1
|
Liu J, Gu J. Importance of PTM of FLT3 in acute myeloid leukemia. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1199-1207. [PMID: 38915288 PMCID: PMC11399421 DOI: 10.3724/abbs.2024112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase expressed in hematopoietic cells. Internal-tandem duplication domain (ITD) mutation and tyrosine kinase domain (TKD) mutation are the two most common mutations in acute myeloid leukemia (AML). Post-translational modifications (PTMs) of FLT3, such as glycosylation and ubiquitination, have been shown to impact various aspects of the protein in both wild-type (WT) and mutant forms of FLT3. In this review, we describe how the glycosylation status of FLT3 affects its subcellular localization, which significantly impacts the activation of downstream signaling, and the impact of specific ubiquitination on FLT3 function and stability, which may be associated with disease progression. Moreover, potential novel therapeutic strategies involving a combination of FLT3 tyrosine kinase inhibitors and drugs targeting glycosylation or ubiquitination are discussed.
Collapse
Affiliation(s)
- Jianwei Liu
- />Division of Regulatory GlycobiologyInstitute of Molecular Biomembrane and GlycobiologyTohoku Medical and Pharmaceutical University4-4-1 KomatsushimaAoba-kuSendai Miyagi981-8558Japan
| | - Jianguo Gu
- />Division of Regulatory GlycobiologyInstitute of Molecular Biomembrane and GlycobiologyTohoku Medical and Pharmaceutical University4-4-1 KomatsushimaAoba-kuSendai Miyagi981-8558Japan
| |
Collapse
|
2
|
Weng Y, Chen W, Kong Q, Wang R, Zeng R, He A, Liu Y, Mao Y, Qin Y, Ngai WSC, Zhang H, Ke M, Wang J, Tian R, Chen PR. DeKinomics pulse-chases kinase functions in living cells. Nat Chem Biol 2024; 20:615-623. [PMID: 38167916 DOI: 10.1038/s41589-023-01497-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
Cellular context is crucial for understanding the complex and dynamic kinase functions in health and disease. Systematic dissection of kinase-mediated cellular processes requires rapid and precise stimulation ('pulse') of a kinase of interest, as well as global and in-depth characterization ('chase') of the perturbed proteome under living conditions. Here we developed an optogenetic 'pulse-chase' strategy, termed decaging kinase coupled proteomics (DeKinomics), for proteome-wide profiling of kinase-driven phosphorylation at second-timescale in living cells. We took advantage of the 'gain-of-function' feature of DeKinomics to identify direct kinase substrates and further portrayed the global phosphorylation of understudied receptor tyrosine kinases under native cellular settings. DeKinomics offered a general activation-based strategy to study kinase functions with high specificity and temporal resolution under living conditions.
Collapse
Affiliation(s)
- Yicheng Weng
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Wendong Chen
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
- South China Institute of Biomedicine, Academy of Phronesis Medicine, Guangzhou, China
| | - Qian Kong
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
| | - Ruixiang Wang
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ruxin Zeng
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - An He
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
| | - Yanjun Liu
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yiheng Mao
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
| | - Yunqiu Qin
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
| | | | - Heng Zhang
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Mi Ke
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
| | - Jie Wang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, China
| | - Ruijun Tian
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China.
| | - Peng R Chen
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
3
|
Suhre K. Genetic associations with ratios between protein levels detect new pQTLs and reveal protein-protein interactions. CELL GENOMICS 2024; 4:100506. [PMID: 38412862 PMCID: PMC10943581 DOI: 10.1016/j.xgen.2024.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/25/2023] [Accepted: 01/26/2024] [Indexed: 02/29/2024]
Abstract
Protein quantitative trait loci (pQTLs) are an invaluable source of information for drug target development because they provide genetic evidence to support protein function, suggest relationships between cis- and trans-associated proteins, and link proteins to disease endpoints. Using Olink proteomics data for 1,463 proteins measured in over 54,000 samples of the UK Biobank, we identified 4,248 associations with 2,821 ratios between protein levels (rQTLs). rQTLs were 7.6-fold enriched in known protein-protein interactions, suggesting that their ratios reflect biological links between the implicated proteins. Conducting a GWAS on ratios increased the number of discovered genetic signals by 24.7%. The approach can identify novel loci of clinical relevance, support causal gene identification, and reveal complex networks of interacting proteins. Taken together, our study adds significant value to the genetic insights that can be derived from the UKB proteomics data and motivates the wider use of ratios in large-scale GWAS.
Collapse
Affiliation(s)
- Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha 24144, Qatar; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
4
|
Yin Y, Zhao SL, Rane D, Lin Z, Wu M, Peterson BR. Quantification of Binding of Small Molecules to Native Proteins Overexpressed in Living Cells. J Am Chem Soc 2024; 146:187-200. [PMID: 38118119 PMCID: PMC10910633 DOI: 10.1021/jacs.3c07488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The affinity and selectivity of small molecules for proteins drive drug discovery and development. We report a fluorescent probe cellular binding assay (FPCBA) for determination of these values for native (untagged) proteins overexpressed in living cells. This method uses fluorophores such as Pacific Blue (PB) linked to cell-permeable protein ligands to generate probes that rapidly and reversibly equilibrate with intracellular targets, as established by kinetic assays of cellular uptake and efflux. To analyze binding to untagged proteins, an internal ribosomal entry site (IRES) vector was employed that allows a single mRNA to encode both the protein target and a separate orthogonal fluorescent protein (mVenus). This enabled cellular uptake of the probe to be correlated with protein expression by flow cytometry, allowing measurement of cellular dissociation constants (Kd) of the probe. This approach was validated by studies of the binding of allosteric activators to eight different Protein Kinase C (PKC) isozymes. Full-length PKCs expressed in transiently transfected HEK293T cells were used to measure cellular Kd values of a probe comprising PB linked to the natural product phorbol via a carbamate. These values were further used to determine competitive binding constants (cellular Ki values) of the nonfluorescent phorbol ester PDBu and the anticancer agent bryostatin 1 for each isozyme. For some PKC-small molecule pairs, these cellular Ki values matched known biochemical Ki values, but for others, altered selectivity was observed in cells. This approach can facilitate quantification of interactions of small molecules with physiologically relevant native proteins.
Collapse
Affiliation(s)
- Yuwen Yin
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Serena Li Zhao
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Digamber Rane
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Zhihong Lin
- The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, 460 W. 10 Ave., Columbus, OH 43210, USA
| | - Meng Wu
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, 460 W. 10 Ave., Columbus, OH 43210, USA
| | - Blake R. Peterson
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, College of Pharmacy, 500 W. 12 Ave., Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, 460 W. 10 Ave., Columbus, OH 43210, USA
| |
Collapse
|
5
|
Meng Z, Bian X, Ma L, Zhang G, Ma Q, Xu Q, Liu J, Wang R, Lun J, Lin Q, Zhao G, Jiang H, Qiu W, Fang J, Lu Z. UBC9 stabilizes PFKFB3 to promote aerobic glycolysis and proliferation of glioblastoma cells. Int J Biochem Cell Biol 2023; 165:106491. [PMID: 38149579 DOI: 10.1016/j.biocel.2023.106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/28/2023]
Abstract
Cancer cells prefer to utilizing aerobic glycolysis to generate energy and anabolic metabolic intermediates for cell growth. However, whether the activities of glycolytic enzymes can be regulated by specific posttranslational modifications, such as SUMOylation, in response to oncogenic signallings, thereby promoting the Warburg effect, remain largely unclear. Here, we demonstrate that phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key glycolytic enzyme, interacts with SUMO-conjugating enzyme UBC9 and is SUMOylated at K302 in glioblastoma cells. Expression of UBC9, which competitively prevents the binding of ubiquitin E3 ligase APC/C to PFKFB3 and subsequent PFKFB3 polyubiquitination, increases PFKFB3 stability and expression. Importantly, EGFR activation increases the interaction between UBC9 and PFKFB3, leading to increased SUMOylation and expression of PFKFB3. This increase is blocked by inhibition of EGFR-induced AKT activation whereas expression of activate AKT by itself was sufficient to recapitulate EGF-induced effect. Knockout of PFKFB3 expression decreases EGF-enhanced lactate production and GBM cell proliferation and this decrease was fully rescued by reconstituted expression of WT PFKFB3 whereas PFKFB3 K302R mutant expression abrogates EGF- and UBC9-regulated lactate production and GBM cell proliferation. These findings reveal a previously unknown mechanism underlying the regulation of the Warburg effect through the EGFR activation-induced and UBC9-mediated SUMOylation and stabilization of PFKFB3.
Collapse
Affiliation(s)
- Zhaoyuan Meng
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, School of Basic Medicine of Qingdao University, Qingdao 266000, China
| | - Xueli Bian
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China; School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Leina Ma
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Gang Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Qingxia Ma
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Qianqian Xu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Juanjuan Liu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Runze Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Jie Lun
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Qian Lin
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Gaoxiang Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Hongfei Jiang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao 266000, China
| | - Jing Fang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, School of Basic Medicine of Qingdao University, Qingdao 266000, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
6
|
Huang X, Wang C, Zhang T, Li R, Chen L, Leung KL, Lakso M, Zhou Q, Zhang H, Wong G. PIWI-interacting RNA expression regulates pathogenesis in a Caenorhabditis elegans model of Lewy body disease. Nat Commun 2023; 14:6137. [PMID: 37783675 PMCID: PMC10545829 DOI: 10.1038/s41467-023-41881-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small noncoding RNAs that regulate gene expression, yet their molecular functions in neurobiology are unclear. While investigating neurodegeneration mechanisms using human α-syn(A53T)Tg and AβTg;α-syn(A53T)Tg pan-neuronal overexpressing strains, we unexpectedly observed dysregulation of piRNAs. RNAi screening revealed that knock down of piRNA biogenesis genes improved thrashing behavior; further, a tofu-1 gene deletion ameliorated phenotypic deficits in α-syn(A53T)Tg and AβTg;α-syn(A53T)Tg transgenic strains. piRNA expression was extensively downregulated and H3K9me3 marks were decreased after tofu-1 deletion in α-syn(A53T)Tg and AβTg;α-syn(A53T)Tg strains. Dysregulated piRNAs targeted protein degradation genes suggesting that a decrease of piRNA expression leads to an increase of degradation ability in C. elegans. Finally, we interrogated piRNA expression in brain samples from PD patients. piRNAs were observed to be widely overexpressed at late motor stage. In this work, our results provide evidence that piRNAs are mediators in pathogenesis of Lewy body diseases and suggest a molecular mechanism for neurodegeneration in these and related disorders.
Collapse
Affiliation(s)
- Xiaobing Huang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
| | - Changliang Wang
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 510799, China
| | - Tianjiao Zhang
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
| | - Rongzhen Li
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, 515063, China
| | - Ka Lai Leung
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
| | - Merja Lakso
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
| | - Qinghua Zhou
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
- Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, China
| | - Hongjie Zhang
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China
| | - Garry Wong
- Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, 999078, Macau, China.
| |
Collapse
|
7
|
Huang D, Leng Y, Zhang X, Xing M, Ying W, Gao X. Serial and multi-level proteome analysis for microscale protein samples. J Proteomics 2023; 288:104993. [PMID: 37619946 DOI: 10.1016/j.jprot.2023.104993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Post-translational modifications (PTMs), such as phosphorylation and ubiquitination, play key roles in signal transduction and protein homeostasis. The crosstalk of PTMs greatly expands the components of proteome and protein functions. Multi-level proteome analysis, which involves proteome investigations of total lysate and PTMs in this context, provides a comprehensive approach to explore the PTM crosstalk of a biological system under diverse disturbances. However, multi-level proteome practice remains technically challenging. Here we intended to build a strategy for multi-level proteome analysis, in which we focus on the serial profiling the total proteome, ubiquitinome and phosphoproteome from the microscale of starting material. We started by evaluating five common lysis buffers and found that the sodium deoxycholate buffer provided the best overall performance. We then developed an approach for serial enrichment and profiling of the multi-level proteome. To expand the depth of identification, we customized the variable windows to perform data-independent acquisition (DIA) sequencing for each proteome. In total, we identified 6465 proteins, ∼20,000 GlyGly sites (class 1), and ∼ 19,000 phosphosites (class 1) sequentially using 1 mg of HeLa digest by three DIA measurements. We applied this strategy to analyze MG132-treated HeLa cells and observed the crosstalk between ubiquitination and phosphorylation. Our method can be referenced for other multi-level proteome studies with microscale samples. SIGNIFICANCE: Lysis buffer containing sodium deoxycholate provided the best overall performance in multi-level proteome analysis. One step of ubiquitination enrichment before phosphorylation enrichment does not reduce the reproducibility of phosphoproteome. Customized isolation windows were established for DIA analysis on each level of proteome. Combined the serial enrichment approach and the customized single-shot DIA method enabled the multi-level proteome of microscale protein samples.
