1
|
Meijer M, Öttl M, Yang J, Subkhangulova A, Kumar A, Feng Z, van Voorst TW, Groffen AJ, van Weering JRT, Zhang Y, Verhage M. Tomosyns attenuate SNARE assembly and synaptic depression by binding to VAMP2-containing template complexes. Nat Commun 2024; 15:2652. [PMID: 38531902 PMCID: PMC10965968 DOI: 10.1038/s41467-024-46828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Tomosyns are widely thought to attenuate membrane fusion by competing with synaptobrevin-2/VAMP2 for SNARE-complex assembly. Here, we present evidence against this scenario. In a novel mouse model, tomosyn-1/2 deficiency lowered the fusion barrier and enhanced the probability that synaptic vesicles fuse, resulting in stronger synapses with faster depression and slower recovery. While wild-type tomosyn-1m rescued these phenotypes, substitution of its SNARE motif with that of synaptobrevin-2/VAMP2 did not. Single-molecule force measurements indeed revealed that tomosyn's SNARE motif cannot substitute synaptobrevin-2/VAMP2 to form template complexes with Munc18-1 and syntaxin-1, an essential intermediate for SNARE assembly. Instead, tomosyns extensively bind synaptobrevin-2/VAMP2-containing template complexes and prevent SNAP-25 association. Structure-function analyses indicate that the C-terminal polybasic region contributes to tomosyn's inhibitory function. These results reveal that tomosyns regulate synaptic transmission by cooperating with synaptobrevin-2/VAMP2 to prevent SNAP-25 binding during SNARE assembly, thereby limiting initial synaptic strength and equalizing it during repetitive stimulation.
Collapse
Affiliation(s)
- Marieke Meijer
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands.
| | - Miriam Öttl
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Jie Yang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA.
| | - Aygul Subkhangulova
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Avinash Kumar
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Zicheng Feng
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Torben W van Voorst
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Alexander J Groffen
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands
| | - Jan R T van Weering
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands
| | - Yongli Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06511, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.
| | - Matthijs Verhage
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam University Medical Center, 1081HV, Amsterdam, The Netherlands.
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Salazar Lázaro A, Trimbuch T, Vardar G, Rosenmund C. The stability of the primed pool of synaptic vesicles and the clamping of spontaneous neurotransmitter release rely on the integrity of the C-terminal half of the SNARE domain of syntaxin-1A. eLife 2024; 12:RP90775. [PMID: 38512129 PMCID: PMC10957171 DOI: 10.7554/elife.90775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
The SNARE proteins are central in membrane fusion and, at the synapse, neurotransmitter release. However, their involvement in the dual regulation of the synchronous release while maintaining a pool of readily releasable vesicles remains unclear. Using a chimeric approach, we performed a systematic analysis of the SNARE domain of STX1A by exchanging the whole SNARE domain or its N- or C-terminus subdomains with those of STX2. We expressed these chimeric constructs in STX1-null hippocampal mouse neurons. Exchanging the C-terminal half of STX1's SNARE domain with that of STX2 resulted in a reduced RRP accompanied by an increased release rate, while inserting the C-terminal half of STX1's SNARE domain into STX2 leads to an enhanced priming and decreased release rate. Additionally, we found that the mechanisms for clamping spontaneous, but not for Ca2+-evoked release, are particularly susceptible to changes in specific residues on the outer surface of the C-terminus of the SNARE domain of STX1A. Particularly, mutations of D231 and R232 affected the fusogenicity of the vesicles. We propose that the C-terminal half of the SNARE domain of STX1A plays a crucial role in the stabilization of the RRP as well as in the clamping of spontaneous synaptic vesicle fusion through the regulation of the energetic landscape for fusion, while it also plays a covert role in the speed and efficacy of Ca2+-evoked release.
Collapse
Affiliation(s)
- Andrea Salazar Lázaro
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
| | - Thorsten Trimbuch
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
| | - Gülçin Vardar
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
| | - Christian Rosenmund
- Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
- NeuroCure Excellence ClusterBerlinGermany
| |
Collapse
|
3
|
Buzzatto MV, Berberián MV, Di Bartolo AL, Masone D, Tomes CN. α-Synuclein is required for sperm exocytosis at a post-fusion stage. Front Cell Dev Biol 2023; 11:1125988. [PMID: 37287458 PMCID: PMC10242118 DOI: 10.3389/fcell.2023.1125988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
The sperm acrosome is a large dense-core granule whose contents are secreted by regulated exocytosis at fertilization through the opening of numerous fusion pores between the acrosomal and plasma membranes. In other cells, the nascent pore generated when the membrane surrounding a secretory vesicle fuses with the plasma membrane may have different fates. In sperm, pore dilation leads to the vesiculation and release of these membranes, together with the granule contents. α-Synuclein is a small cytosolic protein claimed to exhibit different roles in exocytic pathways in neurons and neuroendocrine cells. Here, we scrutinized its function in human sperm. Western blot revealed the presence of α-synuclein and indirect immunofluorescence its localization to the acrosomal domain of human sperm. Despite its small size, the protein was retained following permeabilization of the plasma membrane with streptolysin O. α-Synuclein was required for acrosomal release, as demonstrated by the inability of an inducer to elicit exocytosis when permeabilized human sperm were loaded with inhibitory antibodies to human α-synuclein. The antibodies halted calcium-induced secretion when introduced after the acrosome docked to the cell membrane. Two functional assays, fluorescence and transmission electron microscopies revealed that the stabilization of open fusion pores was responsible for the secretion blockage. Interestingly, synaptobrevin was insensitive to neurotoxin cleavage at this point, an indication of its engagement in cis SNARE complexes. The very existence of such complexes during AE reflects a new paradigm. Recombinant α-synuclein rescued the inhibitory effects of the anti-α-synuclein antibodies and of a chimeric Rab3A-22A protein that also inhibits AE after fusion pore opening. We applied restrained molecular dynamics simulations to compare the energy cost of expanding a nascent fusion pore between two model membranes and found it higher in the absence than in the presence of α-synuclein. Hence, our results suggest that α-synuclein is essential for expanding fusion pores.
Collapse
Affiliation(s)
- Micaela Vanina Buzzatto
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Victoria Berberián
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Ciencias Básicas (ICB)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Ary Lautaro Di Bartolo
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claudia Nora Tomes
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
4
|
Zhang Y, Ma L, Bao H. Energetics, kinetics, and pathways of SNARE assembly in membrane fusion. Crit Rev Biochem Mol Biol 2022; 57:443-460. [PMID: 36151854 PMCID: PMC9588726 DOI: 10.1080/10409238.2022.2121804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fusion of transmitter-containing vesicles with plasma membranes at the synaptic and neuromuscular junctions mediates neurotransmission and muscle contractions, respectively, thereby underlying all thoughts and actions. The fusion process is driven by the coupled folding and assembly of three synaptic SNARE proteins--syntaxin-1 and SNAP-25 on the target plasma membrane (t-SNAREs) and VAMP2 on the vesicular membrane (v-SNARE) into a four-helix bundle. Their assembly is chaperoned by Munc18-1 and many other proteins to achieve the speed and accuracy required for neurotransmission. However, the physiological pathway of SNARE assembly and its coupling to membrane fusion remains unclear. Here, we review recent progress in understanding SNARE assembly and membrane fusion, with a focus on results obtained by single-molecule manipulation approaches and electric recordings of single fusion pores. We describe two pathways of synaptic SNARE assembly, their associated intermediates, energetics, and kinetics. Assembly of the three SNAREs in vitro begins with the formation of a t-SNARE binary complex, on which VAMP2 folds in a stepwise zipper-like fashion. Munc18-1 significantly alters the SNARE assembly pathway: syntaxin-1 and VAMP2 first bind on the surface of Munc18-1 to form a template complex, with which SNAP-25 associates to conclude SNARE assembly and displace Munc18-1. During membrane fusion, multiple trans-SNARE complexes cooperate to open a dynamic fusion pore in a manner dependent upon their copy number and zippering states. Together, these results demonstrate that stepwise and cooperative SNARE assembly drive stagewise membrane fusion.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA;,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA;,Conatct: and
| | - Lu Ma
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA;,Present address: Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Huan Bao
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida, 33458,Conatct: and
| |
Collapse
|
5
|
Mion D, Bunel L, Heo P, Pincet F. The beginning and the end of SNARE-induced membrane fusion. FEBS Open Bio 2022; 12:1958-1979. [PMID: 35622519 PMCID: PMC9623537 DOI: 10.1002/2211-5463.13447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023] Open
Abstract
Membrane fusion is not a spontaneous process. Physiologically, the formation of coiled-coil protein complexes, the SNAREpins, bridges the membrane of a vesicle and a target membrane, brings them in close contact, and provides the energy necessary for their fusion. In this review, we utilize results from in vitro experiments and simple physics and chemistry models to dissect the kinetics and energetics of the fusion process from the encounter of the two membranes to the full expansion of a fusion pore. We find three main energy barriers that oppose the fusion process: SNAREpin initiation, fusion pore opening, and expansion. SNAREpin initiation is inherent to the proteins and makes in vitro fusion kinetic experiments rather slow. The kinetics are physiologically accelerated by effectors. The energy barriers that precede pore opening and pore expansion can be overcome by several SNAREpins acting in concert.
