1
|
Wang YL, Lu JM, Zhang Y, Chen HW. Molecular phylogeny, species delimitation and biogeographic history of the Stegana (Steganina) shirozui species group (Diptera: Drosophilidae) from East Asia. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The Stegana (Steganina) shirozui species group is mainly distributed in East Asia. In the present study, the molecular phylogeny of the S. shirozui group was investigated based on mitochondrial (COI and ND2) and nuclear (28S rRNA) markers. The resulting trees support the S. shirozui group as monophyletic and indicate that in this group, species associated with closer affinities show higher structural homogeneity in male genitalia. Molecular species delimitation assess most species limits and recognize four new species in the S. shirozui group from south-west China: S. alianya sp. nov., S. diodonta sp. nov., S. zebromyia sp. nov. and S. zopheria sp. nov. One new synonym was also recognized. Additionally, three typical male genital characters of the S. shirozui group were placed on the molecular phylogenetic framework. The outcome of both divergence-time estimation and ancestral area reconstruction suggests that the S. shirozui group likely originated in south-west China in the Middle Miocene.
Collapse
Affiliation(s)
- Ya-Lian Wang
- Department of Entomology, South China Agricultural University, Tianhe, Guangzhou, China
| | - Jin-Ming Lu
- Department of Entomology, South China Agricultural University, Tianhe, Guangzhou, China
| | - Yuan Zhang
- Department of Entomology, South China Agricultural University, Tianhe, Guangzhou, China
| | - Hong-Wei Chen
- Department of Entomology, South China Agricultural University, Tianhe, Guangzhou, China
| |
Collapse
|
2
|
Yang X, Fors L, Slotte T, Theopold U, Binzer-Panchal M, Wheat CW, Hambäck PA. Differential Expression of Immune Genes between Two Closely Related Beetle Species with Different Immunocompetence following Attack by Asecodes parviclava. Genome Biol Evol 2020; 12:522-534. [PMID: 32282901 PMCID: PMC7211424 DOI: 10.1093/gbe/evaa075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 12/28/2022] Open
Abstract
Endoparasitoid wasps are important natural enemies of many insect species and are major selective forces on the host immune system. Despite increased interest in insect antiparasitoid immunity, there is sparse information on the evolutionary dynamics of biological pathways and gene regulation involved in host immune defense outside Drosophila species. We de novo assembled transcriptomes from two beetle species and used time-course differential expression analysis to investigate gene expression differences in closely related species Galerucella pusilla and G. calmariensis that are, respectively, resistant and susceptible against parasitoid infection by Asecodes parviclava parasitoids. Approximately 271 million and 224 million paired-ended reads were assembled and filtered to form 52,563 and 59,781 transcripts for G. pusilla and G. calmariensis, respectively. In the whole-transcriptome level, an enrichment of functional categories related to energy production, biosynthetic process, and metabolic process was exhibited in both species. The main difference between species appears to be immune response and wound healing process mounted by G. pusilla larvae. Using reciprocal BLAST against the Drosophila melanogaster proteome, 120 and 121 immune-related genes were identified in G. pusilla and G. calmariensis, respectively. More immune genes were differentially expressed in G. pusilla than in G. calmariensis, in particular genes involved in signaling, hematopoiesis, and melanization. In contrast, only one gene was differentially expressed in G. calmariensis. Our study characterizes important genes and pathways involved in different immune functions after parasitoid infection and supports the role of signaling and hematopoiesis genes as key players in host immunity in Galerucella against parasitoid wasps.
Collapse
Affiliation(s)
- Xuyue Yang
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden
| | - Lisa Fors
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden
| | - Ulrich Theopold
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Mahesh Binzer-Panchal
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Uppsala University, Sweden
| | | | - Peter A Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden
| |
Collapse
|
3
|
Keilwagen J, Hartung F, Paulini M, Twardziok SO, Grau J. Combining RNA-seq data and homology-based gene prediction for plants, animals and fungi. BMC Bioinformatics 2018; 19:189. [PMID: 29843602 PMCID: PMC5975413 DOI: 10.1186/s12859-018-2203-5] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Background Genome annotation is of key importance in many research questions. The identification of protein-coding genes is often based on transcriptome sequencing data, ab-initio or homology-based prediction. Recently, it was demonstrated that intron position conservation improves homology-based gene prediction, and that experimental data improves ab-initio gene prediction. Results Here, we present an extension of the gene prediction program GeMoMa that utilizes amino acid sequence conservation, intron position conservation and optionally RNA-seq data for homology-based gene prediction. We show on published benchmark data for plants, animals and fungi that GeMoMa performs better than the gene prediction programs BRAKER1, MAKER2, and CodingQuarry, and purely RNA-seq-based pipelines for transcript identification. In addition, we demonstrate that using multiple reference organisms may help to further improve the performance of GeMoMa. Finally, we apply GeMoMa to four nematode species and to the recently published barley reference genome indicating that current annotations of protein-coding genes may be refined using GeMoMa predictions. Conclusions GeMoMa might be of great utility for annotating newly sequenced genomes but also for finding homologs of a specific gene or gene family. GeMoMa has been published under GNU GPL3 and is freely available at http://www.jstacs.de/index.php/GeMoMa. Electronic supplementary material The online version of this article (10.1186/s12859-018-2203-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, D-06484, Germany.
