyl group substitutions on the side chains of chlorophyll a result in the different absorption properties of chlorophyll b, chlorophyll d, and chlorophyll f. These formyl substitution derivatives exhibit different spectral shifts according to the formyl substitution position. Not only does the presence of various types of chlorophylls allow the photosynthetic organism to harvest sunlight at different wavelengths to enhance light energy input, but the pigment composition of oxygenic photosynthetic organisms also reflects the spectral properties on the surface of the Earth. Two major environmental influencing factors are light and oxygen levels, which may play central roles in the regulatory pathways leading to the different chlorophylls. I review the biochemical processes of chlorophyll biosynthesis and their regulatory mechanisms.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia;
| |
Collapse
|
38
|
Schmitt FJ, Renger G, Friedrich T, Kreslavski VD, Zharmukhamedov SK, Los DA, Kuznetsov VV, Allakhverdiev SI. Reactive oxygen species: re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:835-48. [PMID: 24530357 DOI: 10.1016/j.bbabio.2014.02.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 12/11/2022]
Abstract
This review provides an overview about recent developments and current knowledge about monitoring, generation and the functional role of reactive oxygen species (ROS) - H2O2, HO2, HO, OH(-), (1)O2 and O2(-) - in both oxidative degradation and signal transduction in photosynthetic organisms including microscopic techniques for ROS detection and controlled generation. Reaction schemes elucidating formation, decay and signaling of ROS in cyanobacteria as well as from chloroplasts to the nuclear genome in eukaryotes during exposure of oxygen-evolving photosynthetic organisms to oxidative stress are discussed that target the rapidly growing field of regulatory effects of ROS on nuclear gene expression.
Collapse
Affiliation(s)
- Franz-Josef Schmitt
- Technical University Berlin, Institute of Chemistry, Sekr. PC 14, Max-Volmer-Laboratory of Biophysical Chemistry, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Gernot Renger
- Technical University Berlin, Institute of Chemistry, Sekr. PC 14, Max-Volmer-Laboratory of Biophysical Chemistry, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Thomas Friedrich
- Technical University Berlin, Institute of Chemistry, Sekr. PC 14, Max-Volmer-Laboratory of Biophysical Chemistry, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Vladimir D Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia; Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Sergei K Zharmukhamedov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia
| | - Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Vladimir V Kuznetsov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
| | - Suleyman I Allakhverdiev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia; Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia.
| |
Collapse
|
39
|
Pham LV, Messinger J. Electrochemically produced hydrogen peroxide affects Joliot-type oxygen-evolution measurements of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1411-6. [PMID: 24486444 DOI: 10.1016/j.bbabio.2014.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/18/2014] [Accepted: 01/22/2014] [Indexed: 11/19/2022]
Abstract
The main technique employed to characterize the efficiency of water-splitting in photosynthetic preparations in terms of miss and double hit parameters and for the determination of Si (i=2,3,0) state lifetimes is the measurement of flash-induced oxygen oscillation pattern on bare platinum (Joliot-type) electrodes. We demonstrate here that this technique is not innocent. Polarization of the electrode against an Ag/AgCl electrode leads to a time-dependent formation of hydrogen peroxide by two-electron reduction of dissolved oxygen continuously supplied by the flow buffer. While the miss and double hit parameters are almost unaffected by H₂O₂, a time dependent reduction of S1 to S₋₁ occurs over a time period of 20 min. The S1 reduction can be largely prevented by adding catalase or by removing O₂ from the flow buffer with N₂. Importantly, we demonstrate that even at the shortest possible polarization times (40s in our set up) the S₂ and S₀ decays are significantly accelerated by the side reaction with H₂O₂. The removal of hydrogen peroxide leads to unperturbed S₂ state data that reveal three instead of the traditionally reported two phases of decay. In addition, even under the best conditions (catalase+N₂; 40s polarization) about 4% of S₋₁ state is observed in well dark-adapted samples, likely indicating limitations of the equal fit approach. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
Affiliation(s)
- Long Vo Pham
- Department of Chemistry, Chemistry Biology Center (KBC), Umeå University, Linnaeus väg 6, SE-901 87 Umeå, Sweden
| | - Johannes Messinger
- Department of Chemistry, Chemistry Biology Center (KBC), Umeå University, Linnaeus väg 6, SE-901 87 Umeå, Sweden.