Collapse
Affiliation(s)
- Delphine Mion
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| | - Louis Bunel
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| | - Paul Heo
- Institute of Psychiatry and Neuroscience of Paris (IPNP)INSERM U1266ParisFrance
| | - Frédéric Pincet
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| |
Collapse
|
6
|
Calcium-triggered fusion of lipid membranes is enabled by amphiphilic nanoparticles. Proc Natl Acad Sci U S A 2020; 117:18470-18476. [PMID: 32690682 DOI: 10.1073/pnas.1902597117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lipid membrane fusion is an essential process for a number of critical biological functions. The overall process is thermodynamically favorable but faces multiple kinetic barriers along the way. Inspired by nature's engineered proteins such as SNAP receptor [soluble N-ethylmale-imide-sensitive factor-attachment protein receptor (SNARE)] complexes or viral fusogenic proteins that actively promote the development of membrane proximity, nucleation of a stalk, and triggered expansion of the fusion pore, here we introduce a synthetic fusogen that can modulate membrane fusion and equivalently prime lipid membranes for calcium-triggered fusion. Our fusogen consists of a gold nanoparticle functionalized with an amphiphilic monolayer of alkanethiol ligands that had previously been shown to fuse with lipid bilayers. While previous efforts to develop synthetic fusogens have only replicated the initial steps of the fusion cascade, we use molecular simulations and complementary experimental techniques to demonstrate that these nanoparticles can induce the formation of a lipid stalk and also drive its expansion into a fusion pore upon the addition of excess calcium. These results have important implications in general understanding of stimuli-triggered fusion and the development of synthetic fusogens for biomedical applications.
Collapse
|
7
|
Weiss AN. Synaptobrevin-2 C-Terminal Flexible Region Regulates the Discharge of Catecholamine Molecules. Biophys J 2019; 116:921-929. [PMID: 30795871 PMCID: PMC6400860 DOI: 10.1016/j.bpj.2019.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 12/23/2022] Open
Abstract
The discharge of neurotransmitters from vesicles is a regulated process. Synaptobrevin-2, a snap receptor (SNARE) protein, participates in this process by interacting with other SNARE and associated proteins. Synaptobrevin-2 transmembrane domain is embedded into the vesicle lipid bilayer except for its last three residues. These residues are hydrophilic and constitute synaptobrevin-2 C-terminal flexible region. The residue Y113 of synaptobrevin-2 flexible region was mutated to lysine and glutamate. The effects of these mutations on the exocytotic process in chromaffin cells were assessed using capacitance measurements combined with amperometry and stimulation by flash photolysis of caged Ca2+. Both Y113E and Y113K mutations reduced the number of fusion-competent vesicles and reduced the rates of release of catecholamine molecules in quanta release events. These results exclude any direct interaction of this domain with the catecholamine molecules that are escaping through the fusion pore but favor its interaction with the vesicle membrane as a mean of regulating exocytosis.
Collapse
Affiliation(s)
- Annita N Weiss
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
8
|
Fusion assays for model membranes: a critical review. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2019. [DOI: 10.1016/bs.abl.2019.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
9
|
Neher E, Brose N. Dynamically Primed Synaptic Vesicle States: Key to Understand Synaptic Short-Term Plasticity. Neuron 2018; 100:1283-1291. [DOI: 10.1016/j.neuron.2018.11.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/26/2018] [Accepted: 11/13/2018] [Indexed: 01/09/2023]
|
10
|
Simulations Reveal Multiple Intermediates in the Unzipping Mechanism of Neuronal SNARE Complex. Biophys J 2018; 115:1470-1480. [PMID: 30268539 DOI: 10.1016/j.bpj.2018.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/26/2018] [Accepted: 08/16/2018] [Indexed: 11/22/2022] Open
Abstract
The assembling of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein complex is a fundamental step in neuronal exocytosis, and it has been extensively studied in the last two decades. Yet, many details of this process remain inaccessible with the current experimental space and time resolution. Here, we study the zipping mechanism of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex computationally by using a coarse-grained model. We explore the different pathways available and analyze their dependence on the computational model employed. We reveal and characterize multiple intermediate states, in agreement with previous experimental findings. We use our model to analyze the influence of single-residue mutations on the thermodynamics of the folding process.
Collapse
|
11
|
SNAREpin Assembly: Kinetic and Thermodynamic Approaches. Methods Mol Biol 2018. [PMID: 30317499 DOI: 10.1007/978-1-4939-8760-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Proteins constantly interact and often form molecular complexes. The dynamics of most biological processes strongly rely on the kinetics and thermodynamics of assembly and disassembly of these complexes. Consequently an accurate characterization of these kinetics and thermodynamics that underlie them provides key information to better understand these processes. Here, we present two efficient techniques to quantify the assembly and disassembly of protein complexes: isothermal titration calorimetry and fluorescence anisotropy. As an example we focus on the formation of SNAREpins and also present how to prepare SNARE proteins to use in these experimental setups. We then show how to use these techniques to determine the critical factors that activate assembly kinetics.
Collapse
|
12
|
Jun YW, Wang T, Hwang S, Kim D, Ma D, Kim KH, Kim S, Jung J, Ahn KH. A Ratiometric Two-Photon Fluorescent Probe for Tracking Lysosomal ATP: Direct In Cellulo Observation of Lysosomal Membrane Fusion Processes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804743] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yong Woong Jun
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); 77 Cheongam-Ro, Nam-Gu Pohang 37673 Rep. of Korea
| | - Taejun Wang
- Division of Integrative Biosciences and Biotechnology; Pohang University of Science and Technology (POSTECH); 77 Cheongam-Ro, Nam-Gu Pohang 37673 Rep. of Korea
| | - Sekyu Hwang
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); 77 Cheongam-Ro, Nam-Gu Pohang 37673 Rep. of Korea
| | - Dokyoung Kim
- Department of Anatomy and Neurobiology; College of Medicine; Kyung Hee University; 26 Kyungheedae-Ro, Dongdaemun-Gu Seoul 02447 Rep. of Korea
- Center for Converging Humanities; College of Medicine; Kyung Hee University; 26 Kyungheedae-Ro, Dongdaemun-Gu Seoul 02447 Rep. of Korea
| | - Donghee Ma
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); 77 Cheongam-Ro, Nam-Gu Pohang 37673 Rep. of Korea
| | - Ki Hean Kim
- Division of Integrative Biosciences and Biotechnology; Pohang University of Science and Technology (POSTECH); 77 Cheongam-Ro, Nam-Gu Pohang 37673 Rep. of Korea
| | - Sungjee Kim
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); 77 Cheongam-Ro, Nam-Gu Pohang 37673 Rep. of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology; College of Medicine; Kyung Hee University; 26 Kyungheedae-Ro, Dongdaemun-Gu Seoul 02447 Rep. of Korea
| | - Kyo Han Ahn
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); 77 Cheongam-Ro, Nam-Gu Pohang 37673 Rep. of Korea
| |
Collapse
|
13
|
Jun YW, Wang T, Hwang S, Kim D, Ma D, Kim KH, Kim S, Jung J, Ahn KH. A Ratiometric Two-Photon Fluorescent Probe for Tracking Lysosomal ATP: Direct In Cellulo Observation of Lysosomal Membrane Fusion Processes. Angew Chem Int Ed Engl 2018; 57:10142-10147. [PMID: 29873167 DOI: 10.1002/anie.201804743] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 11/10/2022]
Abstract
Vesicles exchange their contents through membrane fusion processes, kiss-and-run and full-collapse fusion. Indirect observation of these fusion processes using artificial vesicles enhanced our understanding on the molecular mechanisms involved. Direct observation of the fusion processes in a real biological system, however, remains a challenge owing to many technical obstacles. We report a ratiometric two-photon probe offering real-time tracking of lysosomal ATP with quantitative information for the first time. By applying the probe to two-photon live-cell imaging, the lysosomal membrane fusion process in cells has been directly observed and the concentration of its content, lysosomal ATP, has been measured. Results show that the kiss-and-run process between lysosomes proceeds through repeated transient interactions with gradual content mixing, whereas the full-fusion process occurs at once. Furthermore, it is confirmed that both the fusion processes proceed with conservation of the content. Such a small-molecule probe exerts minimal disturbance and hence has potential for studying various biological processes associated with lysosomal ATP.
Collapse
Affiliation(s)
- Yong Woong Jun
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Rep. of Korea
| | - Taejun Wang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Rep. of Korea
| | - Sekyu Hwang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Rep. of Korea
| | - Dokyoung Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Rep. of Korea.,Center for Converging Humanities, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Rep. of Korea
| | - Donghee Ma
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Rep. of Korea
| | - Ki Hean Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Rep. of Korea
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Rep. of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Rep. of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Rep. of Korea
| |
Collapse
|
14
|
Zhang Y. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers. Protein Sci 2017; 26:1252-1265. [PMID: 28097727 PMCID: PMC5477538 DOI: 10.1002/pro.3116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/03/2017] [Indexed: 01/17/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are universal molecular engines that drive membrane fusion. Particularly, synaptic SNAREs mediate fast calcium-triggered fusion of neurotransmitter-containing vesicles with plasma membranes for synaptic transmission, the basis of all thought and action. During membrane fusion, complementary SNAREs located on two apposed membranes (often called t- and v-SNAREs) join together to assemble into a parallel four-helix bundle, releasing the energy to overcome the energy barrier for fusion. A long-standing hypothesis suggests that SNAREs act like a zipper to draw the two membranes into proximity and thereby force them to fuse. However, a quantitative test of this SNARE zippering hypothesis was hindered by difficulties to determine the energetics and kinetics of SNARE assembly and to identify the relevant folding intermediates. Here, we first review different approaches that have been applied to study SNARE assembly and then focus on high-resolution optical tweezers. We summarize the folding energies, kinetics, and pathways of both wild-type and mutant SNARE complexes derived from this new approach. These results show that synaptic SNAREs assemble in four distinct stages with different functions: slow N-terminal domain association initiates SNARE assembly; a middle domain suspends and controls SNARE assembly; and rapid sequential zippering of the C-terminal domain and the linker domain directly drive membrane fusion. In addition, the kinetics and pathway of the stagewise assembly are shared by other SNARE complexes. These measurements prove the SNARE zippering hypothesis and suggest new mechanisms for SNARE assembly regulated by other proteins.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale School of MedicineYale UniversityNew HavenConnecticut06511
| |
Collapse
|
15
|
Abstract
Synaptic transmission requires a stable pool of release-ready (primed) vesicles. Here we show that two molecules involved in SNARE-complex assembly, Munc13-1 and Munc18-1, together stabilize release-ready vesicles by preventing de-priming. Replacing neuronal Munc18-1 by a non-neuronal isoform Munc18-2 (Munc18-1/2SWAP) supports activity-dependent priming, but primed vesicles fall back into a non-releasable state (de-prime) within seconds. Munc13-1 deficiency produces a similar defect. Inhibitors of N-ethylmaleimide sensitive factor (NSF), N-ethylmaleimide (NEM) or interfering peptides, prevent de-priming in munc18-1/2SWAP or munc13-1 null synapses, but not in CAPS-1/2 null, another priming-deficient mutant. NEM rescues synaptic transmission in munc13-1 null and munc18-1/2SWAP synapses, in acute munc13-1 null slices and even partially in munc13-1/2 double null synapses. Together these data indicate that Munc13-1 and Munc18-1, but not CAPS-1/2, stabilize primed synaptic vesicles by preventing NSF-dependent de-priming. The molecular mechanism underlying the generation and maintenance of the readily releasable pool composed of primed synaptic vesicles is only partially known. Here the authors show that in mouse primary neurons, Munc13-1 and Munc18-1 stabilize primed synaptic vesicles by preventing NSF-dependent de-priming.