Collapse
Affiliation(s)
- Dongying Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yeye Leng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiangye Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Meining Xing
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wantao Ying
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Xiaoxia Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Brahma R, Shin JM, Cho KH. KinScan: AI-based rapid profiling of activity across the kinome. Brief Bioinform 2023; 24:bbad396. [PMID: 37985454 DOI: 10.1093/bib/bbad396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/22/2023] [Accepted: 10/14/2023] [Indexed: 11/22/2023] Open
Abstract
Kinases play a vital role in regulating essential cellular processes, including cell cycle progression, growth, apoptosis, and metabolism, by catalyzing the transfer of phosphate groups from adenosing triphosphate to substrates. Their dysregulation has been closely associated with numerous diseases, including cancer development, making them attractive targets for drug discovery. However, accurately predicting the binding affinity between chemical compounds and kinase targets remains challenging due to the highly conserved structural similarities across the kinome. To address this limitation, we present KinScan, a novel computational approach that leverages large-scale bioactivity data and integrates the Multi-Scale Context Aware Transformer framework to construct a virtual profiling model encompassing 391 protein kinases. The developed model demonstrates exceptional prediction capability, distinguishing between kinases by utilizing structurally aligned kinase binding site features derived from multiple sequence alignment for fast and accurate predictions. Through extensive validation and benchmarking, KinScan demonstrated its robust predictive power and generalizability for large-scale kinome-wide profiling and selectivity, uncovering associations with specific diseases and providing valuable insights into kinase activity profiles of compounds. Furthermore, we deployed a web platform for end-to-end profiling and selectivity analysis, accessible at https://kinscan.drugonix.com/softwares/kinscan.
Collapse
Affiliation(s)
- Rahul Brahma
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jae-Min Shin
- AzothBio, Rm. DA724 Hyundai Knowledge Industry Center, Hanam-si, Gyeonggi-do, Republic of Korea
| | - Kwang-Hwi Cho
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Du L, Su Z, Wang S, Meng Y, Xiao F, Xu D, Li X, Qian X, Lee SB, Lee J, Lu Z, Lyu J. EGFR-Induced and c-Src-Mediated CD47 Phosphorylation Inhibits TRIM21-Dependent Polyubiquitylation and Degradation of CD47 to Promote Tumor Immune Evasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206380. [PMID: 37541303 PMCID: PMC10520678 DOI: 10.1002/advs.202206380] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/18/2023] [Indexed: 08/06/2023]
Abstract
Tumor cells often overexpress immune checkpoint proteins, including CD47, for immune evasion. However, whether or how oncogenic activation of receptor tyrosine kinases, which are crucial drivers in tumor development, regulates CD47 expression is unknown. Here, it is demonstrated that epidermal growth factor receptor (EGFR) activation induces CD47 expression by increasing the binding of c-Src to CD47, leading to c-Src-mediated CD47 Y288 phosphorylation. This phosphorylation inhibits the interaction between the ubiquitin E3 ligase TRIM21 and CD47, thereby abrogating TRIM21-mediated CD47 K99/102 polyubiquitylation and CD47 degradation. Knock-in expression of CD47 Y288F reduces CD47 expression, increases macrophage phagocytosis of tumor cells, and inhibits brain tumor growth in mice. In contrast, knock-in expression of CD47 K99/102R elicits the opposite effects compared to CD47 Y288F expression. Importantly, CD47-SIRPα blockade with an anti-CD47 antibody treatment significantly enhances EGFR-targeted cancer therapy. In addition, CD47 expression levels in human glioblastoma (GBM) specimens correlate with EGFR and c-Src activation and aggravation of human GBM. These findings elucidate a novel mechanism underlying CD47 upregulation in EGFR-activated tumor cells and underscore the role of the EGFR-c-Src-TRIM21-CD47 signaling axis in tumor evasion and the potential to improve the current cancer therapy with a combination of CD47 blockade with EGFR-targeted remedy.
Collapse
Affiliation(s)
- Linyong Du
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaSchool of Laboratory Medicine and Life ScienceWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Zhipeng Su
- Department of NeurosurgeryFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhou Medical University WenzhouZhejiang325000China
| | - Silu Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated HospitalInstitute of Translational MedicineZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiang310029China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310029China
| | - Fei Xiao
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaSchool of Laboratory Medicine and Life ScienceWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated HospitalInstitute of Translational MedicineZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiang310029China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310029China
| | - Xinjian Li
- CAS Key Laboratory of Infection and ImmunityCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Xu Qian
- Department of Nutrition and Food HygieneCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Su Bin Lee
- Department of Health SciencesThe Graduate School of Dong‐A UniversityBusan49315Republic of Korea
| | - Jong‐Ho Lee
- Department of Health SciencesThe Graduate School of Dong‐A UniversityBusan49315Republic of Korea
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated HospitalInstitute of Translational MedicineZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiang310029China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310029China
| | - Jianxin Lyu
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaSchool of Laboratory Medicine and Life ScienceWenzhou Medical UniversityWenzhouZhejiang325035China
- People's Hospital of Hangzhou Medical CollegeHangzhouZhejiang310014China
| |
Collapse
|
10
|
Zhang G, Tao J, Lin L, Qiu W, Lu Z. Repurposing FBP1: dephosphorylating IκBα to suppress NFκB. Cell Res 2023; 33:419-420. [PMID: 36828939 PMCID: PMC10235116 DOI: 10.1038/s41422-023-00785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Affiliation(s)
- Gang Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Jingjing Tao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liming Lin
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Miyoshi K, Shimizu S, Shiraki A, Egi M. Ubiquitination of the μ-opioid receptor regulates receptor internalization without affecting G i/o-mediated intracellular signaling or receptor phosphorylation. Biochem Biophys Res Commun 2023; 643:96-104. [PMID: 36592585 DOI: 10.1016/j.bbrc.2022.12.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Opioids are highly potent analgesics but develop tolerance. Previous studies have focused on phosphorylation of the μ-opioid receptor as it is involved in maintaining cellular sensitivity via desensitization, recycling, and degradation of the activated receptor. Recently, ubiquitination, another form of posttranslational modification has attracted attention in terms of triggering intracellular signaling and regulation of the activated receptor. Here, we generated a ubiquitination-deficient mutant of the μ-opioid receptor to investigate whether ubiquitination is involved in driving Gi/o-mediated analgesic signaling, receptor desensitization or subsequent receptor internalization. Our study shows that the Gi/o pathway and receptor phosphorylation do not require ubiquitination. Instead, ubiquitination regulates the internalization efficiency and might help in promoting internalization of the desensitized MOP.
Collapse
Affiliation(s)
- Kentaro Miyoshi
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto City, Kyoto Prefecture, Japan
| | - Satoshi Shimizu
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto City, Kyoto Prefecture, Japan; Department of Anesthesiology, Shiga University of Medical Science Setatsukinowacho, Otsu City, Shiga Prefecture, Japan.
| | - Atsuko Shiraki
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto City, Kyoto Prefecture, Japan
| | - Moritoki Egi
- Department of Anesthesia, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto City, Kyoto Prefecture, Japan
| |
Collapse
|
12
|
Chen K, Cai J, Wang S, Li Y, Yang C, Fu T, Zhao Z, Zhang X, Tan W. Aptamer Inhibits Tumor Growth by Leveraging Cellular Proteasomal Degradation System to Degrade c-Met in Mice. Angew Chem Int Ed Engl 2023; 62:e202208451. [PMID: 36268649 DOI: 10.1002/anie.202208451] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 12/12/2022]
Abstract
Current action mechanisms for aptamer-based therapeutics depend on occupancy-driven pharmacology to mediate protein functions. We report a new mechanism where aptamers leverage cellular proteasomal degradation system to degrade proteins for cancer treatment. A DNA aptamer (hereinafter referred to as c-Met-Ap) binds to the extracellular domain of mesenchymal-epithelial transition factor (c-Met) and selectively induces c-Met phosphorylation at Y1003 and Y1349. The phosphorylation of Y1003 recruits E3 ubiquitin ligase casitas B-lineage lymphoma, causing c-Met ubiquitination and degradation in the proteasome. Furthermore, c-Met-Ap can induce a decrease in the heterodimeric partner proteins of c-Met and the downstream effector proteins in the c-Met signal axis, effectively inhibiting tumor growth in A549 tumor-bearing BALB/c mice. Our study uncovers a novel, actionable mechanism for aptamer therapeutics and opens a new avenue for developing highly efficient anticancer drugs.
Collapse
Affiliation(s)
- Kun Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Jiamin Cai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Sujuan Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Yingying Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Chan Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China.,Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
13
|
Sarikaya Bayram Ö, Bayram Ö, Karahoda B, Meister C, Köhler AM, Thieme S, Elramli N, Frawley D, McGowan J, Fitzpatrick DA, Schmitt K, de Assis LJ, Valerius O, Goldman GH, Braus GH. F-box receptor mediated control of substrate stability and subcellular location organizes cellular development of Aspergillus nidulans. PLoS Genet 2022; 18:e1010502. [PMID: 36508464 PMCID: PMC9744329 DOI: 10.1371/journal.pgen.1010502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022] Open
Abstract
Fungal growth and development are coordinated with specific secondary metabolism. This coordination requires 8 of 74 F-box proteins of the filamentous fungus Aspergillus nidulans. F-box proteins recognize primed substrates for ubiquitination by Skp1-Cul1-Fbx (SCF) E3 ubiquitin RING ligases and degradation by the 26S proteasome. 24 F-box proteins are found in the nuclear fraction as part of SCFs during vegetative growth. 43 F-box proteins interact with SCF proteins during growth, development or stress. 45 F-box proteins are associated with more than 700 proteins that have mainly regulatory roles. This corroborates that accurate surveillance of protein stability is prerequisite for organizing multicellular fungal development. Fbx23 combines subcellular location and protein stability control, illustrating the complexity of F-box mediated regulation during fungal development. Fbx23 interacts with epigenetic methyltransferase VipC which interacts with fungal NF-κB-like velvet domain regulator VeA that coordinates fungal development with secondary metabolism. Fbx23 prevents nuclear accumulation of methyltransferase VipC during early development. These results suggest that in addition to their role in protein degradation, F-box proteins also control subcellular accumulations of key regulatory proteins for fungal development.