| | - Frank Hartung
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, D-06484, Germany
| | - Michael Paulini
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Sven O Twardziok
- Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, D-85764, Germany
| | - Jan Grau
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), D-06120, Germany
| |
Collapse
|
4
|
Wiegmann BM, Richards S. Genomes of Diptera. CURRENT OPINION IN INSECT SCIENCE 2018; 25:116-124. [PMID: 29602357 DOI: 10.1016/j.cois.2018.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Diptera (true flies) are among the most diverse holometabolan insect orders and were the first eukaryotic order to have a representative genome fully sequenced. 110 fly species have publically available genome assemblies and many hundreds of population-level genomes have been generated in the model organisms Drosophila melanogaster and the malaria mosquito Anopheles gambiae. Comparative genomics carried out in a phylogenetic context is illuminating many aspects of fly biology, providing unprecedented insight into variability in genome structure, gene content, genetic mechanisms, and rates and patterns of evolution in genes, populations, and species. Despite the rich availability of genomic resources in flies, there remain many fly lineages to which new genome sequencing efforts should be directed. Such efforts would be most valuable in fly families or clades that exhibit multiple origins of key fly behaviors such as blood feeding, phytophagy, parasitism, pollination, and mycophagy.
Collapse
Affiliation(s)
- Brian M Wiegmann
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, United States.
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77006, United States
| |
Collapse
|
5
|
Gu L, Walters JR, Knipple DC. Conserved Patterns of Sex Chromosome Dosage Compensation in the Lepidoptera (WZ/ZZ): Insights from a Moth Neo-Z Chromosome. Genome Biol Evol 2017; 9:802-816. [PMID: 28338816 PMCID: PMC5381563 DOI: 10.1093/gbe/evx039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 02/07/2023] Open
Abstract
Where previously described, patterns of sex chromosome dosage compensation in the Lepidoptera (moths and butterflies) have several unusual characteristics. Other female-heterogametic (ZW/ZZ) species exhibit female Z-linked expression that is reduced compared with autosomal expression and male Z expression. In the Lepidoptera, however, Z expression typically appears balanced between sexes but overall reduced relative to autosomal expression, that is Z ≈ ZZ < AA. This pattern is not easily reconciled with theoretical expectations for the evolution of sex chromosome dosage compensation. Moreover, conflicting results linger due to discrepancies in data analyses and tissues sampled among lepidopterans. To address these issues, we performed RNA-seq to analyze sex chromosome dosage compensation in the codling moth, Cydia pomonella, which is a species from the earliest diverging lepidopteran lineage yet examined for dosage compensation and has a neo-Z chromosome resulting from an ancient Z:autosome fusion. While supported by intraspecific analyses, the Z ≈ ZZ < AA pattern was further evidenced by comparative study using autosomal orthologs of C. pomonella neo-Z genes in outgroup species. In contrast, dosage compensation appears to be absent in reproductive tissues. We thus argue that inclusion of reproductive tissues may explain the incongruence from a prior study on another moth species and that patterns of dosage compensation are likely conserved in the Lepidoptera. Notably, this pattern appears convergent with patterns in eutherian mammals (X ≈ XX < AA). Overall, our results contribute to the notion that the Lepidoptera present challenges both to classical theories regarding the evolution of sex chromosome dosage compensation and the emerging view of the association of dosage compensation with sexual heterogamety.
Collapse
Affiliation(s)
- Liuqi Gu
- Department of Entomology, Cornell University, Geneva, NY
| | - James R Walters
- Department of Ecology & Evolutionary Biology, The University of Kansas, Lawrence, KS
| | | |
Collapse
|
6
|
Kober KM, Pogson GH. Genome-wide signals of positive selection in strongylocentrotid sea urchins. BMC Genomics 2017; 18:555. [PMID: 28732465 PMCID: PMC5521101 DOI: 10.1186/s12864-017-3944-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022] Open
Abstract
Background Comparative genomics studies investigating the signals of positive selection among groups of closely related species are still rare and limited in taxonomic breadth. Such studies show great promise in advancing our knowledge about the proportion and the identity of genes experiencing diversifying selection. However, methodological challenges have led to high levels of false positives in past studies. Here, we use the well-annotated genome of the purple sea urchin, Strongylocentrotus purpuratus, as a reference to investigate the signals of positive selection at 6520 single-copy orthologs from nine sea urchin species belonging to the family Strongylocentrotidae paying careful attention to minimizing false positives. Results We identified 1008 (15.5%) candidate positive selection genes (PSGs). Tests for positive selection along the nine terminal branches of the phylogeny identified 824 genes that showed lineage-specific adaptive diversification (1.67% of branch-sites tests performed). Positively selected codons were not enriched at exon borders or near regions containing missing data, suggesting a limited contribution of false positives caused by alignment or annotation errors. Alignments were validated at 10 loci with re-sequencing using Sanger methods. No differences were observed in the rates of synonymous substitution (dS), GC content, and codon bias between the candidate PSGs and those not showing positive selection. However, the candidate PSGs had 68% higher rates of nonsynonymous substitution (dN) and 33% lower levels of heterozygosity, consistent with selective sweeps and opposite to that expected by a relaxation of selective constraint. Although positive selection was identified at reproductive proteins and innate immunity genes, the strongest signals of adaptive diversification were observed at extracellular matrix proteins, cell adhesion molecules, membrane receptors, and ion channels. Many candidate PSGs have been widely implicated as targets of pathogen binding, inactivation, mimicry, or exploitation in other groups (notably mammals). Conclusions Our study confirmed the widespread action of positive selection across sea urchin genomes and allowed us to reject the possibility that annotation and alignment errors (including paralogs) were responsible for creating false signals of adaptive molecular divergence. The candidate PSGs identified in our study represent promising targets for future research into the selective agents responsible for their adaptive diversification and their contribution to speciation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3944-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kord M Kober
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA. .,Institute for Computational Health Sciences, University of California, San Francisco, USA. .,Present address: Department of Physiological Nursing, University of California, San Francisco, USA.
| | - Grant H Pogson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA
| |
Collapse
|
7
|
Khanna R, Mohanty S. Whole genome sequence resource of Indian Zaprionus indianus. Mol Ecol Resour 2016; 17:557-564. [DOI: 10.1111/1755-0998.12582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/23/2016] [Accepted: 05/31/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Radhika Khanna
- Department of Biotechnology; Jaypee Institute of Information Technology; A-10, Sector 62 Noida Uttar Pradesh 201 309 India
| | - Sujata Mohanty
- Department of Biotechnology; Jaypee Institute of Information Technology; A-10, Sector 62 Noida Uttar Pradesh 201 309 India
| |
Collapse
|
8
|
Abstract
Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly's tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism's natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones.