Collapse
|
16
|
Zdanowicz R, Kreutzberger A, Liang B, Kiessling V, Tamm LK, Cafiso DS. Complexin Binding to Membranes and Acceptor t-SNAREs Explains Its Clamping Effect on Fusion. Biophys J 2017; 113:1235-1250. [PMID: 28456331 DOI: 10.1016/j.bpj.2017.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023] Open
Abstract
Complexin-1 is a SNARE effector protein that decreases spontaneous neurotransmitter release and enhances evoked release. Complexin binds to the fully assembled four-helical neuronal SNARE core complex as revealed in competing molecular models derived from x-ray crystallography. Presently, it is unclear how complexin binding to the postfusion complex accounts for its effects upon spontaneous and evoked release in vivo. Using a combination of spectroscopic and imaging methods, we characterize in molecular detail how complexin binds to the 1:1 plasma membrane t-SNARE complex of syntaxin-1a and SNAP-25 while simultaneously binding the lipid bilayer at both its N- and C-terminal ends. These interactions are cooperative, and binding to the prefusion acceptor t-SNARE complex is stronger than to the postfusion core complex. This complexin interaction reduces the affinity of synaptobrevin-2 for the 1:1 complex, thereby retarding SNARE assembly and vesicle docking in vitro. The results provide the basis for molecular models that account for the observed clamping effect of complexin beginning with the acceptor t-SNARE complex and the subsequent activation of the clamped complex by Ca2+ and synaptotagmin.
Collapse
Affiliation(s)
- Rafal Zdanowicz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia; Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia
| | - Alex Kreutzberger
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Binyong Liang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia.
| | - David S Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, Virginia; Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
17
|
Shi Y, Zhang Y, Lou J. The influence of cell membrane and SNAP25 linker loop on the dynamics and unzipping of SNARE complex. PLoS One 2017; 12:e0176235. [PMID: 28426820 PMCID: PMC5398687 DOI: 10.1371/journal.pone.0176235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/08/2017] [Indexed: 11/29/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex is composed of three neuronal proteins VAMP2, Syntaxin and SNAP25, which plays a core role during the process of membrane fusion. The zipping assembly of the SNARE complex releases energies and drives the vesicle and cell membrane into close proximity. In this study, we use all-atom molecular dynamics simulations to probe the dynamics of SNARE and its unzipping process in the context of membrane at the atomistic details. Our results indicated that the NTD of SNARE core domain is relatively more stable than CTD, which is in agreement with previous experiments. More importantly, possible interactions between the linker loop (LL) region of SNAP25 and VAMP2 are observed, suggests that the LL region may facilitate VAMP2 binding and SNARE initiation. The forced unzipping of SNARE in the presence of membrane and LL of SNAP25 reveals the possible pathway for energy generation of SNARE zipping, provides information to understand how force may regulate the cooperativity between the membrane and the SNARE complex.
Collapse
Affiliation(s)
- Yi Shi
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yong Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jizhong Lou
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
18
|
Chang CW, Chiang CW, Jackson MB. Fusion pores and their control of neurotransmitter and hormone release. J Gen Physiol 2017; 149:301-322. [PMID: 28167663 PMCID: PMC5339513 DOI: 10.1085/jgp.201611724] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/06/2017] [Accepted: 01/19/2017] [Indexed: 11/20/2022] Open
Abstract
Chang et al. review fusion pore structure and dynamics and discuss the implications for hormone and neurotransmitter release Ca2+-triggered exocytosis functions broadly in the secretion of chemical signals, enabling neurons to release neurotransmitters and endocrine cells to release hormones. The biological demands on this process can vary enormously. Although synapses often release neurotransmitter in a small fraction of a millisecond, hormone release can be orders of magnitude slower. Vesicles usually contain multiple signaling molecules that can be released selectively and conditionally. Cells are able to control the speed, concentration profile, and content selectivity of release by tuning and tailoring exocytosis to meet different biological demands. Much of this regulation depends on the fusion pore—the aqueous pathway by which molecules leave a vesicle and move out into the surrounding extracellular space. Studies of fusion pores have illuminated how cells regulate secretion. Furthermore, the formation and growth of fusion pores serve as a readout for the progress of exocytosis, thus revealing key kinetic stages that provide clues about the underlying mechanisms. Herein, we review the structure, composition, and dynamics of fusion pores and discuss the implications for molecular mechanisms as well as for the cellular regulation of neurotransmitter and hormone release.
Collapse
Affiliation(s)
- Che-Wei Chang
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Chung-Wei Chiang
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
19
|
Quevedo MF, Lucchesi O, Bustos MA, Pocognoni CA, De la Iglesia PX, Tomes CN. The Rab3A-22A Chimera Prevents Sperm Exocytosis by Stabilizing Open Fusion Pores. J Biol Chem 2016; 291:23101-23111. [PMID: 27613869 DOI: 10.1074/jbc.m116.729954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 11/06/2022] Open
Abstract
At the final stage of exocytotis, a fusion pore opens between the plasma and a secretory vesicle membranes; typically, when the pore dilates the vesicle releases its cargo. Sperm contain a large dense-core secretory granule (the acrosome) whose contents are secreted by regulated exocytosis at fertilization. Minutes after the arrival of the triggering signal, the acrosomal and plasma membranes dock at multiple sites and fusion pores open at the contact points. It is believed that immediately afterward, fusion pores dilate spontaneously. Rab3A is an essential component of human sperm exocytotic machinery. Yet, recombinant, persistently active Rab3A halts calcium-triggered secretion when introduced after docking into streptolysin O-permeabilized cells; so does a Rab3A-22A chimera. Here, we applied functional assays, electron and confocal microscopy to show that the secretion blockage is due to the stabilization of open fusion pores. Other novel findings are that sperm SNAREs engage in α-SNAP/NSF-sensitive complexes at a post-fusion stage. Complexes are disentangled by these chaperons to achieve vesiculation and acrosomal contents release. Thus, post-fusion regulation of the pores determines their expansion and the success of the acrosome reaction.
Collapse
Affiliation(s)
- María F Quevedo
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Ornella Lucchesi
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Matías A Bustos
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Cristian A Pocognoni
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Paola X De la Iglesia
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| | - Claudia N Tomes
- From the IHEM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Médicas, CC56. 5500 Mendoza, Argentina
| |
Collapse
|
20
|
Dhara M, Yarzagaray A, Makke M, Schindeldecker B, Schwarz Y, Shaaban A, Sharma S, Böckmann RA, Lindau M, Mohrmann R, Bruns D. v-SNARE transmembrane domains function as catalysts for vesicle fusion. eLife 2016; 5:e17571. [PMID: 27343350 PMCID: PMC4972536 DOI: 10.7554/elife.17571] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/24/2016] [Indexed: 12/22/2022] Open
Abstract
Vesicle fusion is mediated by an assembly of SNARE proteins between opposing membranes, but it is unknown whether transmembrane domains (TMDs) of SNARE proteins serve mechanistic functions that go beyond passive anchoring of the force-generating SNAREpin to the fusing membranes. Here, we show that conformational flexibility of synaptobrevin-2 TMD is essential for efficient Ca(2+)-triggered exocytosis and actively promotes membrane fusion as well as fusion pore expansion. Specifically, the introduction of helix-stabilizing leucine residues within the TMD region spanning the vesicle's outer leaflet strongly impairs exocytosis and decelerates fusion pore dilation. In contrast, increasing the number of helix-destabilizing, ß-branched valine or isoleucine residues within the TMD restores normal secretion but accelerates fusion pore expansion beyond the rate found for the wildtype protein. These observations provide evidence that the synaptobrevin-2 TMD catalyzes the fusion process by its structural flexibility, actively setting the pace of fusion pore expansion.