Collapse
Affiliation(s)
| | - Özgür Bayram
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Betim Karahoda
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Cindy Meister
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Anna M. Köhler
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Sabine Thieme
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Nadia Elramli
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Dean Frawley
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Jamie McGowan
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Leandro Jose de Assis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Zhai Y, Yu H, An X, Zhang Z, Zhang M, Zhang S, Li Q, Li Z. Profiling the transcriptomic signatures and identifying the patterns of zygotic genome activation - a comparative analysis between early porcine embryos and their counterparts in other three mammalian species. BMC Genomics 2022; 23:772. [PMID: 36434523 PMCID: PMC9700911 DOI: 10.1186/s12864-022-09015-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The transcriptional changes around zygotic genome activation (ZGA) in preimplantation embryos are critical for studying mechanisms of embryonic developmental arrest and searching for key transcription factors. However, studies on the transcription profile of porcine ZGA are limited. RESULTS In this study, we performed RNA sequencing in porcine in vivo developed (IVV) and somatic cell nuclear transfer (SCNT) embryo at different stages and compared the transcriptional activity of porcine embryos with mouse, bovine and human embryos. The results showed that the transcriptome map of the early porcine embryos was significantly changed at the 4-cell stage, and 5821 differentially expressed genes (DEGs) in SCNT embryos failed to be reprogrammed or activated during ZGA, which mainly enrichment to metabolic pathways. c-MYC was identified as the highest expressed transcription factor during ZGA. By treating with 10,058-F4, an inhibitor of c-MYC, the cleavage rate (38.33 ± 3.4%) and blastocyst rate (23.33 ± 4.3%) of porcine embryos were significantly lower than those of the control group (50.82 ± 2.7% and 34.43 ± 1.9%). Cross-species analysis of transcriptome during ZGA showed that pigs and bovines had the highest similarity coefficient in biological processes. KEGG pathway analysis indicated that there were 10 co-shared pathways in the four species. CONCLUSIONS Our results reveal that embryos with impaired developmental competence may be arrested at an early stage of development. c-MYC helps promote ZGA and preimplantation embryonic development in pigs. Pigs and bovines have the highest coefficient of similarity in biological processes during ZGA. This study provides an important reference for further studying the reprogramming regulatory mechanism of porcine embryos during ZGA.
Collapse
Affiliation(s)
- Yanhui Zhai
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021 China
| | - Hao Yu
- grid.64924.3d0000 0004 1760 5735College of Animal Science, Jilin University, Changchun, 130062 Jilin China
| | - Xinglan An
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021 China
| | - Zhiren Zhang
- grid.452930.90000 0004 1757 8087Zhuhai People’s Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519000 Guangdong China
| | - Meng Zhang
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021 China
| | - Sheng Zhang
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021 China
| | - Qi Li
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021 China
| | - Ziyi Li
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021 China
| |
Collapse
|
15
|
Shao F, Gao Y, Wang W, He H, Xiao L, Geng X, Xia Y, Guo D, Fang J, He J, Lu Z. Silencing EGFR-upregulated expression of CD55 and CD59 activates the complement system and sensitizes lung cancer to checkpoint blockade. NATURE CANCER 2022; 3:1192-1210. [PMID: 36271172 DOI: 10.1038/s43018-022-00444-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The complement system is a critical immune component, yet its role in tumor immune evasion and CD8+ T cell activation is not clearly defined. Here, we demonstrate that epidermal growth factor receptor (EGFR)/Wnt signaling induces β-catenin-mediated long noncoding RNA (lncRNA) LINC00973 expression to sponge CD55-targeting miR-216b and CD59-targeting miR-150. The consequently upregulated CD55/CD59 expression suppresses the complement system and cytokine secretion required for CD8+ T cell activation. CD55/CD59-neutralizing antibody treatment or mutation of the LINC00973 promoter activates the complement and CD8+ T cells, inhibiting tumor growth. Importantly, combined anti-CD55/CD59 and anti-programmed death 1 (anti-PD-1) antibody treatments elicit a synergistic tumor-inhibiting effect. In addition, CD55/CD59 levels are inversely correlated with infiltration of M1 macrophages and CD8+ T cells in human lung cancer specimens and predict patient outcome. These findings underscore the critical role of EGFR/Wnt/β-catenin-upregulated CD55/CD59 expression in inhibiting the complement and CD8+ T cell activation for tumor immune evasion and immune checkpoint blockade resistance and identify a potential combination therapy to overcome these effects.
Collapse
Affiliation(s)
- Fei Shao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Affiliated Hospital of Qingdao University, Qingdao University, and Qingdao Cancer Institute, Qingdao, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wei Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyan He
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Liwei Xiao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Geng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xia
- Department of Neuro-Oncology, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Fang
- The Affiliated Hospital of Qingdao University, Qingdao University, and Qingdao Cancer Institute, Qingdao, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Neuro-Oncology, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
Black JD, Affandi T, Black AR, Reyland ME. PKCα and PKCδ: Friends and Rivals. J Biol Chem 2022; 298:102194. [PMID: 35760100 PMCID: PMC9352922 DOI: 10.1016/j.jbc.2022.102194] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCα) and novel (PKCδ) subfamilies. We discuss how unique structural features of PKCα and PKCδ underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCα and PKCδ can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.
Collapse
Affiliation(s)
- Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus.
| |
Collapse
|
17
|
Khan SU, Khan MU, Kalsoom F, Khan MI, Gao S, Unar A, Zubair M, Bilal M. Mechanisms of gene regulation by histone degradation in adaptation of yeast: an overview of recent advances. Arch Microbiol 2022; 204:287. [PMID: 35482104 DOI: 10.1007/s00203-022-02897-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023]
Abstract
Histones are important component of eukaryotic cells chromatin and consist of arginine and lysine residues. Histones play an important role in the protection of DNA. Their contents significantly affect high-level chromatin structure formation, gene expression, DNA replication, and other important life activities. Protein degradation is an important regulatory mechanism of histone content. Recent studies have revealed that modification of amino acid sequence is directly related to histone breakdown. In addition, histone degradation is closely related to covalent modifications, such as ubiquitination and acetylation, which are considered to be driving factors in gene regulation. Gene regulation is an important mechanism in adaptation to the environment and survival of species. With the introduction of highly efficient technology, various mutations in histones have been identified in yeast. In the field of epigenetics and the transmission of chromatin states, two widely used model organisms are the budding yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe. Higher eukaryotes can use their silent loci to maintain their epigenetic states and providing the base to investigate mechanisms underlying development. Therfore, both species have contributed a plethora of information on these mechanisms in both yeast and higher eukaryotes. This study focuses on the role of histone modifications in controlling telomeric silencing in Saccharomyces cerevisiae and centromeric silencing in S. pombe as examples of genetic loci that demonstrate epigenetic inheritance. In view of recent advances, this review focuses on the post-translational modification of histone amino acid residues and reviews the relationship between histone degradation and amino acid residue modification.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Fadia Kalsoom
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Muhammad Imran Khan
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China.
- Hefei National Laboratory for Physical Sciences at Microscale and the Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, People's Republic of China.
- Department of Pathology, District headquarters hospital, Jhang, 35200, Punjab Province, Islamic Republic of Pakistan.
| | - Shuang Gao
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Ahsanullah Unar
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Muhammad Zubair
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.
| |
Collapse
|
18
|
Wang Z, Sun A, Yan A, Yao J, Huang H, Gao Z, Han T, Gu J, Li N, Wu H, Li K. Circular RNA MTCL1 promotes advanced laryngeal squamous cell carcinoma progression by inhibiting C1QBP ubiquitin degradation and mediating beta-catenin activation. Mol Cancer 2022; 21:92. [PMID: 35366893 PMCID: PMC8976408 DOI: 10.1186/s12943-022-01570-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Circular RNAs (circRNAs) are involved in regulatory processes of ubiquitination and deubiquitination in various tumors at post-transcriptional epigenetic modification level. However, the underlying mechanism and its biological functions of circRNAs in the advanced laryngeal squamous cell carcinoma (LSCC) remain obscure. Methods RNA sequencing and quantitative real-time PCR (qRT-PCR) assays were applied to screen for circRNAs differentially expressed in LSCC tissues and cell lines. The candidate RNA-binding proteins and target signalling pathway were detected by RNA pull-down and mass spectrometry, in situ hybridization (ISH), immunohistochemistry (IHC), qRT-PCR assays, and bioinformatics analysis. The functional roles of these molecules were investigated using in vitro and in vivo experiments including EdU, transwell, wound healing, western blot assays, and the xenograft mice models. The molecular mechanisms were identified using RNA pull-down assays, RNA immunoprecipitation (RIP), Co-IP, ISH, Ubiquitination assay, bioinformatics analysis, and the rescue experiments. Results Here, we unveil that microtubule cross-linking factor 1 circRNA (circMTCL1, circ0000825) exerts its critical oncogenic functions by promoting complement C1q-binding protein (C1QBP)-dependent ubiquitin degradation and subsequently activating Wnt/β-catenin signalling in laryngeal carcinoma initiation and development. Specifically, circMTCL1 was remarkably up-regulated in the paired tissues of patients with LSCC (n = 67), which predicted a worse clinical outcome. Functionally, circMTCL1 exerted oncogenic biological charactersistics by promoting cell proliferative capability and invasive and migrative abilities. Ectopic circMTCL1 augumented cell proliferation, migration, and invasion of LSCC cells, and this effect could be reversed by C1QBP knocking down in vitro and in vivo. Mechanistically, circMTCL1 directly recruited C1QBP protein by harboring the specific recognized sequence (+ 159 − + 210), thereby accelerating the translation of C1QBP expression by inhibiting its ubiquitin–proteasome-mediated degradation. Importantly, the direct interaction of C1QBP with β-catenin protein was enhanced via suppressing the β-catenin phosphorylation and accelerating its accumulation in cytoplasm and nucleus. Conclusion Our findings manifested a novel circMTCL1-C1QBP-β-catenin signaling axis involving in LSCC tumorigenesis and progression, which shed new light on circRNAs-ubiquitous acidic glycoprotein mediated ubiquitin degradation and provided strategies and targets in the therapeutic intervention of LSCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01570-4.
Collapse
|
19
|
Liang J, Liu C, Xu D, Xie K, Li A. LncRNA NEAT1 facilitates glioma progression via stabilizing PGK1. J Transl Med 2022; 20:80. [PMID: 35123484 PMCID: PMC8818213 DOI: 10.1186/s12967-022-03273-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/23/2022] [Indexed: 01/09/2023] Open
Abstract
Background Long noncoding RNA NEAT1 has been implicated in glioma progression. However, the effect of NEAT1 on glycolysis of glioma cell and the potential mechanism remain unclear. Methods In vitro experiments, including CCK-8, colony formation, ECAR, and lactate detection assays were performed to evaluate the effect of NEAT1 on proliferation and glycolysis of glioma cell. RNA pulldown and RIP assays were performed to identify the interaction between NEAT1 and PGK1. Truncated mutation of NEAT1 and PGK1 was used to confirm the specific interactive domains between NEAT1 and PGK1. Animal studies were performed to analyze the effect of NEAT1/PGK1 on glioma progression. Results NEAT1 knockdown significantly suppressed the proliferation and glycolysis of glioma cells. NEAT1 could specifically interact with PGK1, which promotes PGK1 stability. Hairpin A of NEAT1 is essential for interaction with M1 domain of PGK1. Depletion of NEAT1 markedly inhibited tumor growth in mice, while PGK1 could reverse this effect. Higher expression of NEAT1 was associated with poor overall survival of GBM patients. Conclusions NEAT1 over expression promotes glioma progression through stabilizing PGK1. NEAT1/PGK1 axis is a candidate therapeutic target for glioma treatment.