Collapse
|
9
|
Salazar-Jaramillo L, Paspati A, van de Zande L, Vermeulen CJ, Schwander T, Wertheim B. Evolution of a cellular immune response in Drosophila: a phenotypic and genomic comparative analysis. Genome Biol Evol 2015; 6:273-89. [PMID: 24443439 PMCID: PMC3942026 DOI: 10.1093/gbe/evu012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Understanding the genomic basis of evolutionary adaptation requires insight into the molecular basis underlying phenotypic variation. However, even changes in molecular pathways associated with extreme variation, gains and losses of specific phenotypes, remain largely uncharacterized. Here, we investigate the large interspecific differences in the ability to survive infection by parasitoids across 11 Drosophila species and identify genomic changes associated with gains and losses of parasitoid resistance. We show that a cellular immune defense, encapsulation, and the production of a specialized blood cell, lamellocytes, are restricted to a sublineage of Drosophila, but that encapsulation is absent in one species of this sublineage, Drosophila sechellia. Our comparative analyses of hemopoiesis pathway genes and of genes differentially expressed during the encapsulation response revealed that hemopoiesis-associated genes are highly conserved and present in all species independently of their resistance. In contrast, 11 genes that are differentially expressed during the response to parasitoids are novel genes, specific to the Drosophila sublineage capable of lamellocyte-mediated encapsulation. These novel genes, which are predominantly expressed in hemocytes, arose via duplications, whereby five of them also showed signatures of positive selection, as expected if they were recruited for new functions. Three of these novel genes further showed large-scale and presumably loss-of-function sequence changes in D. sechellia, consistent with the loss of resistance in this species. In combination, these convergent lines of evidence suggest that co-option of duplicated genes in existing pathways and subsequent neofunctionalization are likely to have contributed to the evolution of the lamellocyte-mediated encapsulation in Drosophila.
Collapse
Affiliation(s)
- Laura Salazar-Jaramillo
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, Groningen University, The Netherlands
| | | | | | | | | | | |
Collapse
|
10
|
Guillén Y, Rius N, Delprat A, Williford A, Muyas F, Puig M, Casillas S, Ràmia M, Egea R, Negre B, Mir G, Camps J, Moncunill V, Ruiz-Ruano FJ, Cabrero J, de Lima LG, Dias GB, Ruiz JC, Kapusta A, Garcia-Mas J, Gut M, Gut IG, Torrents D, Camacho JP, Kuhn GCS, Feschotte C, Clark AG, Betrán E, Barbadilla A, Ruiz A. Genomics of ecological adaptation in cactophilic Drosophila. Genome Biol Evol 2014; 7:349-66. [PMID: 25552534 PMCID: PMC4316639 DOI: 10.1093/gbe/evu291] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cactophilic Drosophila species provide a valuable model to study gene–environment interactions and ecological adaptation. Drosophila buzzatii and Drosophila mojavensis are two cactophilic species that belong to the repleta group, but have very different geographical distributions and primary host plants. To investigate the genomic basis of ecological adaptation, we sequenced the genome and developmental transcriptome of D. buzzatii and compared its gene content with that of D. mojavensis and two other noncactophilic Drosophila species in the same subgenus. The newly sequenced D. buzzatii genome (161.5 Mb) comprises 826 scaffolds (>3 kb) and contains 13,657 annotated protein-coding genes. Using RNA sequencing data of five life-stages we found expression of 15,026 genes, 80% protein-coding genes, and 20% noncoding RNA genes. In total, we detected 1,294 genes putatively under positive selection. Interestingly, among genes under positive selection in the D. mojavensis lineage, there is an excess of genes involved in metabolism of heterocyclic compounds that are abundant in Stenocereus cacti and toxic to nonresident Drosophila species. We found 117 orphan genes in the shared D. buzzatii–D. mojavensis lineage. In addition, gene duplication analysis identified lineage-specific expanded families with functional annotations associated with proteolysis, zinc ion binding, chitin binding, sensory perception, ethanol tolerance, immunity, physiology, and reproduction. In summary, we identified genetic signatures of adaptation in the shared D. buzzatii–D. mojavensis lineage, and in the two separate D. buzzatii and D. mojavensis lineages. Many of the novel lineage-specific genomic features are promising candidates for explaining the adaptation of these species to their distinct ecological niches.