Collapse
Affiliation(s)
- Madhurima Dhara
- Institute for Physiology, Saarland University, Homburg, Germany
| | | | - Mazen Makke
- Institute for Physiology, Saarland University, Homburg, Germany
| | | | - Yvonne Schwarz
- Institute for Physiology, Saarland University, Homburg, Germany
| | - Ahmed Shaaban
- Zentrum für Human- und Molekularbiologie, Saarland University, Homburg, Germany
| | - Satyan Sharma
- Group Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University, Erlangen, Germany
| | - Manfred Lindau
- Group Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ralf Mohrmann
- Zentrum für Human- und Molekularbiologie, Saarland University, Homburg, Germany
| | - Dieter Bruns
- Institute for Physiology, Saarland University, Homburg, Germany
| |
Collapse
|
21
|
Adams RD, Harkins AB. PC12 cells that lack synaptotagmin I exhibit loss of a subpool of small dense core vesicles. Biophys J 2016; 107:2838-2849. [PMID: 25517150 DOI: 10.1016/j.bpj.2014.10.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/30/2014] [Accepted: 10/29/2014] [Indexed: 12/27/2022] Open
Abstract
Neurons communicate by releasing neurotransmitters that are stored in intracellular vesicular compartments. PC12 cells are frequently used as a model secretory cell line that is described to have two subpools of vesicles: small clear vesicles and dense core vesicles. We measured transmitter molecules released from vesicles in NGF-differentiated PC12 cells using carbon-fiber amperometry, and relative diameters of individual vesicles using electron microscopy. Both amperometry and electron micrograph data were analyzed by statistical and machine learning methods for Gaussian mixture models. An electron microscopy size correction algorithm was used to predict and correct for observation bias of vesicle size due to tangential slices through some vesicles. Expectation maximization algorithms were used to perform maximum likelihood estimation for the Gaussian parameters of different populations of vesicles, and were shown to be better than histogram and cumulative distribution function methods for analyzing mixed populations. The Bayesian information criterion was used to determine the most likely number of vesicle subpools observed in the amperometric and electron microscopy data. From this analysis, we show that there are three major subpools, not two, of vesicles stored and released from PC12 cells. The three subpools of vesicles include small clear vesicles and two subpools of dense core vesicles, a small and a large dense core vesicle subpool. Using PC12 cells stably transfected with short-hairpin RNA targeted to synaptotagmin I, an exocytotic Ca(2+) sensor, we show that the presence and release of the small dense core vesicle subpool is dependent on synaptotagmin I. Furthermore, synaptotagmin I also plays a role in the formation and/or maintenance of the small dense core vesicle subpool in PC12 cells.
Collapse
Affiliation(s)
- Robert D Adams
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, Missouri
| | - Amy B Harkins
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, Missouri; Department of Biomedical Engineering, Saint Louis University, St. Louis, Missouri.
| |
Collapse
|
22
|
Abstract
Extensive research has yielded crucial insights into the mechanism of neurotransmitter release, and working models for the functions of key proteins involved in release. The SNAREs Syntaxin-1, Synaptobrevin, and SNAP-25 play a central role in membrane fusion, forming SNARE complexes that bridge the vesicle and plasma membranes and that are disassembled by NSF-SNAPs. Exocytosis likely starts with Syntaxin-1 folded into a self-inhibited closed conformation that binds to Munc18-1. Munc13s open Syntaxin-1, orchestrating SNARE complex assembly in an NSF-SNAP-resistant manner together with Munc18-1. In the resulting primed state, with partially assembled SNARE complexes, fusion is inhibited by Synaptotagmin-1 and Complexins, which also perform active functions in release. Upon influx of Ca(2+), Synaptotagmin-1 activates fast release, likely by relieving the inhibition caused by Complexins and cooperating with the SNAREs in bringing the membranes together. Although alternative models exist and fundamental questions remain unanswered, a definitive description of the basic release mechanism may be available soon.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | | |
Collapse
|
23
|
Tajparast M, Virdi G, Glavinović MI. Spatial profiles of potential, ion concentration and flux in short unipolar and bipolar nanopores. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2138-53. [DOI: 10.1016/j.bbamem.2015.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 05/13/2015] [Accepted: 05/29/2015] [Indexed: 11/24/2022]
|
24
|
Gong B, Choi BK, Kim JY, Shetty D, Ko YH, Selvapalam N, Lee NK, Kim K. High Affinity Host-Guest FRET Pair for Single-Vesicle Content-Mixing Assay: Observation of Flickering Fusion Events. J Am Chem Soc 2015; 137:8908-11. [PMID: 26160008 DOI: 10.1021/jacs.5b05385] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence-based single-vesicle fusion assays provide a powerful method for studying mechanisms underlying complex biological processes of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-mediated vesicle fusion and neurotransmitter release. A crucial element of these assays is the ability of the fluorescent probe(s) to reliably detect key intermediate events of fusion pore opening and content release/mixing. Here, we report a new, reliable, and efficient single-vesicle content-mixing assay using a high affinity, fluorophore tagged host-guest pair, cucurbit[7]uril-Cy3 and adamantane-Cy5 as a fluorescence resonance energy transfer (FRET) pair. The power of these probes is demonstrated by the first successful observation of flickering dynamics of the fusion pore by in vitro assay using neuronal SNARE-reconstituted vesicles.
Collapse
Affiliation(s)
- Bokyoung Gong
- †Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), ‡Department of Chemistry, §School of Interdisciplinary Bioscience and Bioengineering, and ∥Department of Physics, #Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Bong-Kyu Choi
- †Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), ‡Department of Chemistry, §School of Interdisciplinary Bioscience and Bioengineering, and ∥Department of Physics, #Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Jae-Yeol Kim
- †Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), ‡Department of Chemistry, §School of Interdisciplinary Bioscience and Bioengineering, and ∥Department of Physics, #Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Dinesh Shetty
- †Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), ‡Department of Chemistry, §School of Interdisciplinary Bioscience and Bioengineering, and ∥Department of Physics, #Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Young Ho Ko
- †Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), ‡Department of Chemistry, §School of Interdisciplinary Bioscience and Bioengineering, and ∥Department of Physics, #Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Narayanan Selvapalam
- †Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), ‡Department of Chemistry, §School of Interdisciplinary Bioscience and Bioengineering, and ∥Department of Physics, #Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Nam Ki Lee
- †Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), ‡Department of Chemistry, §School of Interdisciplinary Bioscience and Bioengineering, and ∥Department of Physics, #Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Kimoon Kim
- †Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), ‡Department of Chemistry, §School of Interdisciplinary Bioscience and Bioengineering, and ∥Department of Physics, #Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
25
|
Morel N, Poëa-Guyon S. The membrane domain of vacuolar H(+)ATPase: a crucial player in neurotransmitter exocytotic release. Cell Mol Life Sci 2015; 72:2561-73. [PMID: 25795337 PMCID: PMC11113229 DOI: 10.1007/s00018-015-1886-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 12/31/2022]
Abstract
V-ATPases are multimeric enzymes made of two sectors, a V1 catalytic domain and a V0 membrane domain. They accumulate protons in various intracellular organelles. Acidification of synaptic vesicles by V-ATPase energizes the accumulation of neurotransmitters in these storage organelles and is therefore required for efficient synaptic transmission. In addition to this well-accepted role, functional studies have unraveled additional hidden roles of V0 in neurotransmitter exocytosis that are independent of the transport of protons. V0 interacts with SNAREs and calmodulin, and perturbing these interactions affects neurotransmitter release. Here, we discuss these data in relation with previous results obtained in reconstituted membranes and on yeast vacuole fusion. We propose that V0 could be a sensor of intra-vesicular pH that controls the exocytotic machinery, probably regulating SNARE complex assembly during the synaptic vesicle priming step, and that, during the membrane fusion step, V0 might favor lipid mixing and fusion pore stability.
Collapse
Affiliation(s)
- Nicolas Morel
- Centre de Neurosciences Paris-Sud, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8195 and Université Paris-Sud, 91405, Orsay, France,
| | | |
Collapse
|
26
|
The synaptotagmin juxtamembrane domain is involved in neuroexocytosis. FEBS Open Bio 2015; 5:388-96. [PMID: 25973365 PMCID: PMC4427626 DOI: 10.1016/j.fob.2015.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 12/21/2022] Open
Abstract
The highly cationic juxtamembrane segment of synaptotagmin juxtamembrane domain was synthesized. This peptide inhibits neurotransmitter release at the neuromuscular junction of mice and Drosophila. This peptide localizes mainly on the presynaptic membrane. The synaptotagmin juxtamembrane peptide binds monophosphoinositides in a Ca2+-independent manner. The juxtamembrane segment of synaptotagmin may contribute to the formation of the hemifusion intermediate.
Synaptotagmin is a synaptic vesicle membrane protein which changes conformation upon Ca2+ binding and triggers the fast neuroexocytosis that takes place at synapses. We have synthesized a series of peptides corresponding to the sequence of the cytosolic juxtamembrane domain of synaptotagmin, which is highly conserved among different isoforms and animal species, with or without either a hexyl hydrophobic chain or the hexyl group plus a fluorescein moiety. We show that these peptides inhibit neurotransmitter release, that they localize on the presynaptic membrane of the motor axon terminal at the neuromuscular junction and that they bind monophosphoinositides in a Ca2+-independent manner. Based on these findings, we propose that the juxtamembrane cytosolic domain of synaptotagmin binds the cytosolic layer of the presynaptic membrane at rest. This binding brings synaptic vesicles and plasma membrane in a very close apposition, favouring the formation of hemifusion intermediates that enable rapid vesicle fusion.