Collapse
|
20
|
Liang Z, Li X, Duan F, Song L, Wang Z, Li X, Yang P, Li L. Protein tyrosine phosphatase non-receptor type 12 (PTPN12), negatively regulated by miR-106a-5p, suppresses the progression of hepatocellular carcinoma. Hum Cell 2021; 35:299-309. [PMID: 34784010 DOI: 10.1007/s13577-021-00627-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022]
Abstract
Protein tyrosine phosphatase non-receptor type 12 (PTPN12) is abnormally expressed in many human cancers. However, its role in hepatocellular carcinoma (HCC) is indeterminate. In this study, immunohistochemistry and Western blot were adopted to detect PTPN12 protein expression in HCC tissues and cell lines. MiR-106a-5p and PTPN12 mRNA expressions were determined by quantitative real-time polymerase chain reaction (qRT-PCR). siRNA was used to knockdown PTPN12 expression in HCC cells, and the multiplication, migration, and invasion of HCC cells were determined by cell counting kit 8 (CCK-8) and Transwell assays. The interaction between PTPN12 and miR-106a-5p was verified by dual-luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay. In the present study, we demonstrated that PTPN12 expression in HCC tissues and cells was significantly decreased, which was associated with the tumor size, TNM stage, and lymph node metastasis of HCC patients. Functionally, knocking down PTPN12 significantly promoted the multiplication, migration, invasion, and epithelial-mesenchymal transition (EMT) of HCC cells. PTPN12 was identified as the direct target of miR-106a-5p, and its expression was negatively modulated by miR-106a-5p. Besides, PTPN12 counteracted the promoting effects of miR-106a-5p on the viability, migration, invasion, and EMT of HCC cells. In conclusion, this study substantiates that PTPN12 inhibits the growth, migration, invasion, and EMT of HCC cells, and miR-106a-5p contributes to its dysregulation in HCC.
Collapse
Affiliation(s)
- Zhanqiang Liang
- Department of Hepatobiliary Surgery, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, Henan, China
| | - Xingxing Li
- Department of General Surgery, Xinzheng Public People's Hospital, Xinzheng, Zhengzhou, 451150, Henan, China
| | - Fei Duan
- Department of Hepatobiliary Surgery, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, Henan, China
| | - Liming Song
- Department of Hepatobiliary Surgery, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, Henan, China
| | - Zhongzhen Wang
- Department of General Surgery, Xinzheng Public People's Hospital, Xinzheng, Zhengzhou, 451150, Henan, China
| | - Xuemin Li
- Department of Hepatobiliary Surgery, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, Henan, China
| | - Pengsheng Yang
- Department of Hepatobiliary Surgery, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450007, Henan, China
| | - Liantao Li
- Department of General Surgery, Xinzheng Public People's Hospital, Xinzheng, Zhengzhou, 451150, Henan, China.
| |
Collapse
|
21
|
Xu R, Lu T, Zhao J, Li Q, Wang J, Peng B, Liu J, Zhang P, Qu L, Chang X, Yao L, Zhang L. Identification of ubiquitinated substrate proteins and their gene expression patterns in lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1692. [PMID: 34988201 PMCID: PMC8667112 DOI: 10.21037/atm-21-5645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022]
Abstract
Background Lung cancer is a malignant disease with the highest cancer-related mortality rate. In lung adenocarcinoma (LUAD), protein ubiquitination can regulate multiple biological processes. A LUAD ubiquitylome analysis has not yet been reported. Methods We used for the first time ion mobility into liquid chromatography-mass spectrometry to perform accurate and reliable ubiquitylome and proteomic analysis of clinical LUAD and normal tissues and combined it with transcriptome data obtained from public databases. Ubiquitinated protein substrates and their gene expression pattern landscapes in LUAD were identified using bioinformatics methods. Results Our data revealed a ubiquitination landscape in LUAD and identified characteristic protein ubiquitination motifs. We found that the ubiquitinated peptide motifs in LUAD were completely different from those of previously published lung squamous cell carcinoma (LUSC). Moreover, we identified two gene expression patterns of ubiquitinated proteins and revealed that survival differences between these patterns may be correlated with the tumor immune infiltrating microenvironment. Finally, we constructed a prognostic predictive model to quantify the relationship between expression patterns and survival. We found a relationship between the patient-applied model score and multiple drug sensitivity. Therefore, our model can serve as a guide for LUAD clinical treatment. Conclusions Our work addresses the lack of ubiquitylome studies in LUAD and provides new perspectives for subsequent research and clinical treatment.
Collapse
Affiliation(s)
- Ran Xu
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Tong Lu
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Jiaying Zhao
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Qi Li
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Jun Wang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Bo Peng
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Jian Liu
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Lidong Qu
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Xiaoyan Chang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Lingqi Yao
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Linyou Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Mofatteh M, Echegaray-Iturra F, Alamban A, Dalla Ricca F, Bakshi A, Aydogan MG. Autonomous clocks that regulate organelle biogenesis, cytoskeletal organization, and intracellular dynamics. eLife 2021; 10:e72104. [PMID: 34586070 PMCID: PMC8480978 DOI: 10.7554/elife.72104] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022] Open
Abstract
How do cells perceive time? Do cells use temporal information to regulate the production/degradation of their enzymes, membranes, and organelles? Does controlling biological time influence cytoskeletal organization and cellular architecture in ways that confer evolutionary and physiological advantages? Potential answers to these fundamental questions of cell biology have historically revolved around the discussion of 'master' temporal programs, such as the principal cyclin-dependent kinase/cyclin cell division oscillator and the circadian clock. In this review, we provide an overview of the recent evidence supporting an emerging concept of 'autonomous clocks,' which under normal conditions can be entrained by the cell cycle and/or the circadian clock to run at their pace, but can also run independently to serve their functions if/when these major temporal programs are halted/abrupted. We begin the discussion by introducing recent developments in the study of such clocks and their roles at different scales and complexities. We then use current advances to elucidate the logic and molecular architecture of temporal networks that comprise autonomous clocks, providing important clues as to how these clocks may have evolved to run independently and, sometimes at the cost of redundancy, have strongly coupled to run under the full command of the cell cycle and/or the circadian clock. Next, we review a list of important recent findings that have shed new light onto potential hallmarks of autonomous clocks, suggestive of prospective theoretical and experimental approaches to further accelerate their discovery. Finally, we discuss their roles in health and disease, as well as possible therapeutic opportunities that targeting the autonomous clocks may offer.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Fabio Echegaray-Iturra
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Andrew Alamban
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Francesco Dalla Ricca
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Anand Bakshi
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Mustafa G Aydogan
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
23
|
Ramesh ST, Navyasree KV, Sah S, Ashok AB, Qathoon N, Mohanty S, Swain RK, Umasankar PK. BMP2K phosphorylates AP-2 and regulates clathrin-mediated endocytosis. Traffic 2021; 22:377-396. [PMID: 34480404 DOI: 10.1111/tra.12814] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/29/2023]
Abstract
Phosphorylation of the central adaptor protein complex, AP-2 is pivotal for clathrin-mediated endocytosis (CME). Here, we uncover the role of an uncharacterized kinase (BMP-2 inducible kinase-BMP2K) in AP-2 phosphorylation. We demonstrate that BMP2K can phosphorylate AP-2 in vitro and in vivo. Functional impairment of BMP2K impedes AP-2 phosphorylation leading to defects in clathrin-coated pit (CCP) morphology and cargo internalization. BMP2K engages AP-2 via its extended C-terminus and this interaction is important for its CCP localization and function. Notably, endogenous BMP2K levels decline upon functional impairment of AP-2 indicating AP-2 dependent BMP2K stabilization in cells. Further, functional inactivation of BMP2K in zebrafish embryos yields gastrulation phenotypes which mirror AP-2 loss-of-function suggesting physiological relevance of BMP2K in vertebrates. Together, our findings propose involvement of a novel kinase in AP-2 phosphorylation and in the operation of CME.
Collapse
Affiliation(s)
- Shikha T Ramesh
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Centre for Doctoral Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kolaparamba V Navyasree
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Centre for Doctoral Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sneha Sah
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Anjitha B Ashok
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Nishada Qathoon
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | | | | - Perunthottathu K Umasankar
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
24
|
Kanso F, Khalil A, Noureddine H, El-Makhour Y. Therapeutic perspective of thiosemicarbazones derivatives in inflammatory pathologies: A summary of in vitro/in vivo studies. Int Immunopharmacol 2021; 96:107778. [PMID: 34162145 DOI: 10.1016/j.intimp.2021.107778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/24/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Following induction of inflammation, the nuclear factor kappa B (NF-κB) in activated macrophages induces the transcription of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and cyclooxygenase (COX), an inflammatory enzyme implicated in the synthesis of prostaglandins (PGs). The latter are involved in the transition and the maintenance of chronic inflammation underling various chronic disorders that require treatment. Concerning this, many anti-inflammatory drugs are available to treat the inflammatory disorders, but their therapeutic use is associated with a variety of side effects. Therefore, the discovery of new safer and potential anti-inflammatory drugs is necessary. In this regard, thiosemicarbazones (TSC) compounds and their metals complexes attracted high interest due to their wide range of biological activities, interestingly, the anti-inflammatory activity. They are formed by the action of thiosemicarbazide on an aldehyde or ketone, and contain a sulfur atom in place of the oxygen atom. Their ability to form a stable complex with transition metal is known to enhances the biological activity and reduces the side effects of the parent compound. Thus, this review article describes the inflammatory response mediated by NF-κB-COX-PGs and summarizes the anti-inflammatory activity of different thiosemicarbazones derivatives synthesized in research area.
Collapse
Affiliation(s)
- Fatima Kanso
- Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon.
| | - Alia Khalil
- Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon.
| | - Hiba Noureddine
- Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon.
| | - Yolla El-Makhour
- Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon.
| |
Collapse
|
25
|
Protein Kinase C Activation Drives a Differentiation Program in an Oligodendroglial Precursor Model through the Modulation of Specific Biological Networks. Int J Mol Sci 2021; 22:ijms22105245. [PMID: 34063504 PMCID: PMC8156399 DOI: 10.3390/ijms22105245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 02/03/2023] Open
Abstract
Protein kinase C (PKC) activation induces cellular reprogramming and differentiation in various cell models. Although many effectors of PKC physiological actions have been elucidated, the molecular mechanisms regulating oligodendrocyte differentiation after PKC activation are still unclear. Here, we applied a liquid chromatography–mass spectrometry (LC–MS/MS) approach to provide a comprehensive analysis of the proteome expression changes in the MO3.13 oligodendroglial cell line after PKC activation. Our findings suggest that multiple networks that communicate and coordinate with each other may finally determine the fate of MO3.13 cells, thus identifying a modular and functional biological structure. In this work, we provide a detailed description of these networks and their participating components and interactions. Such assembly allows perturbing each module, thus describing its physiological significance in the differentiation program. We applied this approach by targeting the Rho-associated protein kinase (ROCK) in PKC-activated cells. Overall, our findings provide a resource for elucidating the PKC-mediated network modules that contribute to a more robust knowledge of the molecular dynamics leading to this cell fate transition.
Collapse
|
26
|
Tong Y, Guo D, Lin SH, Liang J, Yang D, Ma C, Shao F, Li M, Yu Q, Jiang Y, Li L, Fang J, Yu R, Lu Z. SUCLA2-coupled regulation of GLS succinylation and activity counteracts oxidative stress in tumor cells. Mol Cell 2021; 81:2303-2316.e8. [PMID: 33991485 DOI: 10.1016/j.molcel.2021.04.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 01/15/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
Glutaminase regulates glutaminolysis to promote cancer cell proliferation. However, the mechanism underlying glutaminase activity regulation is largely unknown. Here, we demonstrate that kidney-type glutaminase (GLS) is highly expressed in human pancreatic ductal adenocarcinoma (PDAC) specimens with correspondingly upregulated glutamine dependence for PDAC cell proliferation. Upon oxidative stress, the succinyl-coenzyme A (CoA) synthetase ADP-forming subunit β (SUCLA2) phosphorylated by p38 mitogen-activated protein kinase (MAPK) at S79 dissociates from GLS, resulting in enhanced GLS K311 succinylation, oligomerization, and activity. Activated GLS increases glutaminolysis and the production of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione, thereby counteracting oxidative stress and promoting tumor cell survival and tumor growth in mice. In addition, the levels of SUCLA2 pS79 and GLS K311 succinylation, which were mutually correlated, were positively associated with advanced stages of PDAC and poor prognosis for patients. Our findings reveal critical regulation of GLS by SUCLA2-coupled GLS succinylation regulation and underscore the regulatory role of metabolites in glutaminolysis and PDAC development.