Collapse
Affiliation(s)
- Yolanda Guillén
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain
| | - Núria Rius
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain
| | - Alejandra Delprat
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain
| | | | - Francesc Muyas
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain
| | - Marta Puig
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain
| | - Sònia Casillas
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Spain
| | - Miquel Ràmia
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Spain
| | - Raquel Egea
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Spain
| | - Barbara Negre
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gisela Mir
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Jordi Camps
- Centro Nacional de Análisis Genómico (CNAG), Parc Científic de Barcelona, Torre I, Barcelona, Spain
| | - Valentí Moncunill
- Barcelona Supercomputing Center (BSC), Edifici TG (Torre Girona), Barcelona, Spain and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Josefa Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Spain
| | - Leonardo G de Lima
- Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme B Dias
- Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jeronimo C Ruiz
- Informática de Biossistemas, Centro de Pesquisas René Rachou-Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Aurélie Kapusta
- Department of Human Genetics, University of Utah School of Medicine
| | - Jordi Garcia-Mas
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), Parc Científic de Barcelona, Torre I, Barcelona, Spain
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico (CNAG), Parc Científic de Barcelona, Torre I, Barcelona, Spain
| | - David Torrents
- Barcelona Supercomputing Center (BSC), Edifici TG (Torre Girona), Barcelona, Spain and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Juan P Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Spain
| | - Gustavo C S Kuhn
- Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington
| | - Antonio Barbadilla
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Spain
| | - Alfredo Ruiz
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
11
|
Klasson L, Kumar N, Bromley R, Sieber K, Flowers M, Ott SH, Tallon LJ, Andersson SGE, Dunning Hotopp JC. Extensive duplication of the Wolbachia DNA in chromosome four of Drosophila ananassae. BMC Genomics 2014; 15:1097. [PMID: 25496002 PMCID: PMC4299567 DOI: 10.1186/1471-2164-15-1097] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/03/2014] [Indexed: 12/03/2022] Open
Abstract
Background Lateral gene transfer (LGT) from bacterial Wolbachia endosymbionts has been detected in ~20% of arthropod and nematode genome sequencing projects. Many of these transfers are large and contain a substantial part of the Wolbachia genome. Results Here, we re-sequenced three D. ananassae genomes from Asia and the Pacific that contain large LGTs from Wolbachia. We find that multiple copies of the Wolbachia genome are transferred to the Drosophila nuclear genome in all three lines. In the D. ananassae line from Indonesia, the copies of Wolbachia DNA in the nuclear genome are nearly identical in size and sequence yielding an even coverage of mapped reads over the Wolbachia genome. In contrast, the D. ananassae lines from Hawaii and India show an uneven coverage of mapped reads over the Wolbachia genome suggesting that different parts of these LGTs are present in different copy numbers. In the Hawaii line, we find that this LGT is underrepresented in third instar larvae indicative of being heterochromatic. Fluorescence in situ hybridization of mitotic chromosomes confirms that the LGT in the Hawaii line is heterochromatic and represents ~20% of the sequence on chromosome 4 (dot chromosome, Muller element F). Conclusions This collection of related lines contain large lateral gene transfers composed of multiple Wolbachia genomes that constitute >2% of the D. ananassae genome (~5 Mbp) and partially explain the abnormally large size of chromosome 4 in D. ananassae. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1097) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
12
|
Besnard G, Christin PA, Malé PJG, Lhuillier E, Lauzeral C, Coissac E, Vorontsova MS. From museums to genomics: old herbarium specimens shed light on a C3 to C4 transition. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6711-21. [PMID: 25258360 DOI: 10.1093/jxb/eru395] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Collections of specimens held by natural history museums are invaluable material for biodiversity inventory and evolutionary studies, with specimens accumulated over 300 years readily available for sampling. Unfortunately, most museum specimens yield low-quality DNA. Recent advances in sequencing technologies, so called next-generation sequencing, are revolutionizing phylogenetic investigations at a deep level. Here, the Illumina technology (HiSeq) was used on herbarium specimens of Sartidia (subfamily Aristidoideae, Poaceae), a small African-Malagasy grass lineage (six species) characteristic of wooded savannas, which is the C3 sister group of Stipagrostis, an important C4 genus from Africa and SW Asia. Complete chloroplast and nuclear ribosomal sequences were assembled for two Sartidia species, one of which (S. perrieri) is only known from a single specimen collected in Madagascar 100 years ago. Partial sequences of a few single-copy genes encoding phosphoenolpyruvate carboxylases (ppc) and malic enzymes (nadpme) were also assembled. Based on these data, the phylogenetic position of Malagasy Sartidia in the subfamily Aristidoideae was investigated and the biogeographical history of this genus was analysed with full species sampling. The evolutionary history of two genes for C4 photosynthesis (ppc-aL1b and nadpme-IV) in the group was also investigated. The gene encoding the C4 phosphoenolpyruvate caroxylase of Stipagrostis is absent from S. dewinteri suggesting that it is not essential in C3 members of the group, which might have favoured its recruitment into a new metabolic pathway. Altogether, the inclusion of historical museum specimens in phylogenomic analyses of biodiversity opens new avenues for evolutionary studies.
Collapse
Affiliation(s)
- Guillaume Besnard
- CNRS-UPS-ENFA, UMR5174, EDB (Laboratoire Evolution et Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse, France
| | | | - Pierre-Jean G Malé
- CNRS-UPS-ENFA, UMR5174, EDB (Laboratoire Evolution et Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse, France Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Emeline Lhuillier
- GeT-PlaGe, Campus INRA-Auzeville, F-31326 Castanet-Tolosan, France; INRA, UAR 1209 Département de Génétique Animale, INRA Auzeville, F-31326 Castanet-Tolosan, France
| | - Christine Lauzeral
- CNRS-UPS-ENFA, UMR5174, EDB (Laboratoire Evolution et Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse, France
| | - Eric Coissac
- Laboratoire d'écologie Alpine (LECA), UMR5553, CNRS/Université Joseph Fourier-Grenoble I, Université de Savoie, F-38041 Grenoble, France
| | | |
Collapse
|
13
|
Zhong Y, Jia Y, Gao Y, Tian D, Yang S, Zhang X. Functional requirements driving the gene duplication in 12 Drosophila species. BMC Genomics 2013; 14:555. [PMID: 23945147 PMCID: PMC3751352 DOI: 10.1186/1471-2164-14-555] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 08/13/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. RESULTS In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. CONCLUSIONS This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila.