Collapse
Key Words
- Anionic phospholipids
- JMS, juxtamembrane segment
- Juxtamembrane domain
- NMJ, neuromuscular junction
- Neuroexocytosis
- Neuromuscular junction
- PM, presynaptic membrane
- SV, synaptic vesicles
- Synaptotagmin
- Syt, synaptotagmin
- TM, transmembrane
- h-FJMS, hexyl fluorescent juxtamembrane segment
- h-JMS, hexyl juxtamembrane segment
- h-sJMS, hexyl scrambled juxtamembrane segment
- α-BTX, alpha-bungarotoxin
Collapse
|
27
|
Schotten S, Meijer M, Walter AM, Huson V, Mamer L, Kalogreades L, ter Veer M, Ruiter M, Brose N, Rosenmund C, Sørensen JB, Verhage M, Cornelisse LN. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate. eLife 2015; 4:e05531. [PMID: 25871846 PMCID: PMC4426983 DOI: 10.7554/elife.05531] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/13/2015] [Indexed: 01/08/2023] Open
Abstract
The energy required to fuse synaptic vesicles with the plasma membrane
(‘activation energy’) is considered a major determinant in synaptic
efficacy. From reaction rate theory, we predict that a class of modulations exists,
which utilize linear modulation of the energy barrier for fusion to achieve
supralinear effects on the fusion rate. To test this prediction experimentally, we
developed a method to assess the number of releasable vesicles, rate constants for
vesicle priming, unpriming, and fusion, and the activation energy for fusion by
fitting a vesicle state model to synaptic responses induced by hypertonic solutions.
We show that complexinI/II deficiency or phorbol ester stimulation indeed affects
responses to hypertonic solution in a supralinear manner. An additive vs
multiplicative relationship between activation energy and fusion rate provides a
novel explanation for previously observed non-linear effects of
genetic/pharmacological perturbations on synaptic transmission and a novel
interpretation of the cooperative nature of Ca2+-dependent
release. DOI:http://dx.doi.org/10.7554/eLife.05531.001 Information is carried around our nervous system by cells called neurons, which are
connected to each other by junctions known as synapses. Within the neurons, there are
many small compartments known as synaptic vesicles that are essential to the transfer
of information from one neuron to the next. When one neuron is activated, the
synaptic vesicles fuse with the membrane surrounding the cell to release molecules
called neurotransmitters, which cross the synapse and activate the next neuron.
Vesicle fusion is carefully regulated to control the speed and amount of
neurotransmitter release, which determines the level of activation of the next
neuron. Vesicle fusion requires energy, much of which is provided by a set of proteins found
in the synapse. The minimum amount of energy required—called the activation
energy—is influenced by many factors, including the shape of the cell's
membrane at the synapse. It is thought that altering the activation energy required
for fusion may control the activity of synapses, but it is not possible to directly
measure this in living cells. To bypass this problem, Schotten, Meijer, Walter et al. established a new method to
study vesicle fusion. This method combines a mathematical model with experimental
data of the activity of synapses. First, the neurons were placed in a solution
containing the sugar sucrose, which triggered vesicle fusion by lowering the
activation energy. The increase in vesicle fusion was smaller in neurons that lacked
two proteins called complexin I and complexin II—which control vesicle
fusion—than in the normal neurons. A molecule called phorbol ester is also able to activate the release of
neurotransmitters. When cells were treated with both sucrose and phorbol ester, the
speed of vesicle fusion was greater. The experiments show that the effects of
sucrose, phorbol ester, and the complexins multiply together to dramatically alter
vesicle fusion. Schotten, Meijer, Walter et al. suggest a new model for how the activation energy of
vesicle fusion controls the transfer of information across synapses. This might shed
new light on how the efficiency of vesicle fusion is altered when neurons are highly
active, which is thought to have strong implications for how information is processed
in the brain. DOI:http://dx.doi.org/10.7554/eLife.05531.002
Collapse
Affiliation(s)
- Sebastiaan Schotten
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
| | - Marieke Meijer
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
| | - Alexander Matthias Walter
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
| | - Vincent Huson
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
| | - Lauren Mamer
- NeuroCure Cluster of Excellence, Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lawrence Kalogreades
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
| | - Mirelle ter Veer
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
| | - Marvin Ruiter
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Christian Rosenmund
- NeuroCure Cluster of Excellence, Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jakob Balslev Sørensen
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
| | - Lennart Niels Cornelisse
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
28
|
Positively charged amino acids at the SNAP-25 C terminus determine fusion rates, fusion pore properties, and energetics of tight SNARE complex zippering. J Neurosci 2015; 35:3230-9. [PMID: 25698757 DOI: 10.1523/jneurosci.2905-14.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
SNAP-25 is a Q-SNARE protein mediating exocytosis of neurosecretory vesicles including chromaffin granules. Previous results with a SNAP-25 construct lacking the nine C terminal residues (SNAP-25Δ9) showed changed fusion pore properties (Fang et al., 2008), suggesting a model for fusion pore mechanics that couple C terminal zipping of the SNARE complex to the opening of the fusion pore. The deleted fragment contains the positively charged residues R198 and K201, adjacent to layers 7 and 8 of the SNARE complex. To determine how fusion pore conductance and dynamics depend on these residues, single exocytotic events in bovine chromaffin cells expressing R198Q, R198E, K201Q, or K201E mutants were investigated by carbon fiber amperometry and cell-attached patch capacitance measurements. Coarse grain molecular dynamics simulations revealed spontaneous transitions between a loose and tightly zippered state at the SNARE complex C terminus. The SNAP-25 K201Q mutant showed no changes compared with SNAP-25 wild-type. However, K201E, R198Q, and R198E displayed reduced release frequencies, slower release kinetics, and prolonged fusion pore duration that were correlated with reduced probability to engage in the tightly zippered state. The results show that the positively charged amino acids at the SNAP-25 C terminus promote tight SNARE complex zippering and are required for high release frequency and rapid release in individual fusion events.
Collapse
|
29
|
Abstract
Exocytosis is a highly regulated process that consists of multiple functionally, kinetically and/or morphologically definable stages such as recruitment, targeting, tethering and docking of secretory vesicles with the plasma membrane, priming of the fusion machinery and calcium-triggered membrane fusion. After fusion, the membrane around the secretory vesicle is incorporated into the plasma membrane and the granule releases its contents. The proteins involved in these processes belong to several highly conserved families: Rab GTPases, SNAREs (soluble NSF-attachment protein receptors), α-SNAP (α-NSF attachment protein), NSF (N-ethylmaleimide-sensitive factor), Munc13 and -18, complexins and synaptotagmins. In the present article, the molecules of exocytosis are reviewed, using human sperm as a model system. Sperm exocytosis is driven by isoforms of the same proteinaceous fusion machinery mentioned above, with their functions orchestrated in a hierarchically organized and unidirectional signalling cascade. In addition to the universal exocytosis regulator calcium, this cascade includes other second messengers such as diacylglycerol, inositol 1,4,5-trisphosphate and cAMP, as well as the enzymes that synthesize them and their target proteins. Of special interest is the cAMP-binding protein Epac (exchange protein directly activated by cAMP) due in part to its enzymatic activity towards Rap. The activation of Epac and Rap leads to a highly localized calcium signal which, together with assembly of the SNARE complex, governs the final stages of exocytosis. The source of this releasable calcium is the secretory granule itself.
Collapse
|
30
|
Kumar P, Guha S, Diederichsen U. SNARE protein analog-mediated membrane fusion. J Pept Sci 2015; 21:621-9. [DOI: 10.1002/psc.2773] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Pawan Kumar
- Institut für Organische und Biomolekulare Chemie; Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Samit Guha
- Institut für Organische und Biomolekulare Chemie; Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| | - Ulf Diederichsen
- Institut für Organische und Biomolekulare Chemie; Universität Göttingen; Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
31
|
Neuland K, Sharma N, Frick M. Synaptotagmin-7 links fusion-activated Ca²⁺ entry and fusion pore dilation. J Cell Sci 2014; 127:5218-27. [PMID: 25344253 PMCID: PMC4265738 DOI: 10.1242/jcs.153742] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ca(2+)-dependent regulation of fusion pore dilation and closure is a key mechanism determining the output of cellular secretion. We have recently described 'fusion-activated' Ca(2+) entry (FACE) following exocytosis of lamellar bodies in alveolar type II cells. FACE regulates fusion pore expansion and facilitates secretion. However, the mechanisms linking this locally restricted Ca(2+) signal and fusion pore expansion were still elusive. Here, we demonstrate that synaptotagmin-7 (Syt7) is expressed on lamellar bodies and links FACE and fusion pore dilation. We directly assessed dynamic changes in fusion pore diameters by analysing diffusion of fluorophores across fusion pores. Expressing wild-type Syt7 or a mutant Syt7 with impaired Ca(2+)-binding to the C2 domains revealed that binding of Ca(2+) to the C2A domain facilitates FACE-induced pore dilation, probably by inhibiting translocation of complexin-2 to fused vesicles. However, the C2A domain hampered Ca(2+)-dependent exocytosis of lamellar bodies. These findings support the hypothesis that Syt7 modulates fusion pore expansion in large secretory organelles and extend our picture that lamellar bodies contain the necessary molecular inventory to facilitate secretion during the exocytic post-fusion phase. Moreover, regulating Syt7 levels on lamellar bodies appears to be essential in order that exocytosis is not impeded during the pre-fusion phase.
Collapse
Affiliation(s)
- Kathrin Neuland
- Institute of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Neeti Sharma
- Institute of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| |
Collapse
|
32
|
Leabu M, Niculite CM. Porosome: a membrane microdomain acting as the universal secretory portal in exocytosis. Discoveries (Craiova) 2014; 2:e29. [PMID: 32309556 PMCID: PMC6919544 DOI: 10.15190/d.2014.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 11/22/2022] Open
Abstract
Most, if not all, cells in the organism, at least in some period of their lifetime, secrete materials that are produced within the cell. Cell secretion is a phenomenon requiring membrane fusion at a specialized plasma membrane structure called the 'porosome,' which allows the material stored within secretory vesicles to be delivered to the cell's exterior environment. This is achieved when the secretory vesicles fuse at the base of the porosome complex, establishing a fusion pore or fluid continuity between the vesicle interior and the cell's exterior. Besides cell secretion, membrane fusion is necessary for intracellular membrane traffic and vesicular transport from one endomembrane bound structure to another. In addition to cell secretion, membrane fusion is necessary for intracellular membrane trafficking and vesicle transport from one intracellular membrane to another. We suggest that the debate about whether to use the term 'porosome' or 'fusion pore' to describe this process is unnecessary, since both of these terms are useful in describing aspects of the last event of cell secretion, namely exocytosis. In this review, we will summarize the information related to the discovery of the porosome, a universal secretory portal for exocytosis, and discuss porosome molecular organization and function. Finally, we will develop the notion that the porosome is a specialized plasma membrane microdomain.