Collapse
Affiliation(s)
- Yingying Tong
- The Institute of Cell Metabolism and Diseases, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China; Cancer Center, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Dong Guo
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, China
| | - Shu-Hai Lin
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiazhen Liang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Dianqiang Yang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chunmin Ma
- The Institute of Cell Metabolism and Diseases, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Fei Shao
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Min Li
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, China
| | - Qiujing Yu
- The Institute of Cell Metabolism and Diseases, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuhui Jiang
- The Institute of Cell Metabolism and Diseases, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Lei Li
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Jing Fang
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Zhimin Lu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
27
|
Zhang H, Zheng H, Zhu J, Dong Q, Wang J, Fan H, Chen Y, Zhang X, Han X, Li Q, Lu J, Tong Y, Chen Z. Ubiquitin-Modified Proteome of SARS-CoV-2-Infected Host Cells Reveals Insights into Virus-Host Interaction and Pathogenesis. J Proteome Res 2021; 20:2224-2239. [PMID: 33666082 PMCID: PMC7945586 DOI: 10.1021/acs.jproteome.0c00758] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Indexed: 12/12/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a serious threat to global public health. The mechanism of pathogenesis and the host immune response to SARS-CoV-2 infection are largely unknown. In the present study, we applied a quantitative proteomic technology to identify and quantify the ubiquitination changes that occur in both the virus and the Vero E6 cells during SARS-CoV-2 infection. By applying label-free, quantitative liquid chromatography with tandem mass spectrometry proteomics, 8943 lysine ubiquitination sites on 3086 proteins were identified, of which 138 sites on 104 proteins were quantified as significantly upregulated, while 828 sites on 447 proteins were downregulated at 72 h post-infection. Bioinformatics analysis suggested that SARS-CoV-2 infection might modulate host immune responses through the ubiquitination of important proteins, including USP5, IQGAP1, TRIM28, and Hsp90. Ubiquitination modification was also observed on 11 SAR-CoV-2 proteins, including proteins involved in virus replication and inhibition of the host innate immune response. Our study provides new insights into the interaction between SARS-CoV-2 and the host as well as potential targets for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Zoonotic of Liaoning Province,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, Liaoning Province, P. R.
China
| | - Huanying Zheng
- Guangdong Provincial Center for Disease
Control and Prevention, Guangzhou 511430, P. R.
China
| | - Jinying Zhu
- Key Laboratory of Zoonotic of Liaoning Province,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, Liaoning Province, P. R.
China
| | - Qiao Dong
- Key Laboratory of Zoonotic of Liaoning Province,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, Liaoning Province, P. R.
China
| | - Jin Wang
- School of Public Health, Sun Yat-sen
University, Guangzhou 510080, P. R. China
| | - Huahao Fan
- Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University of Chemical
Technology, Beijing 100029, P. R. China
| | - Yangzhen Chen
- Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University of Chemical
Technology, Beijing 100029, P. R. China
| | - Xi Zhang
- Key Laboratory of Zoonotic of Liaoning Province,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, Liaoning Province, P. R.
China
| | - Xiaohu Han
- Key Laboratory of Zoonotic of Liaoning Province,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, Liaoning Province, P. R.
China
| | - Qianlin Li
- School of Public Health, Sun Yat-sen
University, Guangzhou 510080, P. R. China
| | - Jiahai Lu
- School of Public Health, Sun Yat-sen
University, Guangzhou 510080, P. R. China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University of Chemical
Technology, Beijing 100029, P. R. China
| | - Zeliang Chen
- Key Laboratory of Zoonotic of Liaoning Province,
College of Animal Science and Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, Liaoning Province, P. R.
China
- School of Public Health, Sun Yat-sen
University, Guangzhou 510080, P. R. China
- Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University of Chemical
Technology, Beijing 100029, P. R. China
| |
Collapse
|
28
|
Bai X, Yang W, Luan X, Li H, Li H, Tian D, Fan W, Li J, Wang B, Liu W, Sun L. Induction of cyclophilin A by influenza A virus infection facilitates group A Streptococcus coinfection. Cell Rep 2021; 35:109159. [PMID: 34010655 DOI: 10.1016/j.celrep.2021.109159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/02/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
During influenza A epidemics, bacterial coinfection is a major cause of increased morbidity and mortality. However, the roles of host factors in regulating influenza A virus (IAV)-triggered bacterial coinfection remain elusive. Cyclophilin A (CypA) is an important regulator of infection and immunity. Here, we show that IAV-induced CypA expression facilitates group A Streptococcus (GAS) coinfection both in vitro and in vivo. Upon IAV infection, CypA interacts with focal adhesion kinase (FAK) and inhibited E3 ligase cCbl-mediated, K48-linked ubiquitination of FAK, which positively regulates integrin α5 expression and actin rearrangement via the FAK/Akt signaling pathway to facilitate GAS colonization and invasion. Notably, CypA deficiency or inhibition by cyclosporine A significantly inhibits IAV-triggered GAS coinfection in mice. Collectively, these findings reveal that CypA is critical for GAS infection, and induction of CypA expression is another way for IAV to promote bacterial coinfection, suggesting that CypA is a promising therapeutic target for the secondary bacterial infection.
Collapse
Affiliation(s)
- Xiaoyuan Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxian Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Luan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heqiao Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deyu Tian
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beinan Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing 100101, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangdong 518107, China.
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Liu Y, Wang Y, Yang L, Sun F, Li S, Wang Y, Zhang GA, Dong T, Zhang LL, Duan W, Zhang X, Cui W, Chen S. The nucleolus functions as the compartment for histone H2B protein degradation. iScience 2021; 24:102256. [PMID: 33796843 PMCID: PMC7995529 DOI: 10.1016/j.isci.2021.102256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Histones are main components of chromatin, and the protein levels of histones significantly affect chromatin assembly. However, how histone protein levels are regulated, especially whether and how histones are degraded, is largely unclear. Here, we found that histone H2B is mainly degraded through the proteasome-mediated pathway, and the lysine-120 site of H2B is essential for its K48-linked polyubiquitination and degradation. Moreover, the degradation-impaired H2BK120R mutant shows an increased nucleolus localization, and inhibition of the proteasome results in an elevated nucleolus distribution of wild-type H2B, which is similar to that of H2BK120R mutants. More importantly, the nucleolus fractions can ubiquitinate and degrade the purified H2B in vitro, suggesting that the nucleolus, in addition to its canonical roles regulating ribosome genesis and protein translation, likely associates with H2B degradation. Therefore, these findings revealed a novel mechanism for the regulation of H2B degradation in which a nucleolus-associated proteasome pathway is involved. Histone H2B can be polyubiquitinated at the lysine 120 residue The degradation of histone H2B is achieved via the ubiquitination-proteasome pathway The nucleolus regulates the protein degradation of histone H2B
Collapse
Affiliation(s)
- Yanping Liu
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Yufei Wang
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Lu Yang
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Feng Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, Shanghai 200092, PR China
| | - Sheng Li
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Yequan Wang
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Guo-An Zhang
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Tingting Dong
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Lei-Lei Zhang
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Wanglin Duan
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Xiaojun Zhang
- Department of Science and Education, People's Hospital of Zunhua, Tangshan, Hebei 064200, PR China
| | - Wen Cui
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Su Chen
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China.,School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China.,Department of Science and Education, People's Hospital of Zunhua, Tangshan, Hebei 064200, PR China.,Laboratory of Molecular and Cellular Biology, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan 475004, PR China
| |
Collapse
|
30
|
Abstract
The cell cycle is the sequence of events through which a cell duplicates its genome, grows, and divides. Key cell cycle transitions are driven by oscillators comprising of protein kinases and their regulators. Different cell cycle oscillators are inextricably linked to ensure orderly activation of oscillators. A recurring theme in their regulation is the abundance of autoamplifying loops that ensure switch-like and unidirectional cell cycle transitions. The periodicity of many cell cycle oscillators is choreographed by inherent mechanisms that promote automatic inactivation, often involving dephosphorylation and ubiquitin-mediated protein degradation. These inhibitory signals are subsequently suppressed to enable the next cell cycle to occur. Although the activation and inactivation of cell cycle oscillators are in essence autonomous during the unperturbed cell cycle, a number of checkpoint mechanisms are able to halt the cell cycle until preconditions or defects are addressed. Together, these mechanisms orchestrate orderly progression of the cell cycle to produce more cells and to safeguard genome stability.
Collapse
|
31
|
LncRNA DILA1 inhibits Cyclin D1 degradation and contributes to tamoxifen resistance in breast cancer. Nat Commun 2020; 11:5513. [PMID: 33139730 PMCID: PMC7608661 DOI: 10.1038/s41467-020-19349-w] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclin D1 is one of the most important oncoproteins that drives cancer cell proliferation and associates with tamoxifen resistance in breast cancer. Here, we identify a lncRNA, DILA1, which interacts with Cyclin D1 and is overexpressed in tamoxifen-resistant breast cancer cells. Mechanistically, DILA1 inhibits the phosphorylation of Cyclin D1 at Thr286 by directly interacting with Thr286 and blocking its subsequent degradation, leading to overexpressed Cyclin D1 protein in breast cancer. Knocking down DILA1 decreases Cyclin D1 protein expression, inhibits cancer cell growth and restores tamoxifen sensitivity both in vitro and in vivo. High expression of DILA1 is associated with overexpressed Cyclin D1 protein and poor prognosis in breast cancer patients who received tamoxifen treatment. This study shows the previously unappreciated importance of post-translational dysregulation of Cyclin D1 contributing to tamoxifen resistance in breast cancer. Moreover, it reveals the novel mechanism of DILA1 in regulating Cyclin D1 protein stability and suggests DILA1 is a specific therapeutic target to downregulate Cyclin D1 protein and reverse tamoxifen resistance in treating breast cancer. Cyclin D1 is involved in tamoxifen resistance in breast cancer (BC) but how it is regulated is unclear. Here, the authors demonstrate that the LncRNA DILA1 contributes to tamoxifen resistance in breast cancer by binding to Cyclin D1 and preventing its degradation.