Collapse
Affiliation(s)
- Yan Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Rd, Nanjing 210093, China
| | | | | | | | | | | |
Collapse
|
14
|
Guo YL. Gene family evolution in green plants with emphasis on the origination and evolution of Arabidopsis thaliana genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:941-51. [PMID: 23216999 DOI: 10.1111/tpj.12089] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 11/01/2012] [Accepted: 11/23/2012] [Indexed: 05/04/2023]
Abstract
Gene family size variation is an important mechanism that shapes the natural variation for adaptation in various species. Despite its importance, the pattern of gene family size variation in green plants is still not well understood. In particular, the evolutionary pattern of genes and gene families remains unknown in the model plant Arabidopsis thaliana in the context of green plants. In this study, eight representative genomes of green plants are sampled to study gene family evolution and characterize the origination of A. thaliana genes, respectively. Four important insights gained are that: (i) the rate of gene gains and losses is about 0.001359 per gene every million years, similar to the rate in yeast, Drosophila, and mammals; (ii) some gene families evolved rapidly with extreme expansions or contractions, and 2745 gene families present in all the eight species represent the 'core' proteome of green plants; (iii) 70% of A. thaliana genes could be traced back to 450 million years ago; and (iv) intriguingly, A. thaliana genes with early origination are under stronger purifying selection and more conserved. In summary, the present study provides genome-wide insights into evolutionary history and mechanisms of genes and gene families in green plants and especially in A. thaliana.
Collapse
Affiliation(s)
- Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
15
|
The genetic architecture of degenerin/epithelial sodium channels in Drosophila. G3-GENES GENOMES GENETICS 2013; 3:441-50. [PMID: 23449991 PMCID: PMC3583452 DOI: 10.1534/g3.112.005272] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/28/2012] [Indexed: 12/14/2022]
Abstract
Degenerin/epithelial sodium channels (DEG/ENaC) represent a large family of animal-specific membrane proteins. Although the physiological functions of most family members are not known, some have been shown to act as nonvoltage gated, amiloride-sensitive sodium channels. The DEG/ENaC family is exceptionally large in genomes of Drosophila species relative to vertebrates and other insects. To elucidate the evolutionary history of the DEG/ENaC family in Drosophila, we took advantage of the genomic and genetic information available for 12 Drosophila species that represent all the major species groups in the Drosophila clade. We have identified 31 family members (termed pickpocket genes) in Drosophila melanogaster, which can be divided into six subfamilies, which are represented in all 12 species. Structure prediction analyses suggested that some subunits evolved unique structural features in the large extracellular domain, possibly supporting mechanosensory functions. This finding is further supported by experimental data that show that both ppk1 and ppk26 are expressed in multidendritic neurons, which can sense mechanical nociceptive stimuli in larvae. We also identified representative genes from five of the six DEG/ENaC subfamilies in a mosquito genome, suggesting that the core DEG/ENaC subfamilies were already present early in the dipteran radiation. Spatial and temporal analyses of expression patterns of the various pickpocket genes indicated that paralogous genes often show very different expression patterns, possibly indicating that gene duplication events have led to new physiological or cellular functions rather than redundancy. In summary, our analyses support a rapid early diversification of the DEG/ENaC family in Diptera followed by physiological and/or cellular specialization. Some members of the family may have diversified to support the physiological functions of a yet unknown class of ligands.
Collapse
|
16
|
Abstract
The genomics era has opened up exciting possibilities in the field of conservation biology by enabling genomic analyses of threatened species that previously were limited to model organisms. Next-generation sequencing (NGS) and the collection of genome-wide data allow for more robust studies of the demographic history of populations and adaptive variation associated with fitness and local adaptation. Genomic analyses can also advance management efforts for threatened wild and captive populations by identifying loci contributing to inbreeding depression and disease susceptibility, and predicting fitness consequences of introgression. However, the development of genomic tools in wild species still carries multiple challenges, particularly those associated with computational and sampling constraints. This review provides an overview of the most significant applications of NGS and the implications and limitations of genomic studies in conservation.
Collapse
Affiliation(s)
- Cynthia C Steiner
- Institute for Conservation Research, San Diego Zoo Global, Escondido, California 92027; ; ;
| | | | | | | |
Collapse
|
17
|
Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): a model of industrial melanism. Heredity (Edinb) 2012; 110:283-95. [PMID: 23211790 DOI: 10.1038/hdy.2012.84] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have constructed a linkage map for the peppered moth (Biston betularia), the classical ecological genetics model of industrial melanism, aimed both at localizing the network of loci controlling melanism and making inferences about chromosome dynamics. The linkage map, which is based primarily on amplified fragment length polymorphisms (AFLPs) and genes, consists of 31 linkage groups (LGs; consistent with the karyotype). Comparison with the evolutionarily distant Bombyx mori suggests that the gene content of chromosomes is highly conserved. Gene order is conserved on the autosomes, but noticeably less so on the Z chromosome, as confirmed by physical mapping using bacterial artificial chromosome fluorescence in situ hybridization (BAC-FISH). Synteny mapping identified three pairs of B. betularia LGs (11/29, 23/30 and 24/31) as being orthologous to three B. mori chromosomes (11, 23 and 24, respectively). A similar finding in an outgroup moth (Plutella xylostella) indicates that the B. mori karyotype (n=28) is a phylogenetically derived state resulting from three chromosome fusions. As with other Lepidoptera, the B. betularia W chromosome consists largely of repetitive sequence, but exceptionally we found a W homolog of a Z-linked gene (laminin A), possibly resulting from ectopic recombination between the sex chromosomes. The B. betularia linkage map, featuring the network of known melanization genes, serves as a resource for melanism research in Lepidoptera. Moreover, its close resemblance to the ancestral lepidopteran karyotype (n=31) makes it a useful reference point for reconstructing chromosome dynamic events and ancestral genome architectures. Our study highlights the unusual evolutionary stability of lepidopteran autosomes; in contrast, higher rates of intrachromosomal rearrangements support a special role of the Z chromosome in adaptive evolution and speciation.