Collapse
Affiliation(s)
- Mircea Leabu
- University of Medicine and Pharmacy "Carol Davila", and "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Cristina Mariana Niculite
- University of Medicine and Pharmacy "Carol Davila", and "Victor Babes" National Institute of Pathology, Bucharest, Romania
| |
Collapse
|
33
|
Ma J, Kelly L, Ingram J, Price TJ, Meriney SD, Dittrich M. New insights into short-term synaptic facilitation at the frog neuromuscular junction. J Neurophysiol 2014; 113:71-87. [PMID: 25210157 DOI: 10.1152/jn.00198.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Short-term synaptic facilitation occurs during high-frequency stimulation, is known to be dependent on presynaptic calcium ions, and persists for tens of milliseconds after a presynaptic action potential. We have used the frog neuromuscular junction as a model synapse for both experimental and computer simulation studies aimed at testing various mechanistic hypotheses proposed to underlie short-term synaptic facilitation. Building off our recently reported excess-calcium-binding-site model of synaptic vesicle release at the frog neuromuscular junction (Dittrich M, Pattillo JM, King JD, Cho S, Stiles JR, Meriney SD. Biophys J 104: 2751-2763, 2013), we have investigated several mechanisms of short-term facilitation at the frog neuromuscular junction. Our studies place constraints on previously proposed facilitation mechanisms and conclude that the presence of a second class of calcium sensor proteins distinct from synaptotagmin can explain known properties of facilitation observed at the frog neuromuscular junction. We were further able to identify a novel facilitation mechanism, which relied on the persistent binding of calcium-bound synaptotagmin molecules to lipids of the presynaptic membrane. In a real physiological context, both mechanisms identified in our study (and perhaps others) may act simultaneously to cause the experimentally observed facilitation. In summary, using a combination of computer simulations and physiological recordings, we have developed a stochastic computer model of synaptic transmission at the frog neuromuscular junction, which sheds light on the facilitation mechanisms in this model synapse.
Collapse
Affiliation(s)
- Jun Ma
- Biomedical Applications Group, Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania; Joint Carnegie Mellon-University of Pittsburgh PhD Program in Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Lauren Kelly
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Justin Ingram
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Thomas J Price
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Stephen D Meriney
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Markus Dittrich
- Biomedical Applications Group, Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania; Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Chapochnikov N, Takago H, Huang CH, Pangršič T, Khimich D, Neef J, Auge E, Göttfert F, Hell S, Wichmann C, Wolf F, Moser T. Uniquantal Release through a Dynamic Fusion Pore Is a Candidate Mechanism of Hair Cell Exocytosis. Neuron 2014; 83:1389-403. [DOI: 10.1016/j.neuron.2014.08.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 01/19/2023]
|
35
|
Bretou M, Jouannot O, Fanget I, Pierobon P, Larochette N, Gestraud P, Guillon M, Emiliani V, Gasman S, Desnos C, Lennon-Duménil AM, Darchen F. Cdc42 controls the dilation of the exocytotic fusion pore by regulating membrane tension. Mol Biol Cell 2014; 25:3195-209. [PMID: 25143404 PMCID: PMC4196869 DOI: 10.1091/mbc.e14-07-1229] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
On exocytosis, membrane fusion starts with the formation of a narrow fusion pore that must expand to allow the release of secretory compounds. The GTPase Cdc42 promotes fusion pore dilation in neuroendocrine cells by controlling membrane tension. Membrane fusion underlies multiple processes, including exocytosis of hormones and neurotransmitters. Membrane fusion starts with the formation of a narrow fusion pore. Radial expansion of this pore completes the process and allows fast release of secretory compounds, but this step remains poorly understood. Here we show that inhibiting the expression of the small GTPase Cdc42 or preventing its activation with a dominant negative Cdc42 construct in human neuroendocrine cells impaired the release process by compromising fusion pore enlargement. Consequently the mode of vesicle exocytosis was shifted from full-collapse fusion to kiss-and-run. Remarkably, Cdc42-knockdown cells showed reduced membrane tension, and the artificial increase of membrane tension restored fusion pore enlargement. Moreover, inhibiting the motor protein myosin II by blebbistatin decreased membrane tension, as well as fusion pore dilation. We conclude that membrane tension is the driving force for fusion pore dilation and that Cdc42 is a key regulator of this force.
Collapse
Affiliation(s)
- Marine Bretou
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France Institut National de la Santé et de la Recherche Médicale, U932, Institut Curie, 75005 Paris, France
| | - Ouardane Jouannot
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Isabelle Fanget
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Paolo Pierobon
- Institut National de la Santé et de la Recherche Médicale, U932, Institut Curie, 75005 Paris, France
| | - Nathanaël Larochette
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Pierre Gestraud
- Institut Curie, Paris 75248, France Institut National de la Santé et de la Recherche Médicale, U900, Paris 75248, France Ecole des Mines ParisTech, Fontainebleau, 77300 France
| | - Marc Guillon
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Valentina Emiliani
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique/UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Université Strasbourg, 67084 Strasbourg, France
| | - Claire Desnos
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| | - Ana-Maria Lennon-Duménil
- Institut National de la Santé et de la Recherche Médicale, U932, Institut Curie, 75005 Paris, France
| | - François Darchen
- Université Paris Descartes, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, UMR 8250, 75270 Paris Cedex 06, France
| |
Collapse
|
36
|
Meriney SD, Umbach JA, Gundersen CB. Fast, Ca2+-dependent exocytosis at nerve terminals: shortcomings of SNARE-based models. Prog Neurobiol 2014; 121:55-90. [PMID: 25042638 DOI: 10.1016/j.pneurobio.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/14/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
Investigations over the last two decades have made major inroads in clarifying the cellular and molecular events that underlie the fast, synchronous release of neurotransmitter at nerve endings. Thus, appreciable progress has been made in establishing the structural features and biophysical properties of the calcium (Ca2+) channels that mediate the entry into nerve endings of the Ca2+ ions that trigger neurotransmitter release. It is now clear that presynaptic Ca2+ channels are regulated at many levels and the interplay of these regulatory mechanisms is just beginning to be understood. At the same time, many lines of research have converged on the conclusion that members of the synaptotagmin family serve as the primary Ca2+ sensors for the action potential-dependent release of neurotransmitter. This identification of synaptotagmins as the proteins which bind Ca2+ and initiate the exocytotic fusion of synaptic vesicles with the plasma membrane has spurred widespread efforts to reveal molecular details of synaptotagmin's action. Currently, most models propose that synaptotagmin interfaces directly or indirectly with SNARE (soluble, N-ethylmaleimide sensitive factor attachment receptors) proteins to trigger membrane fusion. However, in spite of intensive efforts, the field has not achieved consensus on the mechanism by which synaptotagmins act. Concurrently, the precise sequence of steps underlying SNARE-dependent membrane fusion remains controversial. This review considers the pros and cons of the different models of SNARE-mediated membrane fusion and concludes by discussing a novel proposal in which synaptotagmins might directly elicit membrane fusion without the intervention of SNARE proteins in this final fusion step.
Collapse
Affiliation(s)
- Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joy A Umbach
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Cameron B Gundersen
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
37
|
Abstract
Evolution has exploited the chemical properties of Ca(2+), which facilitate its reversible binding to the sites of irregular geometry offered by biological macromolecules, to select it as a carrier of cellular signals. A number of proteins bind Ca(2+) to specific sites: those intrinsic to membranes play the most important role in the spatial and temporal regulation of the concentration and movements of Ca(2+) inside cells. Those which are soluble, or organized in non-membranous structures, also decode the Ca(2+) message to be then transmitted to the targets of its regulation. Since Ca(2+) controls the most important processes in the life of cells, it must be very carefully controlled within the cytoplasm, where most of the targets of its signaling function reside. Membrane channels (in the plasma membrane and in the organelles) mediate the entrance of Ca(2+) into the cytoplasm, ATPases, exchangers, and the mitochondrial Ca(2+) uptake system remove Ca(2+) from it. The concentration of Ca(2+) in the external spaces, which is controlled essentially by its dynamic exchanges in the bone system, is much higher than inside cells, and can, under conditions of pathology, generate a situation of dangerous internal Ca(2+) overload. When massive and persistent, the Ca(2+) overload culminates in the death of the cell. Subtle conditions of cellular Ca(2+) dyshomeostasis that affect individual systems that control Ca(2+), generate cell disease phenotypes that are particularly severe in tissues in which the signaling function of Ca(2+) has special importance, e.g., the nervous system.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy,
| | | | | | | |
Collapse
|
38
|
Milochau A, Lagrée V, Benassy MN, Chaignepain S, Papin J, Garcia-Arcos I, Lajoix A, Monterrat C, Coudert L, Schmitter JM, Ochoa B, Lang J. Synaptotagmin 11 interacts with components of the RNA-induced silencing complex RISC in clonal pancreatic β-cells. FEBS Lett 2014; 588:2217-22. [PMID: 24882364 DOI: 10.1016/j.febslet.2014.05.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 05/08/2014] [Accepted: 05/14/2014] [Indexed: 01/06/2023]
Abstract
Synaptotagmins are two C2 domain-containing transmembrane proteins. The function of calcium-sensitive members in the regulation of post-Golgi traffic has been well established whereas little is known about the calcium-insensitive isoforms constituting half of the protein family. Novel binding partners of synaptotagmin 11 were identified in β-cells. A number of them had been assigned previously to ER/Golgi derived-vesicles or linked to RNA synthesis, translation and processing. Whereas the C2A domain interacted with the Q-SNARE Vti1a, the C2B domain of syt11 interacted with the SND1, Ago2 and FMRP, components of the RNA-induced silencing complex (RISC). Binding to SND was direct via its N-terminal tandem repeats. Our data indicate that syt11 may provide a link between gene regulation by microRNAs and membrane traffic.