Collapse
|
32
|
An orphan protein of Fusarium graminearum modulates host immunity by mediating proteasomal degradation of TaSnRK1α. Nat Commun 2020; 11:4382. [PMID: 32873802 PMCID: PMC7462860 DOI: 10.1038/s41467-020-18240-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Fusarium graminearum is a causal agent of Fusarium head blight (FHB) and a deoxynivalenol (DON) producer. In this study, OSP24 is identified as an important virulence factor in systematic characterization of the 50 orphan secreted protein (OSP) genes of F. graminearum. Although dispensable for growth and initial penetration, OSP24 is important for infectious growth in wheat rachis tissues. OSP24 is specifically expressed during pathogenesis and its transient expression suppresses BAX- or INF1-induced cell death. Osp24 is translocated into plant cells and two of its 8 cysteine-residues are required for its function. Wheat SNF1-related kinase TaSnRK1α is identified as an Osp24-interacting protein and shows to be important for FHB resistance in TaSnRK1α-overexpressing or silencing transgenic plants. Osp24 accelerates the degradation of TaSnRK1α by facilitating its association with the ubiquitin-26S proteasome. Interestingly, TaSnRK1α also interacts with TaFROG, an orphan wheat protein induced by DON. TaFROG competes against Osp24 for binding with the same region of TaSnRKα and protects it from degradation. Overexpression of TaFROG stabilizes TaSnRK1α and increases FHB resistance. Taken together, Osp24 functions as a cytoplasmic effector by competing against TaFROG for binding with TaSnRK1α, demonstrating the counteracting roles of orphan proteins of both host and fungal pathogens during their interactions. Fusarium graminearum is a major fungal pathogen of cereals. Here the authors show that F. graminearum secretes an effector, Osp24, that induces degradation of the wheat TaSnRK1α kinase to promote disease while an orphan wheat protein, TaFROG1, can compete with Osp24 for binding to TaSnRK1α and protect it from degradation
Collapse
|
33
|
Kuang J, Min L, Liu C, Chen S, Gao C, Ma J, Wu X, Li W, Wu L, Zhu L. RNF8 Promotes Epithelial-Mesenchymal Transition in Lung Cancer Cells via Stabilization of Slug. Mol Cancer Res 2020; 18:1638-1649. [PMID: 32753472 DOI: 10.1158/1541-7786.mcr-19-1211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/11/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022]
Abstract
RNF8 (ring finger protein 8), a RING finger E3 ligase best characterized for its role in DNA repair and sperm formation via ubiquitination, has been found to promote tumor metastasis in breast cancer recently. However, whether RNF8 also plays a role in other types of cancer, especially in lung cancer, remains unknown. We show here that RNF8 expression levels are markedly increased in human lung cancer tissues and negatively correlated with the survival time of patients. Overexpression of RNF8 promotes the EMT process and migration ability of lung cancer cells, while knockdown of RNF8 demonstrates the opposite effects. In addition, overexpression of RNF8 activates the PI3K/Akt signaling pathway, knockdown of RNF8 by siRNA inhibits this activation, and pharmacologic inhibition of PI3K/Akt in RNF8-overexpressing cells also reduces the expression of EMT markers and the ability of migration. Furthermore, RNF8 is found to directly interact with Slug and promoted the K63-Ub of Slug, and knockdown of Slug disrupts RNF8-dependent EMT in A549 cells, whereas overexpression of Slug rescues RNF8-dependent MET in H1299 cells, and depletion of RNF8 expression by shRNA inhibits metastasis of lung cancer cells in vivo. Taken together, these results indicate that RNF8 is a key regulator of EMT process in lung cancer and suggest that inhibition of RNF8 could be a useful strategy for lung cancer treatment. IMPLICATIONS: This study provides a new mechanistic insight into the novel role of RNF8 and identifies RNF8 as a potential new therapeutic target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Jingyu Kuang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Lu Min
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Si Chen
- Department of pathology, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Changsong Gao
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Jiaxin Ma
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Xiaomin Wu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Wenying Li
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Lei Wu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China. .,Hunan Engineering Research Center for Intelligent Decision Making and Big Data on Industrial Development, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China.
| |
Collapse
|
34
|
Solorza J, Recabarren R, Alzate-Morales J. Molecular Insights into the Trapping Effect of Ca 2+ in Protein Kinase A: A Molecular Dynamics Study. J Chem Inf Model 2020; 60:898-914. [PMID: 31804819 DOI: 10.1021/acs.jcim.9b00857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein kinase A has become a model system for the study of kinases, and therefore, a comprehensive understanding of the underlying molecular mechanisms in its catalytic cycle is of crucial importance. One of the aspects that has received recent attention is the role that metal cofactors play in the catalytic cycle. Although Mg2+ is the well-known physiological ion used by protein kinases, Ca2+ ions can also assist the phosphoryl transfer reaction but with lower catalytic activities. This inhibitory effect has been attributed to the ability of Ca2+ to trap the reaction products at the active site, and it has been proposed as a possible regulatory mechanism of the enzyme. Thus, in order to get a clearer understanding of these molecular events, computational simulations in the product state of PKA, in the presence of Mg2+ and Ca2+ ions, were performed through molecular dynamics (MD). Different protonation states of the active site were considered in order to model the different mechanistic pathways that have been proposed. Our results show that different protonation states of the phosphorylated serine residue at the peptide substrate (pSer21), as well as the protonation state of residue Asp166, can have a marked influence on the flexibility of regions surrounding the active site. This is the case of the glycine-rich loop, a structural motif that is directly involved in the release of the products from the PKA active site. MD simulations were capable to reproduce the crystallographic conformations but also showed other conformations not previously reported in the crystal structures that may be involved in enhancing the affinity of pSP20 to PKA in the presence of Ca2+. Hydrogen bonding interactions at the PKA-pSP20 interface were influenced whether by the protonation state of the active site or by the metal cofactor used by the enzyme. Altogether, our results provide molecular aspects into the inhibitory mechanism of Ca2+ in PKA and suggest which is the most probable protonation state of the phosphorylated product at the active site.
Collapse
Affiliation(s)
- Jocelyn Solorza
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería , Universidad de Talca , 1 Poniente 1141 , Talca , Chile
| | - Rodrigo Recabarren
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería , Universidad de Talca , 1 Poniente 1141 , Talca , Chile
| | - Jans Alzate-Morales
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería , Universidad de Talca , 1 Poniente 1141 , Talca , Chile
| |
Collapse
|
35
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
36
|
PTEN Suppresses Glycolysis by Dephosphorylating and Inhibiting Autophosphorylated PGK1. Mol Cell 2019; 76:516-527.e7. [PMID: 31492635 DOI: 10.1016/j.molcel.2019.08.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 06/03/2019] [Accepted: 08/02/2019] [Indexed: 01/01/2023]
Abstract
The PTEN tumor suppressor is frequently mutated or deleted in cancer and regulates glucose metabolism through the PI3K-AKT pathway. However, whether PTEN directly regulates glycolysis in tumor cells is unclear. We demonstrate here that PTEN directly interacts with phosphoglycerate kinase 1 (PGK1). PGK1 functions not only as a glycolytic enzyme but also as a protein kinase intermolecularly autophosphorylating itself at Y324 for activation. The protein phosphatase activity of PTEN dephosphorylates and inhibits autophosphorylated PGK1, thereby inhibiting glycolysis, ATP production, and brain tumor cell proliferation. In addition, knockin expression of a PGK1 Y324F mutant inhibits brain tumor formation. Analyses of human glioblastoma specimens reveals that PGK1 Y324 phosphorylation levels inversely correlate with PTEN expression status and are positively associated with poor prognosis in glioblastoma patients. This work highlights the instrumental role of PGK1 autophosphorylation in its activation and PTEN protein phosphatase activity in governing glycolysis and tumorigenesis.
Collapse
|
37
|
Wang Z, Li X, Wang X, Liu N, Xu B, Peng Q, Guo Z, Fan B, Zhu C, Chen Z. Arabidopsis Endoplasmic Reticulum-Localized UBAC2 Proteins Interact with PAMP-INDUCED COILED-COIL to Regulate Pathogen-Induced Callose Deposition and Plant Immunity. THE PLANT CELL 2019; 31:153-171. [PMID: 30606781 PMCID: PMC6391690 DOI: 10.1105/tpc.18.00334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/26/2018] [Accepted: 12/27/2018] [Indexed: 05/27/2023]
Abstract
Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) is initiated upon PAMP recognition by pattern recognition receptors (PRR). PTI signals are transmitted through activation of mitogen-activated protein kinases (MAPKs), inducing signaling and defense processes such as reactive oxygen species (ROS) production and callose deposition. Here, we examine mutants for two Arabidopsis thaliana genes encoding homologs of UBIQUITIN-ASSOCIATED DOMAIN-CONTAINING PROTEIN 2 (UBAC2), a conserved endoplasmic reticulum (ER) protein implicated in ER protein quality control. The ubac2 mutants were hypersusceptible to a type III secretion-deficient strain of the bacterial pathogen Pseudomonas syringae, indicating a PTI defect. The ubac2 mutants showed normal PRR biogenesis, MAPK activation, ROS burst, and PTI-associated gene expression. Pathogen- and PAMP-induced callose deposition, however, was compromised in ubac2 mutants. UBAC2 proteins interact with the plant-specific long coiled-coil protein PAMP-INDUCED COILED COIL (PICC), and picc mutants were compromised in callose deposition and PTI. Compromised callose deposition in the ubac2 and picc mutants was associated with reduced accumulation of the POWDERY MILDEW RESISTANT 4 (PMR4) callose synthase, which is responsible for pathogen-induced callose synthesis. Constitutive overexpression of PMR4 restored pathogen-induced callose synthesis and PTI in the ubac2 and picc mutants. These results uncover an ER pathway involving the conserved UBAC2 and plant-specific PICC proteins that specifically regulate pathogen-induced callose deposition in plant innate immunity.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
| | - Xifeng Li
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Xiaoting Wang
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095 China
| | - Nana Liu
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Binjie Xu
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Qi Peng
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- Institute of Economic Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Zhifu Guo
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Baofang Fan
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, Indiana 47907-2054
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
38
|
Vu LD, Gevaert K, De Smet I. Protein Language: Post-Translational Modifications Talking to Each Other. TRENDS IN PLANT SCIENCE 2018; 23:1068-1080. [PMID: 30279071 DOI: 10.1016/j.tplants.2018.09.004] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 05/21/2023]
Abstract
Post-translational modifications (PTMs) are at the heart of many cellular signaling events. Apart from a single regulatory PTM, there are also PTMs that function in orchestrated manners. Such PTM crosstalk usually serves as a fine-tuning mechanism to adjust cellular responses to the slightest changes in the environment. While PTM crosstalk has been studied in depth in various species; in plants, this field is just emerging. In this review, we discuss recent studies on crosstalk between three of the most common protein PTMs in plant cells, being phosphorylation, ubiquitination, and sumoylation, and we highlight the diverse underlying mechanisms as well as signaling outputs of such crosstalk.
Collapse
Affiliation(s)
- Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium; Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium; VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium; VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium; These authors contributed equally. https://twitter.com/KrisGevaert_VIB
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium; These authors contributed equally.
| |
Collapse
|
39
|
Lu Z, Hunter T. Metabolic Kinases Moonlighting as Protein Kinases. Trends Biochem Sci 2018; 43:301-310. [PMID: 29463470 PMCID: PMC5879014 DOI: 10.1016/j.tibs.2018.01.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 12/17/2022]
Abstract
Protein kinases regulate every aspect of cellular activity, whereas metabolic enzymes are responsible for energy production and catabolic and anabolic processes. Emerging evidence demonstrates that some metabolic enzymes, such as pyruvate kinase M2 (PKM2), phosphoglycerate kinase 1 (PGK1), ketohexokinase (KHK) isoform A (KHK-A), hexokinase (HK), and nucleoside diphosphate kinase 1 and 2 (NME1/2), that phosphorylate soluble metabolites can also function as protein kinases and phosphorylate a variety of protein substrates to regulate the Warburg effect, gene expression, cell cycle progression and proliferation, apoptosis, autophagy, exosome secretion, T cell activation, iron transport, ion channel opening, and many other fundamental cellular functions. The elevated protein kinase functions of these moonlighting metabolic enzymes in tumor development make them promising therapeutic targets for cancer.
Collapse
Affiliation(s)
- Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA.