Collapse
|
18
|
Seetharam A, Stuart GW. Whole genome phylogenies for multiple Drosophila species. BMC Res Notes 2012; 5:670. [PMID: 23210901 PMCID: PMC3531268 DOI: 10.1186/1756-0500-5-670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/27/2012] [Indexed: 11/23/2022] Open
Abstract
Background Reconstructing the evolutionary history of organisms using traditional phylogenetic methods may suffer from inaccurate sequence alignment. An alternative approach, particularly effective when whole genome sequences are available, is to employ methods that don’t use explicit sequence alignments. We extend a novel phylogenetic method based on Singular Value Decomposition (SVD) to reconstruct the phylogeny of 12 sequenced Drosophila species. SVD analysis provides accurate comparisons for a high fraction of sequences within whole genomes without the prior identification of orthologs or homologous sites. With this method all protein sequences are converted to peptide frequency vectors within a matrix that is decomposed to provide simplified vector representations for each protein of the genome in a reduced dimensional space. These vectors are summed together to provide a vector representation for each species, and the angle between these vectors provides distance measures that are used to construct species trees. Results An unfiltered whole genome analysis (193,622 predicted proteins) strongly supports the currently accepted phylogeny for 12 Drosophila species at higher dimensions except for the generally accepted but difficult to discern sister relationship between D. erecta and D. yakuba. Also, in accordance with previous studies, many sequences appear to support alternative phylogenies. In this case, we observed grouping of D. erecta with D. sechellia when approximately 55% to 95% of the proteins were removed using a filter based on projection values or by reducing resolution by using fewer dimensions. Similar results were obtained when just the melanogaster subgroup was analyzed. Conclusions These results indicate that using our novel phylogenetic method, it is possible to consult and interpret all predicted protein sequences within multiple whole genomes to produce accurate phylogenetic estimations of relatedness between Drosophila species. Furthermore, protein filtering can be effectively applied to reduce incongruence in the dataset as well as to generate alternative phylogenies.
Collapse
Affiliation(s)
- Arun Seetharam
- Department of Biology, Indiana State University, Terre Haute, Indiana 47809, USA
| | | |
Collapse
|
19
|
Li L, Memon S, Fan Y, Yang S, Tan S. Recent duplications drive rapid diversification of trypsin genes in 12 Drosophila. Genetica 2012; 140:297-305. [PMID: 22987293 DOI: 10.1007/s10709-012-9682-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
Abstract
Trypsin participates in many fundamental biological processes, the most notably in digesting food. The 12 species of Drosophila provide a great opportunity to analyze the duplication pattern of trypsins and their association with dietary changes. Here, we find that the trypsin family expands dramatically after speciation. The duplication events are strongly related to the host preferences, with significantly more copy numbers in species breeding on rotting fruits. Temporal analysis of the duplication events indicates that the occurrences of these events are not simultaneous, but rather correlate to the ecological change or host shift. Furthermore, we find that the specialists and generalists have different adaptive selections, which is revealed by dynamic duplication and/or deletion and relatively high Ka/Ks values on the duplicated events in specialists. Our findings suggest that the duplication of trypsin genes has played an important role in the adaption of Drosophila to the diverse ecosystems.
Collapse
Affiliation(s)
- Luolan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biology, School of Life Sciences, Nanjing University, 22 Hankou Rd., Nanjing 210093, China
| | | | | | | | | |
Collapse
|
20
|
McDonnell CM, King D, Comeron JM, Li H, Sun W, Berenbaum MR, Schuler MA, Pittendrigh BR. Evolutionary toxicogenomics: diversification of the Cyp12d1 and Cyp12d3 genes in Drosophila species. J Mol Evol 2012; 74:281-96. [PMID: 22811321 DOI: 10.1007/s00239-012-9506-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 06/12/2012] [Indexed: 02/02/2023]
Abstract
Gene duplication and divergence are overwhelmingly considered to be the primary mechanisms by which cytochrome P450 monooxygenases (P450s) have radiated into a large and diverse gene superfamily. To address how environmental stress drives the fixation and diversification of gene duplications, we have analyzed Cyp12d1 and Cyp12d3, a pair of duplicated genes found in the sequenced Drosophila genomes of the melanogaster group. The paralog Cyp12d3, which is not found in Drosophila melanogaster, is basal to the melanogaster group, after it split from the obscura group (ca. 50 mya), and has a significant signature of positive selection in two species (D. sechellia and D. ananassae). Examination of the Cyp12d1 region in D. melanogaster wildtype and isoline populations revealed variation both in copy number and sequence, including splice-site variations, which certainly alter gene function. Further investigations of several strains have identified three cases in which differences in the Cyp12d1 gene region are associated with the differences in transcript abundance and transcriptional responses to the environmental stresses that have not been seen for other detoxificative loci. Together, these data highlight the value of using both macro- and microevolutionary approaches in studying the duplication and divergence events associated with detoxification genes and lay important groundwork for future studies in the field of evolutionary toxicogenomics, which uses the principles of phylogenetic analysis to predict possible enzymatic functions.