Collapse
Affiliation(s)
| | - Valérie Lagrée
- Université de Bordeaux, UMR CNRS 5248, F-33607 Pessac, France
| | | | | | - Julien Papin
- Université de Bordeaux, UMR CNRS 5248, F-33607 Pessac, France
| | - Itsaso Garcia-Arcos
- University of the Basque Country, Faculty of Medicine and Dentistry, Department of Physiology, Bilbao, Spain
| | - Anne Lajoix
- Université Montpellier 1, CNRS FRE 3400, Faculté de Pharmacie, F-34093 Montpellier Cedex 5, France
| | | | | | | | - Begoña Ochoa
- University of the Basque Country, Faculty of Medicine and Dentistry, Department of Physiology, Bilbao, Spain
| | - Jochen Lang
- Université de Bordeaux, UMR CNRS 5248, F-33607 Pessac, France.
| |
Collapse
|
39
|
Trimbuch T, Xu J, Flaherty D, Tomchick DR, Rizo J, Rosenmund C. Re-examining how complexin inhibits neurotransmitter release. eLife 2014; 3:e02391. [PMID: 24842998 PMCID: PMC4040926 DOI: 10.7554/elife.02391] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Complexins play activating and inhibitory functions in neurotransmitter release. The complexin accessory helix inhibits release and was proposed to insert into SNARE complexes to prevent their full assembly. This model was supported by ‘superclamp’ and ‘poor-clamp’ mutations that enhanced or decreased the complexin-I inhibitory activity in cell–cell fusion assays, and by the crystal structure of a superclamp mutant bound to a synaptobrevin-truncated SNARE complex. NMR studies now show that the complexin-I accessory helix does not insert into synaptobrevin-truncated SNARE complexes in solution, and electrophysiological data reveal that superclamp mutants have slightly stimulatory or no effects on neurotransmitter release, whereas a poor-clamp mutant inhibits release. Importantly, increasing or decreasing the negative charge of the complexin-I accessory helix inhibits or stimulates release, respectively. These results suggest a new model whereby the complexin accessory helix inhibits release through electrostatic (and perhaps steric) repulsion enabled by its location between the vesicle and plasma membranes. DOI:http://dx.doi.org/10.7554/eLife.02391.001 The instructions sent to, from and within the brain are rapidly transmitted along neurons in the form of electrical signals. These signals cannot pass across the small gaps—called synapses—that separate neighboring neurons. Instead, neurons release chemicals called neurotransmitters into the synapses, and these relay the signal to the next neuron. The neurotransmitters are stored inside neurons in small bubbles called vesicles. To release these neurotransmitters into the synapse, the membrane that encloses the vesicle fuses with the membrane that surrounds the neuron. To fuse the membranes, proteins embedded in the vesicle membrane interact with similar proteins in the neuron membrane to form a structure called a SNARE complex. Additional proteins control membrane fusion to ensure that the signal is passed to the other neuron at the right time and with the appropriate efficiency. Among these proteins are the complexins, which are often found attached to SNARE complexes. Although different parts of complexins can both help and hinder membrane fusion, a part known as an accessory helix is thought to have only one role—to stop the membranes from fusing together. Several models have been suggested for how the accessory helix interferes with fusion. However, after performing a range of analyses by diverse biophysical techniques, Trimbuch, Xu et al. suggest these models are unlikely to describe the process accurately. Instead, Trimbuch, Xu et al. propose a new model based on the electrostatic properties of two molecules that are both negatively charged. An accessory helix taken from a fruit fly complexin was more negatively charged than a mammalian version, and experiments showed it was also better at preventing the release of neurotransmitters. It is thought that the negative charges on the helix hold the membranes apart because the helix is located between the membranes, which are also negatively charged. Consistent with this model, Trimbuch, Xu et al. showed that the membranes fused more easily when some of the negative charges on the accessory helix were replaced with positive charges. The next challenges are to test the model further with additional studies, and to explain how other proteins work with complexins to control neurotransmitter release. DOI:http://dx.doi.org/10.7554/eLife.02391.002
Collapse
Affiliation(s)
- Thorsten Trimbuch
- NeuroCure Cluster of Excellence, Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - David Flaherty
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Diana R Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Christian Rosenmund
- NeuroCure Cluster of Excellence, Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
40
|
Pantano S, Montecucco C. The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell Mol Life Sci 2014; 71:793-811. [PMID: 23749048 PMCID: PMC11113401 DOI: 10.1007/s00018-013-1380-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/22/2022]
Abstract
The high toxicity of the seven serotypes of botulinum neurotoxins (BoNT/A to G), together with their specificity and reversibility, includes them in the list A of potential bioterrorism weapons and, at the same time, among the therapeutics of choice for a variety of human syndromes. They invade nerve terminals and cleave specifically the three proteins which form the heterotrimeric SNAP REceptors (SNARE) complex that mediates neurotransmitter release. The BoNT-induced cleavage of the SNARE proteins explains by itself the paralysing activity of the BoNTs because the truncated proteins cannot form the SNARE complex. However, in the case of BoNT/A, the most widely used toxin in therapy, additional factors come into play as it only removes a few residues from the synaptosomal associate protein of 25 kDa C-terminus and this results in a long duration of action. To explain these facts and other experimental data, we present here a model for the assembly of the neuroexocytosis apparatus in which Synaptotagmin and Complexin first assist the zippering of the SNARE complex, and then stabilize and clamp an octameric radial assembly of the SNARE complexes.
Collapse
Affiliation(s)
- Sergio Pantano
- Institut Pasteur de Montevideo, Calle Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Institute of Neuroscience, National Research Council, Viale G. Colombo 3, 35121 Padua, Italy
| |
Collapse
|
41
|
Li F, Kümmel D, Coleman J, Reinisch KM, Rothman JE, Pincet F. A half-zippered SNARE complex represents a functional intermediate in membrane fusion. J Am Chem Soc 2014; 136:3456-64. [PMID: 24533674 PMCID: PMC3985920 DOI: 10.1021/ja410690m] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
SNARE
(soluble N-ethylmaleimide-sensitive factor
attachment protein receptor) proteins mediate fusion by pulling biological
membranes together via a zippering mechanism. Recent biophysical studies
have shown that t- and v-SNAREs can assemble in multiple stages from
the N-termini toward the C-termini. Here we show that functionally,
membrane fusion requires a sequential, two-step folding pathway and
assign specific and distinct functions for each step. First, the N-terminal
domain (NTD) of the v-SNARE docks to the t-SNARE, which leads to a
conformational rearrangement into an activated half-zippered SNARE
complex. This partially assembled SNARE complex locks the C-terminal
(CTD) portion of the t-SNARE into the same structure as in the postfusion
4-helix bundle, thereby creating the binding site for the CTD of the
v-SNARE and enabling fusion. Then zippering of the remaining CTD,
the membrane-proximal linker (LD), and transmembrane (TMD) domains
is required and sufficient to trigger fusion. This intrinsic property
of the SNAREs fits well with the action of physiologically vital regulators
such as complexin. We also report that NTD assembly is the rate-limiting
step. Our findings provide a refined framework for delineating the
molecular mechanism of SNARE-mediated membrane fusion and action of
regulatory proteins.
Collapse
Affiliation(s)
- Feng Li
- Department of Cell Biology, School of Medicine, Yale University , 333 Cedar Street, New Haven, Connecticut 06520, United States
| | | | | | | | | | | |
Collapse
|
42
|
Varlamov O. Real-time detection of SNARE complex assembly with FRET using the tetracysteine system. Methods Mol Biol 2014; 1174:49-55. [PMID: 24947373 DOI: 10.1007/978-1-4939-0944-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Small tetracysteine insertions are more suitable for fluorescence resonance energy transfer (FRET) studies of protein folding and small complex assembly than bulky GFP-based fluorophores. Here, we describe a procedure for expression, purification, and fluorescent labeling of a FRET-based probe, called CSNAC that can track the conformational changes undergone by SNAP-25 as it folds in the exocytic complex. The fluorescent protein Cerulean was attached to the N-terminus and served as a FRET donor. The biarsenical dye FlAsH, served as a FRET acceptor, was bound to a short tetracysteine motif positioned in the linker domain of SNAP-25. CSNAC can report real-time FRET changes when the Syntaxin soluble domain is added in vitro.
Collapse
Affiliation(s)
- Oleg Varlamov
- Division of Diabetes, Obesity, & Metabolism, Oregon National Primate Research Center, 505 NW 185th Ave, Mail Code L584, Beaverton, OR, 97006, USA,
| |
Collapse
|
43
|
Abstract
Among the largest cells in the body, neurons possess an immense surface area and intricate geometry that poses many unique cell biological challenges. This morphological complexity is critical for neural circuit formation and enables neurons to compartmentalize cell-cell communication and local intracellular signalling to a degree that surpasses other cell types. The adaptive plastic properties of neurons, synapses and circuits have been classically studied by measurement of electrophysiological properties, ionic conductances and excitability. Over the last 15 years, the field of synaptic and neural electrophysiology has collided with neuronal cell biology to produce a more integrated understanding of how these remarkable highly differentiated cells utilize common eukaryotic cellular machinery to decode, integrate and propagate signals in the nervous system. The present article gives a very brief and personal overview of the organelles and trafficking machinery of neuronal dendrites and their role in dendritic and synaptic plasticity.