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
40
|
Song HM, Park GH, Park SB, Kim HS, Son HJ, Um Y, Jeong JB. Vitex rotundifolia Fruit Suppresses the Proliferation of Human Colorectal Cancer Cells through Down-regulation of Cyclin D1 and CDK4 via Proteasomal-Dependent Degradation and Transcriptional Inhibition. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:191-207. [PMID: 29298515 DOI: 10.1142/s0192415x18500118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Viticis Fructus (VF) as the dried fruit from Vitex rotundifolia L. used as a traditional medicine for treating inflammation, headache, migraine, chronic bronchitis, eye pain, and gastrointestinal infections has been reported to have antiproliferative effects against various cancer cells, including breast, lung and colorectal cancer cells. However, the molecular mechanisms by which VF mediates the inhibitory effect of the proliferation of cancer cells have not been elucidated in detail. In this study, we investigated the molecular mechanism of VF on the down-regulation of cyclin D1 and CDK4 level associated with cancer cell proliferation. VF suppressed the proliferation of human colorectal cancer cell lines such as HCT116 and SW480. VF induced decrease in cyclin D1 and CDK4 in both protein and mRNA levels. However, the protein levels of cyclin D1 and CDK4 were decreased by VF at an earlier time than the change of mRNA levels; rather it suppressed the expression of cyclin D1 and CDK4 via the proteasomal degradation. In cyclin D1 and CDK4 degradation, we found that Thr286 phosphorylation of cyclin D1 plays a pivotal role in VF-mediated cyclin D1 degradation. Subsequent experiments with several kinase inhibitors suggest that VF-mediated degradation of cyclin D1 may be dependent on GSK3[Formula: see text] and VF-mediated degradation of CDK4 is dependent on ERK1/2, p38 and GSK3[Formula: see text]. In the transcriptional regulation of cyclin D1 and CDK4, we found that VF inhibited Wnt activation associated with cyclin D1 transcriptional regulation through TCF4 down-regulation. In addition, VF treatment down-regulated c-myc expression associated CDK4 transcriptional regulation. Our results suggest that VF has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.
Collapse
Affiliation(s)
- Hun Min Song
- * Department of Medicinal Plant Resources, Andong National University, Andong 36729, Republic of Korea
| | - Gwang Hun Park
- ‡ Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Republic of Korea
| | - Su Bin Park
- * Department of Medicinal Plant Resources, Andong National University, Andong 36729, Republic of Korea
| | - Hyun-Seok Kim
- § Department of Food Science & Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Ho-Jun Son
- ‡ Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Republic of Korea
| | - Yurry Um
- ‡ Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Republic of Korea
| | - Jin Boo Jeong
- * Department of Medicinal Plant Resources, Andong National University, Andong 36729, Republic of Korea.,† Insititute of Agricultural Science and Technology, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
41
|
Qian X, Li X, Tan L, Lee JH, Xia Y, Cai Q, Zheng Y, Wang H, Lorenzi PL, Lu Z. Conversion of PRPS Hexamer to Monomer by AMPK-Mediated Phosphorylation Inhibits Nucleotide Synthesis in Response to Energy Stress. Cancer Discov 2018; 8:94-107. [PMID: 29074724 PMCID: PMC5760453 DOI: 10.1158/2159-8290.cd-17-0712] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/12/2017] [Accepted: 10/19/2017] [Indexed: 01/09/2023]
Abstract
Tumors override energy stress to grow. However, how nucleotide synthesis is regulated under energy stress is unclear. We demonstrate here that glucose deprivation or hypoxia results in the AMPK-mediated phosphorylation of phosphoribosyl pyrophosphate synthetase 1 (PRPS1) S180 and PRPS2 S183, leading to conversion of PRPS hexamers to monomers and thereby inhibiting PRPS1/2 activity, nucleotide synthesis, and nicotinamide adenine dinucleotide (NAD) production. Knock-in of nonphosphorylatable PRPS1/2 mutants, which have uninhibited activity, in brain tumor cells under energy stress exhausts cellular ATP and NADPH and increases reactive oxygen species levels, thereby promoting cell apoptosis. The expression of those mutants inhibits brain tumor formation and enhances the inhibitory effect of the glycolysis inhibitor 2-deoxy-d-glucose on tumor growth. Our findings highlight the significance of recalibrating tumor cell metabolism by fine-tuning nucleotide and NAD synthesis in tumor growth.Significance: Our findings elucidate an instrumental function of AMPK in direct regulation of nucleic acid and NAD synthesis in tumor cells in response to energy stress. AMPK phosphorylates PRPS1/2, converts PRPS1/2 hexamers to monomers, and inhibits PRPS1/2 activity and subsequent nucleotide and NAD synthesis to maintain tumor cell growth and survival. Cancer Discov; 8(1); 94-107. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Xu Qian
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xinjian Li
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, and The Proteomics and Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jong-Ho Lee
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yan Xia
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qingsong Cai
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hongxia Wang
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Cancer, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, and The Proteomics and Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Cancer Biology Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas
| |
Collapse
|
42
|
Málaga-Trillo E, Ochs K. Uncontrolled SFK-mediated protein trafficking in prion and Alzheimer's disease. Prion 2017; 10:352-361. [PMID: 27649856 DOI: 10.1080/19336896.2016.1221873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Prions and Amyloid beta (Aβ) peptides induce synaptic damage via complex mechanisms that include the pathological alteration of intracellular signaling cascades. The host-encoded cellular prion protein (PrPC) acts as a high-affinity cell surface receptor for both toxic species and it can modulate the endocytic trafficking of the N-methyl D-aspartate (NMDA) receptor and E-cadherin adhesive complexes via Src family kinases (SFKs). Interestingly, SFK-mediated control of endocytosis is a widespread mechanism used to regulate the activity of important transmembrane proteins, including neuroreceptors for major excitatory and inhibitory neurotransmitters. Here we discuss our recent work in zebrafish and accumulating evidence suggesting that subversion of this pleiotropic regulatory mechanism by Aβ oligomers and prions explains diverse neurotransmission deficits observed in human patients and mouse models of prion and Alzheimer's neurodegeneration. While Aβ, PrPC and SFKs constitute potential therapeutic targets on their own, drug discovery efforts might benefit significantly from aiming at protein-protein interactions that modulate the endocytosis of specific SFK targets.
Collapse
Affiliation(s)
| | - Katharina Ochs
- a Department of Biology , Universidad Peruana Cayetano Heredia , Lima , Perú.,b Department of Biology , University of Konstanz , Konstanz , Germany
| |
Collapse
|
43
|
Lee JH, Liu R, Li J, Zhang C, Wang Y, Cai Q, Qian X, Xia Y, Zheng Y, Piao Y, Chen Q, de Groot JF, Jiang T, Lu Z. Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nat Commun 2017; 8:949. [PMID: 29038421 PMCID: PMC5643558 DOI: 10.1038/s41467-017-00906-9] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/03/2017] [Indexed: 02/05/2023] Open
Abstract
Phosphofructokinase 1 (PFK1) plays a critical role in glycolysis; however, its role and regulation in tumorigenesis are not well understood. Here, we demonstrate that PFK1 platelet isoform (PFKP) is the predominant PFK1 isoform in human glioblastoma cells and its expression correlates with total PFK activity. We show that PFKP is overexpressed in human glioblastoma specimens due to an increased stability, which is induced by AKT activation resulting from phosphatase and tensin homologue (PTEN) loss and EGFR-dependent PI3K activation. AKT binds to and phosphorylates PFKP at S386, and this phosphorylation inhibits the binding of TRIM21 E3 ligase to PFKP and the subsequent TRIM21-mediated polyubiquitylation and degradation of PFKP. PFKP S386 phosphorylation increases PFKP expression and promotes aerobic glycolysis, cell proliferation, and brain tumor growth. In addition, S386 phosphorylation in human glioblastoma specimens positively correlates with PFKP expression, AKT S473 phosphorylation, and poor prognosis. These findings underscore the potential role and regulation of PFKP in human glioblastoma development.Phosphofructokinase 1 (PFK1) plays a critical role in glycolysis. Here the authors show that PFK1 platelet isoform is upregulated in Glioblastoma and is required for tumor growth mechanistically, such upregulation is due to an increased stability induced by AKT activation via phosphorylation on residue S386.
Collapse
Affiliation(s)
- Jong-Ho Lee
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rui Liu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chuanbao Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Yugang Wang
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qingsong Cai
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xu Qian
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yan Xia
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuji Piao
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - John F de Groot
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
44
|
Nazio F, Carinci M, Cecconi F. ULK1 ubiquitylation is regulated by phosphorylation on its carboxy terminus. Cell Cycle 2017; 16:1744-1747. [PMID: 28820317 DOI: 10.1080/15384101.2017.1361063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a highly conserved process that acts sequestering cytoplasmic components for their degradation by the lysosomes. It consists of several sequential steps that have to be finely regulated to ensure both its progression and termination. Post-translational modifications (PTMs) play an important role in regulating ATG proteins function in different stages of autophagy. Recently, we demonstrated that, during prolonged starvation, ULK1 protein is specifically ubiquitylated by NEDD4L, and that this regulation is important to protect cells against excessive autophagy. In this Extra view, we show that ULK1 phosphorylation at 3 different sites on the same ULK1 target region for NEDD4L is preparatory for its ubiquitylation and subsequent degradation. This adds to the complexity of ULK1 multi-level regulation by several factors, including kinases, phosphatases and acetylases, with each contributing to autophagy homeostasis.
Collapse
Affiliation(s)
- Francesca Nazio
- a Department of Pediatric Hematology and Oncology , IRCSS Bambino Gesù Children's Hospital , Rome , Italy
| | - Marianna Carinci
- b Department of Biology , University of Rome Tor Vergata , Rome , Italy
| | - Francesco Cecconi
- a Department of Pediatric Hematology and Oncology , IRCSS Bambino Gesù Children's Hospital , Rome , Italy.,b Department of Biology , University of Rome Tor Vergata , Rome , Italy.,c Cell Stress and Survival Unit, Danish Cancer Society Research Center , Copenhagen , Denmark
| |
Collapse
|
45
|
Singh RK, Kazansky Y, Wathieu D, Fushman D. Hydrophobic Patch of Ubiquitin is Important for its Optimal Activation by Ubiquitin Activating Enzyme E1. Anal Chem 2017; 89:7852-7860. [PMID: 28686836 PMCID: PMC5573600 DOI: 10.1021/acs.analchem.6b04194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein ubiquitination plays a role in essentially every process in eukaryotic cells. The attachment of ubiquitin (Ub) or Ub-like (UBL) proteins to target proteins is achieved by parallel but distinct cascades of enzymatic reactions involving three enzymes: E1, E2, and E3. The E1 enzyme functions at the apex of this pathway and plays a critical role in activating the C-terminus of ubiquitin or UBL, which is an essential step that triggers subsequent downstream transfer to their cognate E2s resulting in the fidelity of the Ub/UBL conjugation machinery. Despite the central role of the E1 enzyme in protein modification, a quantitative method to measure Ub/UBL activation by E1 is lacking. Here, we present a mass spectrometry-based assay to accurately measure the activation of Ub/UBL by E1 independent of the E2/E3 enzymes. Our method does not require radiolabeling of any components and therefore can be used in any biochemical laboratory having access to a mass spectrometer. This method allowed us to dissect the concerted process of E1-E2-catalyzed Ub conjugation in order to separately characterize the process of Ub activation and how it is affected by select mutations and other factors. We found that the hydrophobic patch of Ub is important for the optimal activation of Ub by E1. We further show that the blockers of the Ub-proteasome system such as ubistatin and fullerenol inhibit Ub activation by E1. Interestingly, our data indicate that the phosphorylation of Ub at the S65 position augments its activation by the E1 enzyme.