| |
Collapse
|
40
|
Calderon RH, García-Cerdán JG, Malnoë A, Cook R, Russell JJ, Gaw C, Dent RM, de Vitry C, Niyogi KK. A conserved rubredoxin is necessary for photosystem II accumulation in diverse oxygenic photoautotrophs. J Biol Chem 2013; 288:26688-96. [PMID: 23900844 PMCID: PMC3772215 DOI: 10.1074/jbc.m113.487629] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In oxygenic photosynthesis, two photosystems work in tandem to harvest light energy and generate NADPH and ATP. Photosystem II (PSII), the protein-pigment complex that uses light energy to catalyze the splitting of water, is assembled from its component parts in a tightly regulated process that requires a number of assembly factors. The 2pac mutant of the unicellular green alga Chlamydomonas reinhardtii was isolated and found to have no detectable PSII activity, whereas other components of the photosynthetic electron transport chain, including photosystem I, were still functional. PSII activity was fully restored by complementation with the RBD1 gene, which encodes a small iron-sulfur protein known as a rubredoxin. Phylogenetic evidence supports the hypothesis that this rubredoxin and its orthologs are unique to oxygenic phototrophs and distinct from rubredoxins in Archaea and bacteria (excluding cyanobacteria). Knockouts of the rubredoxin orthologs in the cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana were also found to be specifically affected in PSII accumulation. Taken together, our data suggest that this rubredoxin is necessary for normal PSII activity in a diverse set of organisms that perform oxygenic photosynthesis.
Collapse
Affiliation(s)
- Robert H Calderon
- From the Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sousa FL, Shavit-Grievink L, Allen JF, Martin WF. Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis. Genome Biol Evol 2013; 5:200-16. [PMID: 23258841 PMCID: PMC3595025 DOI: 10.1093/gbe/evs127] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An open question regarding the evolution of photosynthesis is how cyanobacteria came to possess the two reaction center (RC) types, Type I reaction center (RCI) and Type II reaction center (RCII). The two main competing theories in the foreground of current thinking on this issue are that either 1) RCI and RCII are related via lineage divergence among anoxygenic photosynthetic bacteria and became merged in cyanobacteria via an event of large-scale lateral gene transfer (also called "fusion" theories) or 2) the two RC types are related via gene duplication in an ancestral, anoxygenic but protocyanobacterial phototroph that possessed both RC types before making the transition to using water as an electron donor. To distinguish between these possibilities, we studied the evolution of the core (bacterio)chlorophyll biosynthetic pathway from protoporphyrin IX (Proto IX) up to (bacterio)chlorophyllide a. The results show no dichotomy of chlorophyll biosynthesis genes into RCI- and RCII-specific chlorophyll biosynthetic clades, thereby excluding models of fusion at the origin of cyanobacteria and supporting the selective-loss hypothesis. By considering the cofactor demands of the pathway and the source genes from which several steps in chlorophyll biosynthesis are derived, we infer that the cell that first synthesized chlorophyll was a cobalamin-dependent, heme-synthesizing, diazotrophic anaerobe.