Collapse
Affiliation(s)
- Michael D Ehlers
- *Neuroscience Research Unit, Pfizer Worldwide Research and Development, 700 Main Street, Cambridge, MA 02139, U.S.A
| |
Collapse
|
44
|
Zhou P, Bacaj T, Yang X, Pang ZP, Südhof TC. Lipid-anchored SNAREs lacking transmembrane regions fully support membrane fusion during neurotransmitter release. Neuron 2013; 80:470-83. [PMID: 24120845 DOI: 10.1016/j.neuron.2013.09.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 11/28/2022]
Abstract
Synaptic vesicle fusion during neurotransmitter release is mediated by assembly of SNARE- and SM-protein complexes composed of syntaxin-1, SNAP-25, synaptobrevin-2/VAMP2, and Munc18-1. Current models suggest that SNARE-complex assembly catalyzes membrane fusion by pulling the transmembrane regions (TMRs) of SNARE proteins together, thus allowing their TMRs to form a fusion pore. These models are consistent with the requirement for TMRs in viral fusion proteins. However, the role of the SNARE TMRs in synaptic vesicle fusion has not yet been tested physiologically. Here, we examined whether synaptic SNAREs require TMRs for catalysis of synaptic vesicle fusion, which was monitored electrophysiologically at millisecond time resolution. Surprisingly, we find that both lipid-anchored syntaxin-1 and lipid-anchored synaptobrevin-2 lacking TMRs efficiently promoted spontaneous and Ca(2+)-triggered membrane fusion. Our data suggest that SNARE proteins function during fusion primarily as force generators, consistent with the notion that forcing lipid membranes close together suffices to induce membrane fusion.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
45
|
Diao J, Cipriano DJ, Zhao M, Zhang Y, Shah S, Padolina MS, Pfuetzner RA, Brunger AT. Complexin-1 enhances the on-rate of vesicle docking via simultaneous SNARE and membrane interactions. J Am Chem Soc 2013; 135:15274-7. [PMID: 24083833 PMCID: PMC3854000 DOI: 10.1021/ja407392n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
In
synaptic terminals, complexin is thought to have inhibitory
and activating roles for spontaneous “mini” release
and evoked synchronized neurotransmitter release, respectively. We
used single vesicle–vesicle microscopy imaging to study the
effect of complexin-1 on the on-rate of docking between vesicles that
mimic synaptic vesicles and the plasma membrane. We found that complexin-1
enhances the on-rate of docking of synaptic vesicle mimics containing
full-length synaptobrevin-2 and full-length synaptotagmin-1 to plasma
membrane-mimicking vesicles containing full-length syntaxin-1A and
SNAP-25A. This effect requires the C-terminal domain of complexin-1,
which binds to the membrane, the presence of PS in the membrane, and
the core region of complexin-1, which binds to the SNARE complex.
Collapse
Affiliation(s)
- Jiajie Diao
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Structural Biology, and Photon Science and Howard Hughes Medical Institute, Stanford University , Stanford, California 94305, United States
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Synaptotagmins 1 and 2 as mediators of rapid exocytosis at nerve terminals: The dyad hypothesis. J Theor Biol 2013; 332:149-60. [DOI: 10.1016/j.jtbi.2013.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/24/2013] [Indexed: 11/16/2022]
|
47
|
Abbineni PS, Hibbert JE, Coorssen JR. Critical role of cortical vesicles in dissecting regulated exocytosis: overview of insights into fundamental molecular mechanisms. THE BIOLOGICAL BULLETIN 2013; 224:200-217. [PMID: 23995744 DOI: 10.1086/bblv224n3p200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Regulated exocytosis is one of the defining features of eukaryotic cells, underlying many conserved and essential functions. Definitively assigning specific roles to proteins and lipids in this fundamental mechanism is most effectively accomplished using a model system in which distinct stages of exocytosis can be effectively separated. Here we discuss the establishment of sea urchin cortical vesicle fusion as a model to study regulated exocytosis-a system in which the docked, release-ready, and late Ca(2+)-triggered steps of exocytosis are isolated and can be quantitatively assessed using the rigorous coupling of functional and molecular assays. We provide an overview of the insights this has provided into conserved molecular mechanisms and how these have led to and integrate with findings from other regulated exocytotic cells.
Collapse
Affiliation(s)
- Prabhodh S Abbineni
- Department of Molecular Physiology, School of Medicine, University of Western Sydney, NSW, Australia
| | | | | |
Collapse
|
48
|
Subtle Interplay between synaptotagmin and complexin binding to the SNARE complex. J Mol Biol 2013; 425:3461-75. [PMID: 23845424 DOI: 10.1016/j.jmb.2013.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/11/2013] [Accepted: 07/01/2013] [Indexed: 01/12/2023]
Abstract
Ca²⁺-triggered neurotransmitter release depends on the formation of SNARE complexes that bring the synaptic vesicle and plasma membranes together, on the Ca²⁺ sensor synaptotagmin-1 and on complexins, which play active and inhibitory roles. Release of the complexin inhibitory activity by binding of synaptotagmin-1 to the SNARE complex, causing complexin displacement, was proposed to trigger exocytosis. However, the validity of this model was questioned based on the observation of simultaneous binding of complexin-I and a fragment containing the synaptotagmin-1 C2 domains (C2AB) to membrane-anchored SNARE complex. Using diverse biophysical techniques, here we show that C2AB and complexin-I do not bind to each other but can indeed bind simultaneously to the SNARE complex in solution. Hence, the SNARE complex contains separate binding sites for both proteins. However, total internal reflection fluorescence microscopy experiments show that C2AB can displace a complexin-I fragment containing its central SNARE-binding helix and an inhibitory helix (Cpx26-83) from membrane-anchored SNARE complex under equilibrium conditions. Interestingly, full-length complexin-I binds more tightly to membrane-anchored SNARE complex than Cpx26-83, and it is not displaced by C2AB. These results show that interactions of N- and/or C-terminal sequences of complexin-I with the SNARE complex and/or phospholipids increase the affinity of complexin-I for the SNARE complex, hindering dissociation induced by C2AB. We propose a model whereby binding of synaptotagmin-1 to the SNARE complex directly or indirectly causes a rearrangement of the complexin-I inhibitory helix without inducing complexin-I dissociation, thus relieving the inhibitory activity and enabling cooperation between synaptotagmin-1 and complexin-I in triggering release.
Collapse
|
49
|
Fealey ME, Hinderliter A. Allostery and instability in the functional plasticity of synaptotagmin I. Commun Integr Biol 2013; 6:e22830. [PMID: 23750295 PMCID: PMC3609835 DOI: 10.4161/cib.22830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 12/18/2022] Open
Abstract
Synaptotagmin I (Syt I) is the calcium ion sensor for regulated release of neurotransmitter. How Syt I mediates this cellular event has been a question of extensive study for decades and yet, a clear understanding of the protein’s diverse functionality has remained elusive. Using tools of thermodynamics, we have identified two intrinsic properties that may account for Syt I’s functional plasticity: marginal stability and negative coupling. These two intrinsic properties have the potential to provide great conformational flexibility and suggest that Syt I’s functional plasticity stems in part from subtle rearrangements in the protein’s conformational ensemble. This model for Syt I function is discussed within the context of the nervous system’s overall plasticity.
Collapse
Affiliation(s)
- Michael E Fealey
- Department of Chemistry and Biochemistry; University of Minnesota Duluth; Duluth, MN USA
| | | |
Collapse
|
50
|
Goyal RK, Chaudhury A. Structure activity relationship of synaptic and junctional neurotransmission. Auton Neurosci 2013; 176:11-31. [PMID: 23535140 PMCID: PMC3677731 DOI: 10.1016/j.autneu.2013.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 12/28/2012] [Accepted: 02/18/2013] [Indexed: 12/18/2022]
Abstract
Chemical neurotransmission may include transmission to local or remote sites. Locally, contact between 'bare' portions of the bulbous nerve terminal termed a varicosity and the effector cell may be in the form of either synapse or non-synaptic contact. Traditionally, all local transmissions between nerves and effector cells are considered synaptic in nature. This is particularly true for communication between neurons. However, communication between nerves and other effectors such as smooth muscles has been described as nonsynaptic or junctional in nature. Nonsynaptic neurotransmission is now also increasingly recognized in the CNS. This review focuses on the relationship between structure and function that orchestrate synaptic and junctional neurotransmissions. A synapse is a specialized focal contact between the presynaptic active zone capable of ultrafast release of soluble transmitters and the postsynaptic density that cluster ionotropic receptors. The presynaptic and the postsynaptic areas are separated by the 'closed' synaptic cavity. The physiological hallmark of the synapse is ultrafast postsynaptic potentials lasting milliseconds. In contrast, junctions are juxtapositions of nerve terminals and the effector cells without clear synaptic specializations and the junctional space is 'open' to the extracellular space. Based on the nature of the transmitters, postjunctional receptors and their separation from the release sites, the junctions can be divided into 'close' and 'wide' junctions. Functionally, the 'close' and the 'wide' junctions can be distinguished by postjunctional potentials lasting ~1s and tens of seconds, respectively. Both synaptic and junctional communications are common between neurons; however, junctional transmission is the rule at many neuro-non-neural effectors.
Collapse
Affiliation(s)
- Raj K Goyal
- Center for Swallowing and Motility Disorders, GI Division, VA Boston Healthcare System and Harvard Medical School, Boston, USA.
| | | |
Collapse
|