Collapse
Affiliation(s)
- Rajesh K Singh
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland , College Park, Maryland 20742, United States
| | - Yaniv Kazansky
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland , College Park, Maryland 20742, United States
| | - Donald Wathieu
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland , College Park, Maryland 20742, United States
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
46
|
Madrid M, Vázquez-Marín B, Soto T, Franco A, Gómez-Gil E, Vicente-Soler J, Gacto M, Pérez P, Cansado J. Differential functional regulation of protein kinase C (PKC) orthologs in fission yeast. J Biol Chem 2017; 292:11374-11387. [PMID: 28536259 DOI: 10.1074/jbc.m117.786087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/22/2017] [Indexed: 11/06/2022] Open
Abstract
The two PKC orthologs Pck1 and Pck2 in the fission yeast Schizosaccharomyces pombe operate in a redundant fashion to control essential functions, including morphogenesis and cell wall biosynthesis, as well as the activity of the cell integrity pathway and its core element, the MAPK Pmk1. We show here that, despite the strong structural similarity and functional redundancy of these two enzymes, the mechanisms regulating their maturation, activation, and stabilization have a remarkably distinct biological impact on both kinases. We found that, in contrast to Pck2, putative in vivo phosphorylation of Pck1 within the conserved activation loop, turn, and hydrophobic motifs is essential for Pck1 stability and biological functions. Constitutive Pck activation promoted dephosphorylation and destabilization of Pck2, whereas it enhanced Pck1 levels to interfere with proper downstream signaling to the cell integrity pathway via Pck2. Importantly, although catalytic activity was essential for Pck1 function, Pck2 remained partially functional independent of its catalytic activity. Our findings suggest that early divergence from a common ancestor in fission yeast involved important changes in the mechanisms regulating catalytic activation and stability of PKC family members to allow for flexible and dynamic control of downstream functions, including MAPK signaling.
Collapse
Affiliation(s)
- Marisa Madrid
- From the Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain and
| | - Beatriz Vázquez-Marín
- From the Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain and
| | - Teresa Soto
- From the Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain and
| | - Alejandro Franco
- From the Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain and
| | - Elisa Gómez-Gil
- From the Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain and
| | - Jero Vicente-Soler
- From the Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain and
| | - Mariano Gacto
- From the Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain and
| | - Pilar Pérez
- the Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, 37007 Salamanca, Spain
| | - José Cansado
- From the Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain and
| |
Collapse
|
47
|
Xia Y, Yang W, Fa M, Li X, Wang Y, Jiang Y, Zheng Y, Lee JH, Li J, Lu Z. RNF8 mediates histone H3 ubiquitylation and promotes glycolysis and tumorigenesis. J Exp Med 2017; 214:1843-1855. [PMID: 28507061 PMCID: PMC5461008 DOI: 10.1084/jem.20170015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 01/18/2023] Open
Abstract
Xia et al. show that EGF receptor activation results in the binding of the RNF8 forkhead-associated domain to pyruvate kinase M2-phosphorylated histone H3-T11, leading to histone H3 polyubiquitylation and degradation and subsequent gene expression for tumor cell glycolysis and proliferation. Disassembly of nucleosomes in which genomic DNA is packaged with histone regulates gene expression. However, the mechanisms underlying nucleosome disassembly for gene expression remain elusive. We show here that epidermal growth factor receptor activation results in the binding of the RNF8 forkhead-associated domain to pyruvate kinase M2–phosphorylated histone H3-T11, leading to K48-linked polyubiquitylation of histone H3 at K4 and subsequent proteasome-dependent protein degradation. In addition, H3 polyubiquitylation induces histone dissociation from chromatin, nucleosome disassembly, and binding of RNA polymerase II to MYC and CCND1 promoter regions for transcription. RNF8-mediated histone H3 polyubiquitylation promotes tumor cell glycolysis and proliferation and brain tumorigenesis. Our findings uncover the role of RNF8-mediated histone H3 polyubiquitylation in the regulation of histone H3 stability and chromatin modification, paving the way to gene expression regulation and tumorigenesis.
Collapse
Affiliation(s)
- Yan Xia
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Weiwei Yang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Fa
- Genetivision Corporation, Houston, TX 77054
| | - Xinjian Li
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Yugang Wang
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Yuhui Jiang
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Cancer, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jong-Ho Lee
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jing Li
- Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs of Minister of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 .,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030.,The Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030
| |
Collapse
|
48
|
Li H, Yoon JH, Won HJ, Ji HS, Yuk HJ, Park KH, Park HY, Jeong TS. Isotrifoliol inhibits pro-inflammatory mediators by suppression of TLR/NF-κB and TLR/MAPK signaling in LPS-induced RAW264.7 cells. Int Immunopharmacol 2017; 45:110-119. [PMID: 28192731 DOI: 10.1016/j.intimp.2017.01.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/20/2016] [Accepted: 01/30/2017] [Indexed: 11/30/2022]
Abstract
Soybeans, produced by Glycine max (L.) Merr., contain high levels of isoflavones, such as genistein and daidzein. However, soy leaves contain more diverse and abundant flavonol glycosides and coumestans, as compared to the soybean. This study investigated the anti-inflammatory effects of the major coumestans present in soy leaf (coumestrol, isotrifoliol, and phaseol) in lipopolysaccharide (LPS)-induced RAW264.7 cells. Coumestans significantly reduced LPS-induced nitric oxide (NO), prostaglandin E2 (PGE2), and reactive oxygen species (ROS) production; isotrifoliol had the most potent anti-inflammatory activity. Isotrifoliol reduced LPS-mediated induction of mRNA expression of inducible nitric-oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-1β, IL-6, tumor necrosis factor alpha (TNFα), and chemokines, such as chemokine (C-C motif) ligand (CCL) 2, CCL3, and CCL4. Isotrifoliol prevented NF-κB p65 subunit activation by reducing the phosphorylation and degradation of the inhibitor of NF-κB. And isotrifoliol significantly suppressed phosphorylation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK). Furthermore, isotrifoliol suppressed LPS-induced Toll-like Receptor (TLR) signaling pathway, including mRNA expression of TNF receptor associated factor 6, transforming growth factor beta-activated kinase 1 (TAK1), TAK1 binding protein 2 (TAB2), and TAB3. These results demonstrate that isotrifoliol exerts an anti-inflammatory effect by suppressing the expression of inflammatory mediators via inhibition of TLR/NF-κB and TLR/MAPK signaling in LPS-induced RAW264.7 macrophages. Therefore, isotrifoliol can be used as an anti-inflammatory agent, and coumestan-rich soy leaf extracts may provide a useful dietary supplement.
Collapse
Affiliation(s)
- Hua Li
- Industrial Bio-materials Research Center, KRIBB, Daejeon 34141, Republic of Korea; Department of Biomolecular Science, Korea University of Science and Technology, KRIBB, Daejeon 34141, Republic of Korea
| | - Jeong-Hyun Yoon
- Industrial Bio-materials Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Hyo-Jun Won
- Department of Biomolecular Science, Korea University of Science and Technology, KRIBB, Daejeon 34141, Republic of Korea
| | - Hyeon-Seon Ji
- Industrial Bio-materials Research Center, KRIBB, Daejeon 34141, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Heong Joo Yuk
- Industrial Bio-materials Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Ki Hun Park
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho-Yong Park
- Industrial Bio-materials Research Center, KRIBB, Daejeon 34141, Republic of Korea; Insect Biotech Co. Ltd., Daejeon 34054, Republic of Korea
| | - Tae-Sook Jeong
- Industrial Bio-materials Research Center, KRIBB, Daejeon 34141, Republic of Korea; Department of Biomolecular Science, Korea University of Science and Technology, KRIBB, Daejeon 34141, Republic of Korea.
| |
Collapse
|
49
|
Xu Y, Xia J, Liu S, Stein S, Ramon C, Xi H, Wang L, Xiong X, Zhang L, He D, Yang W, Zhao X, Cheng X, Yang X, Wang H. Endocytosis and membrane receptor internalization: implication of F-BAR protein Carom. Front Biosci (Landmark Ed) 2017; 22:1439-1457. [PMID: 28199211 DOI: 10.2741/4552] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endocytosis is a cellular process mostly responsible for membrane receptor internalization. Cell membrane receptors bind to their ligands and form a complex which can be internalized. We previously proposed that F-BAR protein initiates membrane curvature and mediates endocytosis via its binding partners. However, F-BAR protein partners involved in membrane receptor endocytosis and the regulatory mechanism remain unknown. In this study, we established database mining strategies to explore mechanisms underlying receptor-related endocytosis. We identified 34 endocytic membrane receptors and 10 regulating proteins in clathrin-dependent endocytosis (CDE), a major process of membrane receptor internalization. We found that F-BAR protein FCHSD2 (Carom) may facilitate endocytosis via 9 endocytic partners. Carom is highly expressed, along with highly expressed endocytic membrane receptors and partners, in endothelial cells and macrophages. We established 3 models of Carom-receptor complexes and their intracellular trafficking based on protein interaction and subcellular localization. We conclude that Carom may mediate receptor endocytosis and transport endocytic receptors to the cytoplasm for receptor signaling and lysosome/proteasome degradation, or to the nucleus for RNA processing, gene transcription and DNA repair.
Collapse
Affiliation(s)
- Yanjie Xu
- Center Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nan Chang, Jiang Xi, 330006, China, and Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Jixiang Xia
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Suxuan Liu
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140,and Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Sam Stein
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Cueto Ramon
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Hang Xi
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Luqiao Wang
- Center Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nan Chang, Jiang Xi, 330006, China, and Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Xinyu Xiong
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Lixiao Zhang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Dingwen He
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nan Chang, Jiang Xi, 330006, China
| | - William Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Xianxian Zhao
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Xiaoshu Cheng
- Center Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nan Chang, Jiang Xi, 330006, China
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, and Cardiovascular Research, Temple University School of Medicine, Philadelphia, PA, 19140, and Thrombosis Research, Temple University School of Medicine
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, and Cardiovascular Research, Temple University School of Medicine, Philadelphia, PA, 19140, and Thrombosis Research, Temple University School of Medicine,
| |
Collapse
|
50
|
Qian X, Li X, Cai Q, Zhang C, Yu Q, Jiang Y, Lee JH, Hawke D, Wang Y, Xia Y, Zheng Y, Jiang BH, Liu DX, Jiang T, Lu Z. Phosphoglycerate Kinase 1 Phosphorylates Beclin1 to Induce Autophagy. Mol Cell 2017; 65:917-931.e6. [PMID: 28238651 DOI: 10.1016/j.molcel.2017.01.027] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/28/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Autophagy is crucial for maintaining cell homeostasis. However, the precise mechanism underlying autophagy initiation remains to be defined. Here, we demonstrate that glutamine deprivation and hypoxia result in inhibition of mTOR-mediated acetyl-transferase ARD1 S228 phosphorylation, leading to ARD1-dependent phosphoglycerate kinase 1 (PGK1) K388 acetylation and subsequent PGK1-mediated Beclin1 S30 phosphorylation. This phosphorylation enhances ATG14L-associated class III phosphatidylinositol 3-kinase VPS34 activity by increasing the binding of phosphatidylinositol to VPS34. ARD1-dependent PGK1 acetylation and PGK1-mediated Beclin1 S30 phosphorylation are required for glutamine deprivation- and hypoxia-induced autophagy and brain tumorigenesis. Furthermore, PGK1 K388 acetylation levels correlate with Beclin1 S30 phosphorylation levels and poor prognosis in glioblastoma patients. Our study unearths an important mechanism underlying cellular-stress-induced autophagy initiation in which the protein kinase activity of the metabolic enzyme PGK1 plays an instrumental role and reveals the significance of the mutual regulation of autophagy and cell metabolism in maintaining cell homeostasis.
Collapse
Affiliation(s)
- Xu Qian
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xinjian Li
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qingsong Cai
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chuanbao Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Qiujing Yu
- The Institute of Cell Metabolism and Diseases, Shanghai Key Laboratory of Pancreatic Cancer, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Yuhui Jiang
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Institute of Cell Metabolism and Diseases, Shanghai Key Laboratory of Pancreatic Cancer, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Jong-Ho Lee
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yugang Wang
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Xia
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Institute of Cell Metabolism and Diseases, Shanghai Key Laboratory of Pancreatic Cancer, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Institute of Cell Metabolism and Diseases, Shanghai Key Laboratory of Pancreatic Cancer, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Bing-Hua Jiang
- State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, China
| | - David X Liu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99202, USA
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|