Collapse
Affiliation(s)
- Cynthia M McDonnell
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Makino T, Kawata M. Habitat variability correlates with duplicate content of Drosophila genomes. Mol Biol Evol 2012; 29:3169-79. [PMID: 22586328 PMCID: PMC3457775 DOI: 10.1093/molbev/mss133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The factors limiting the habitat range of species are crucial in understanding their biodiversity and response to environmental change. Yet the genetic and genomic architectures that produce genetic variation to enable environmental adaptation have remained poorly understood. Here we show that the proportion of duplicated genes (PD) in the whole genomes of fully sequenced Drosophila species is significantly correlated with environmental variability within the habitats measured by the climatic envelope and habitat diversity. Furthermore, species with a low PD tend to lose the duplicated genes owing to their faster evolution. These results indicate that the rapid relaxation of functional constraints on duplicated genes resulted in a low PD for species with lower habitat diversity, and suggest that the maintenance of duplicated genes gives organisms an ecological advantage during evolution. We therefore propose that the PD in a genome is related to adaptation to environmental variation.
Collapse
Affiliation(s)
- Takashi Makino
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | | |
Collapse
|
22
|
Christin PA, Besnard G, Edwards EJ, Salamin N. Effect of genetic convergence on phylogenetic inference. Mol Phylogenet Evol 2012; 62:921-7. [DOI: 10.1016/j.ympev.2011.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 12/31/2022]
|
23
|
Koevoets T, Niehuis O, van de Zande L, Beukeboom LW. Hybrid incompatibilities in the parasitic wasp genus Nasonia: negative effects of hemizygosity and the identification of transmission ratio distortion loci. Heredity (Edinb) 2012; 108:302-11. [PMID: 21878985 PMCID: PMC3282399 DOI: 10.1038/hdy.2011.75] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 01/01/2023] Open
Abstract
The occurrence of hybrid incompatibilities forms an important stage during the evolution of reproductive isolation. In early stages of speciation, males and females often respond differently to hybridization. Haldane's rule states that the heterogametic sex suffers more from hybridization than the homogametic sex. Although haplodiploid reproduction (haploid males, diploid females) does not involve sex chromosomes, sex-specific incompatibilities are predicted to be prevalent in haplodiploid species. Here, we evaluate the effect of sex/ploidy level on hybrid incompatibilities and locate genomic regions that cause increased mortality rates in hybrid males of the haplodiploid wasps Nasonia vitripennis and Nasonia longicornis. Our data show that diploid F(1) hybrid females suffer less from hybridization than haploid F(2) hybrid males. The latter not only suffer from an increased mortality rate, but also from behavioural and spermatogenic sterility. Genetic mapping in recombinant F(2) male hybrids revealed that the observed hybrid mortality is most likely due to a disruption of cytonuclear interactions. As these sex-specific hybrid incompatibilities follow predictions based on Haldane's rule, our data accentuate the need to broaden the view of Haldane's rule to include species with haplodiploid sex determination, consistent with Haldane's original definition.
Collapse
Affiliation(s)
- T Koevoets
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Carnicer J, Brotons L, Stefanescu C, Peñuelas J. Biogeography of species richness gradients: linking adaptive traits, demography and diversification. Biol Rev Camb Philos Soc 2011; 87:457-79. [PMID: 22129434 DOI: 10.1111/j.1469-185x.2011.00210.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we review how adaptive traits contribute to the emergence and maintenance of species richness gradients through their influence on demographic and diversification processes. We start by reviewing how demographic dynamics change along species richness gradients. Empirical studies show that geographical clines in population parameters and measures of demographic variability are frequent along latitudinal and altitudinal gradients. Demographic variability often increases at the extremes of regional species richness gradients and contributes to shape these gradients. Available studies suggest that adaptive traits significantly influence demographic dynamics, and set the limits of species distributions. Traits related to thermal tolerance, resource use, phenology and dispersal seem to play a significant role. For many traits affecting demography and/or diversification processes, complex mechanistic approaches linking genotype, phenotype and fitness are becoming progressively available. In several taxa, species can be distributed along adaptive trait continuums, i.e. a main axis accounting for the bulk of inter-specific variation in some correlated adaptive traits. It is shown that adaptive trait continuums can provide useful mechanistic frameworks to explain demographic dynamics and diversification in species richness gradients. Finally, we review the existence of sequences of adaptive traits in phylogenies, the interactions of adaptive traits and community context, the clinal variation of traits across geographical gradients, and the role of adaptive traits in determining the history of dispersal and diversification of clades. Overall, we show that the study of demographic and evolutionary mechanisms that shape species richness gradients clearly requires the explicit consideration of adaptive traits. To conclude, future research lines and trends in the field are briefly outlined.
Collapse
Affiliation(s)
- Jofre Carnicer
- Community and Conservation Ecology Group, Centre for Life Sciences, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
25
|
Moore AD, Bornberg-Bauer E. The dynamics and evolutionary potential of domain loss and emergence. Mol Biol Evol 2011; 29:787-96. [PMID: 22016574 PMCID: PMC3258042 DOI: 10.1093/molbev/msr250] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The wealth of available genomic data presents an unrivaled opportunity to study the molecular basis of evolution. Studies on gene family expansions and site-dependent analyses have already helped establish important insights into how proteins facilitate adaptation. However, efforts to conduct full-scale cross-genomic comparisons between species are challenged by both growing amounts of data and the inherent difficulty in accurately inferring homology between deeply rooted species. Proteins, in comparison, evolve by means of domain rearrangements, a process more amenable to study given the strength of profile-based homology inference and the lower rates with which rearrangements occur. However, adapting to a constantly changing environment can require molecular modulations beyond reach of rearrangement alone. Here, we explore rates and functional implications of novel domain emergence in contrast to domain gain and loss in 20 arthropod species of the pancrustacean clade. Emerging domains are more likely disordered in structure and spread more rapidly within their genomes than established domains. Furthermore, although domain turnover occurs at lower rates than gene family turnover, we find strong evidence that the emergence of novel domains is foremost associated with environmental adaptation such as abiotic stress response. The results presented here illustrate the simplicity with which domain-based analyses can unravel key players of nature's adaptational machinery, complementing the classical site-based analyses of adaptation.