Collapse
Affiliation(s)
- Filipa L Sousa
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
42
|
Jew CJ, Wegner NC, Yanagitsuru Y, Tresguerres M, Graham JB. Atmospheric Oxygen Levels Affect Mudskipper Terrestrial Performance: Implications for Early Tetrapods. Integr Comp Biol 2013; 53:248-57. [DOI: 10.1093/icb/ict034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Kolesinski P, Golik P, Grudnik P, Piechota J, Markiewicz M, Tarnawski M, Dubin G, Szczepaniak A. Insights into eukaryotic Rubisco assembly - crystal structures of RbcX chaperones from Arabidopsis thaliana. Biochim Biophys Acta Gen Subj 2013; 1830:2899-906. [PMID: 23295968 DOI: 10.1016/j.bbagen.2012.12.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/21/2012] [Accepted: 12/26/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND Chloroplasts were formed by uptake of cyanobacteria into eukaryotic cells ca. 1.6 billion years ago. During evolution most of the cyanobacterial genes were transferred from the chloroplast to the nuclear genome. The rbcX gene, encoding an assembly chaperone required for Rubisco biosynthesis in cyanobacteria, was duplicated. Here we demonstrate that homologous eukaryotic chaperones (AtRbcX1 and AtRbcX2) demonstrate different affinities for the C-terminus of Rubisco large subunit and determine their crystal structures. METHODS Three-dimensional structures of AtRbcX1 and AtRbcX2 were resolved by the molecular replacement method. Equilibrium binding constants of the C-terminal RbcL peptide by AtRbcX proteins were determined by spectrofluorimetric titration. The binding mode of RbcX-RbcL was predicted using molecular dynamic simulation. RESULTS We provide crystal structures of both chaperones from Arabidopsis thaliana providing the first structural insight into Rubisco assembly chaperones form higher plants. Despite the low sequence homology of eukaryotic and cyanobacterial Rubisco chaperones the eukaryotic counterparts exhibit surprisingly high similarity of the overall fold to previously determined prokaryotic structures. Modeling studies demonstrate that the overall mode of the binding of RbcL peptide is conserved among these proteins. As such, the evolution of RbcX chaperones is another example of maintaining conserved structural features despite significant drift in the primary amino acid sequence. GENERAL SIGNIFICANCE The presented results are the approach to elucidate the role of RbcX proteins in Rubisco assembly in higher plants.
Collapse
Affiliation(s)
- Piotr Kolesinski
- Laboratory of Biophysics, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Dagan T, Roettger M, Stucken K, Landan G, Koch R, Major P, Gould SB, Goremykin VV, Rippka R, Tandeau de Marsac N, Gugger M, Lockhart PJ, Allen JF, Brune I, Maus I, Pühler A, Martin WF. Genomes of Stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biol Evol 2013; 5:31-44. [PMID: 23221676 PMCID: PMC3595030 DOI: 10.1093/gbe/evs117] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 01/12/2023] Open
Abstract
Cyanobacteria forged two major evolutionary transitions with the invention of oxygenic photosynthesis and the bestowal of photosynthetic lifestyle upon eukaryotes through endosymbiosis. Information germane to understanding those transitions is imprinted in cyanobacterial genomes, but deciphering it is complicated by lateral gene transfer (LGT). Here, we report genome sequences for the morphologically most complex true-branching cyanobacteria, and for Scytonema hofmanni PCC 7110, which with 12,356 proteins is the most gene-rich prokaryote currently known. We investigated components of cyanobacterial evolution that have been vertically inherited, horizontally transferred, and donated to eukaryotes at plastid origin. The vertical component indicates a freshwater origin for water-splitting photosynthesis. Networks of the horizontal component reveal that 60% of cyanobacterial gene families have been affected by LGT. Plant nuclear genes acquired from cyanobacteria define a lower bound frequency of 611 multigene families that, in turn, specify diazotrophic cyanobacterial lineages as having a gene collection most similar to that possessed by the plastid ancestor.
Collapse
Affiliation(s)
- Tal Dagan
- Institute of Genomic Microbiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hörtensteiner S. The Pathway of Chlorophyll Degradation: Catabolites, Enzymes and Pathway Regulation. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
46
|
Li YL, Sun S, Chan LS. Phosphogenesis in the 2460 and 2728 million-year-old banded iron formations as evidence for biological cycling of phosphate in the early biosphere. Ecol Evol 2012; 3:115-25. [PMID: 23404127 PMCID: PMC3568848 DOI: 10.1002/ece3.443] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/01/2012] [Accepted: 11/12/2012] [Indexed: 11/21/2022] Open
Abstract
The banded iron formation deposited during the first 2 billion years of Earth's history holds the key to understanding the interplay between the geosphere and the early biosphere at large geological timescales. The earliest ore-scale phosphorite depositions formed almost at ∼2.0–2.2 billion years ago bear evidence for the earliest bloom of aerobic life. The cycling of nutrient phosphorus and how it constrained primary productivity in the anaerobic world of Archean–Palaeoproterozoic eons are still open questions. The controversy centers about whether the precipitation of ultrafine ferric oxyhydroxide due to the microbial Fe(II) oxidation in oceans earlier than 1.9 billion years substantially sequestrated phosphate, and whether this process significantly limited the primary productivity of the early biosphere. In this study, we report apatite radial flowers of a few micrometers in the 2728 million-year-old Abitibi banded iron formation and the 2460 million-year-old Kuruman banded iron formation and their similarities to those in the 535 million-year-old Lower Cambrian phosphorite. The lithology of the 535 Million-year-old phosphorite as a biosignature bears abundant biomarkers that reveal the possible similar biogeochemical cycling of phosphorus in the Later Archean and Palaeoproterozoic oceans. These apatite radial flowers represent the primary precipitation of phosphate derived from the phytoplankton blooms in the euphotic zones of Neoarchean and Palaoeproterozoic oceans. The unbiased distributions of the apatite radial flowers within sub-millimeter bands do not support the idea of an Archean Crisis of Phosphate. This is the first report of the microbial mediated mineralization of phosphorus before the Great Oxidation Event when the whole biosphere was still dominated by anaerobic microorganisms.