Collapse
Affiliation(s)
- Andrew D Moore
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of Muenster, Germany
| | | |
Collapse
|
26
|
Markova-Raina P, Petrov D. High sensitivity to aligner and high rate of false positives in the estimates of positive selection in the 12 Drosophila genomes. Genome Res 2011; 21:863-74. [PMID: 21393387 DOI: 10.1101/gr.115949.110] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We investigate the effect of aligner choice on inferences of positive selection using site-specific models of molecular evolution. We find that independently of the choice of aligner, the rate of false positives is unacceptably high. Our study is a whole-genome analysis of all protein-coding genes in 12 Drosophila genomes annotated in either all 12 species (~6690 genes) or in the six melanogaster group species. We compare six popular aligners: PRANK, T-Coffee, ClustalW, ProbCons, AMAP, and MUSCLE, and find that the aligner choice strongly influences the estimates of positive selection. Differences persist when we use (1) different stringency cutoffs, (2) different selection inference models, (3) alignments with or without gaps, and/or additional masking, (4) per-site versus per-gene statistics, (5) closely related melanogaster group species versus more distant 12 Drosophila genomes. Furthermore, we find that these differences are consequential for downstream analyses such as determination of over/under-represented GO terms associated with positive selection. Visual analysis indicates that most sites inferred as positively selected are, in fact, misaligned at the codon level, resulting in false positive rates of 48%-82%. PRANK, which has been reported to outperform other aligners in simulations, performed best in our empirical study as well. Unfortunately, PRANK still had a high, and unacceptable for most applications, false positives rate of 50%-55%. We identify misannotations and indels, many of which appear to be located in disordered protein regions, as primary culprits for the high misalignment-related error levels and discuss possible workaround approaches to this apparently pervasive problem in genome-wide evolutionary analyses.
Collapse
Affiliation(s)
- Penka Markova-Raina
- Department of Biology, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
27
|
Obbard DJ, Jiggins FM, Bradshaw NJ, Little TJ. Recent and recurrent selective sweeps of the antiviral RNAi gene Argonaute-2 in three species of Drosophila. Mol Biol Evol 2010; 28:1043-56. [PMID: 20978039 PMCID: PMC3021790 DOI: 10.1093/molbev/msq280] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antagonistic host–parasite interactions can drive rapid adaptive evolution in genes of the immune system, and such arms races may be an important force shaping polymorphism in the genome. The RNA interference pathway gene Argonaute-2 (AGO2) is a key component of antiviral defense in Drosophila, and we have previously shown that genes in this pathway experience unusually high rates of adaptive substitution. Here we study patterns of genetic variation in a 100-kbp region around AGO2 in three different species of Drosophila. Our data suggest that recent independent selective sweeps in AGO2 have reduced genetic variation across a region of more than 50 kbp in Drosophila melanogaster, D. simulans, and D. yakuba, and we estimate that selection has fixed adaptive substitutions in this gene every 30–100 thousand years. The strongest signal of recent selection is evident in D. simulans, where we estimate that the most recent selective sweep involved an allele with a selective advantage of the order of 0.5–1% and occurred roughly 13–60 Kya. To evaluate the potential consequences of the recent substitutions on the structure and function of AGO2, we used fold-recognition and homology-based modeling to derive a structural model for the Drosophila protein, and this suggests that recent substitutions in D. simulans are overrepresented at the protein surface. In summary, our results show that selection by parasites can consistently target the same genes in multiple species, resulting in areas of the genome that have markedly reduced genetic diversity.
Collapse
Affiliation(s)
- Darren J Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.
| | | | | | | |
Collapse
|
28
|
Abstract
SummaryThe genus Drosophila is diverse and heterogeneous and contains a large number of easy-to-rear species, so it is an attractive subject for comparative studies. The ability to perform such studies is currently compromised by the lack of a comprehensive phylogeny for Drosophila and related genera. The genus Drosophila as currently defined is known to be paraphyletic with respect to several other genera, but considerable uncertainty remains about other aspects of the phylogeny. Here, we estimate a phylogeny for 176 drosophilid (12 genera) and four non-drosophilid species, using gene sequences for up to 13 different genes per species (average: 4333 bp, five genes per species). This is the most extensive set of molecular data on drosophilids yet analysed. Phylogenetic analyses were conducted with maximum-likelihood (ML) and Bayesian approaches. Our analysis confirms that the genus Drosophila is paraphyletic with 100% support in the Bayesian analysis and 90% bootstrap support in the ML analysis. The subgenus Sophophora, which includes Drosophila melanogaster, is the sister clade of all the other subgenera as well as of most species of six other genera. This sister clade contains two large, well-supported subclades. The first subclade contains the Hawaiian Drosophila, the genus Scaptomyza, and the virilis-repleta radiation. The second contains the immigrans-tripunctata radiation as well as the genera Hirtodrosophila (except Hirtodrosophila duncani), Mycodrosophila, Zaprionus and Liodrosophila. We argue that these results support a taxonomic revision of the genus Drosophila.
Collapse
|