Collapse
Affiliation(s)
- Yi-Liang Li
- Department of Earth Sciences, The University of Hong Kong Hong Kong, China
| | | | | |
Collapse
|
47
|
Zhi-hua C, Ru-jiang M, Zhen-kun Z, Lin-qi S. RECENT PROGRESS IN BIOMIMETIC LIGHT-HARVESTING MATERIALS. ACTA POLYM SIN 2012. [DOI: 10.3724/sp.j.1105.2012.12128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Gupta RS. Origin and Spread of Photosynthesis Based upon Conserved Sequence Features in Key Bacteriochlorophyll Biosynthesis Proteins. Mol Biol Evol 2012; 29:3397-412. [DOI: 10.1093/molbev/mss145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
The role of reticulate evolution in creating innovation and complexity. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:418964. [PMID: 22844638 PMCID: PMC3403396 DOI: 10.1155/2012/418964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 12/31/2022]
Abstract
Reticulate evolution encompasses processes that conflict with traditional Tree of Life efforts. These processes, horizontal gene transfer (HGT), gene and whole-genome duplications through allopolyploidization, are some of the main driving forces for generating innovation and complexity. HGT has a profound impact on prokaryotic and eukaryotic evolution. HGTs can lead to the invention of new metabolic pathways and the expansion and enhancement of previously existing pathways. It allows for organismal adaptation into new ecological niches and new host ranges. Although many HGTs appear to be selected for because they provide some benefit to their recipient lineage, other HGTs may be maintained by chance through random genetic drift. Moreover, some HGTs that may initially seem parasitic in nature can cause complexity to arise through pathways of neutral evolution. Another mechanism for generating innovation and complexity, occurring more frequently in eukaryotes than in prokaryotes, is gene and genome duplications, which often occur through allopolyploidizations. We discuss how these different evolutionary processes contribute to generating innovation and complexity.
Collapse
|
50
|
Shabani A, Mohseni M, Rabitz H, Lloyd S. Efficient estimation of energy transfer efficiency in light-harvesting complexes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:011915. [PMID: 23005460 DOI: 10.1103/physreve.86.011915] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Indexed: 06/01/2023]
Abstract
The fundamental physical mechanisms of energy transfer in photosynthetic complexes is not yet fully understood. In particular, the degree of efficiency or sensitivity of these systems for energy transfer is not known given their realistic with surrounding photonic and phononic environments. One major problem in studying light-harvesting complexes has been the lack of an efficient method for simulation of their dynamics in biological environments. To this end, here we revisit the second order time-convolution (TC2) master equation and examine its reliability beyond extreme Markovian and perturbative limits. In particular, we present a derivation of TC2 without making the usual weak system-bath coupling assumption. Using this equation, we explore the long-time behavior of exciton dynamics of Fenna-Matthews-Olson (FMO) portein complex. Moreover, we introduce a constructive error analysis to estimate the accuracy of TC2 equation in calculating energy transfer efficiency, exhibiting reliable performance for system-bath interactions with weak and intermediate memory and strength. Furthermore, we numerically show that energy transfer efficiency is optimal and robust for the FMO protein complex of green sulfur bacteria with respect to variations in reorganization energy and bath correlation time scales.
Collapse
Affiliation(s)
- A Shabani
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|