1
|
Jiang Y, Chen X, Wang C, Lyu L, Al-Farraj SA, Stover NA, Gao F. Genes and proteins expressed at different life cycle stages in the model protist Euplotes vannus revealed by both transcriptomic and proteomic approaches. SCIENCE CHINA. LIFE SCIENCES 2025; 68:232-248. [PMID: 39276255 DOI: 10.1007/s11427-023-2605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/15/2024] [Indexed: 09/16/2024]
Abstract
Sexual reproduction first appeared in unicellular protists and has continued to be an essential biological process in almost all eukaryotes. Ciliated protists, which contain both germline and somatic genomes within a single cell, have evolved a special form of sexual reproduction called conjugation that involves mitosis, meiosis, fertilization, nuclear differentiation, genome rearrangement, and the development of unique cellular structures. The molecular basis and mechanisms of conjugation vary dramatically among ciliates, and many details of the process and its regulation are still largely unknown. In order to better comprehend these processes and mechanisms from an evolutionary perspective, this study provides the first comprehensive overview of the transcriptome and proteome profiles during the entire life cycle of the newly-established marine model ciliate Euplotes vannus. Transcriptome analyses from 14 life cycle stages (three vegetative stages and 11 sexual stages) revealed over 26,000 genes that are specifically expressed at different stages, many of which are related to DNA replication, transcription, translation, mitosis, meiosis, nuclear differentiation, and/or genome rearrangement. Quantitative proteomic analyses identified 338 proteins with homologs associated with conjugation and/or somatic nuclear development in other ciliates, including dicer-like proteins, Hsp90 proteins, RNA polymerase II and transcription elongation factors, ribosomal-associated proteins, and ubiquitin-related proteins. Four of these homologs belong to the PIWI family, each with different expression patterns identified and confirmed by RT-qPCR, which may function in small RNA-mediated genome rearrangement. Proteins involved in the nonhomologous end-joining pathway are induced early during meiosis and accumulate in the developing new somatic nucleus, where more than 80% of the germline sequences are eliminated from the somatic genome. A number of new candidate genes and proteins likely to play roles in conjugation and its related genome rearrangements have also been revealed. The gene expression profiles reported here will be valuable resources for further studies of the origin and evolution of sexual reproduction in this new model species.
Collapse
Affiliation(s)
- Yaohan Jiang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiao Chen
- Marine College, Shandong University, Weihai, 264209, China
| | - Chundi Wang
- Marine College, Shandong University, Weihai, 264209, China
| | - Liping Lyu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Saleh A Al-Farraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naomi A Stover
- Department of Biology, Bradley University, Peoria, 61625, USA
| | - Feng Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Hagen R, Vitali V, Catania F. Cross-Generational Effects and Non-random Developmental Response to Temperature Variation in Paramecium. Front Cell Dev Biol 2020; 8:584219. [PMID: 33195230 PMCID: PMC7606892 DOI: 10.3389/fcell.2020.584219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Unicellular organisms such as ciliates are largely neglected in research on adaptive developmental plasticity, although their nuclear dualism offers ideal circumstances to study development outside an embryonic context. Here, we gain first insights into the ability of the ciliate Paramecium to develop potentially adaptive phenotypic changes in response to early-life adversity. We show that, upon exposure to unconventional culture temperatures, germ line-to-soma differentiation gives rise to coordinated molecular changes that may help attune the number of functional gene copies to the new external conditions. The non-random somatic heterogeneity that developmental plasticity generates is largely epigenetically controlled, shaped by the parental experience, and may prompt a stress response. These findings establish Paramecium as a new model system to study the molecular basis and evolutionary significance of developmental plasticity. In echoing previous indications in mammals, they call for an incorporation of intergenerational effects in adaptation studies.
Collapse
Affiliation(s)
- Rebecca Hagen
- Department of Biology, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Valerio Vitali
- Department of Biology, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Francesco Catania
- Department of Biology, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Ricci F, Luporini P, Alimenti C, Vallesi A. Functional chimeric genes in ciliates: An instructive case from Euplotes raikovi. Gene 2020; 767:145186. [PMID: 32998045 DOI: 10.1016/j.gene.2020.145186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 11/29/2022]
Abstract
In ciliates, with every sexual event the transcriptionally active genes of the sub-chromosomic somatic genome that resides in the cell macronucleus are lost. They are de novo assembled starting from 'Macronuclear Destined Sequences' that arise from the fragmentation of transcriptionally silent DNA sequences of the germline chromosomic genome enclosed in the cell micronucleus. The RNA-mediated epigenetic mechanism that drives the assembly of these sequences is subject to errors which result in the formation of chimeric genes. Studying a gene family that in Euplotes raikovi controls the synthesis of protein signal pheromones responsible for a self/not-self recognition mechanism, we identified the chimeric structure of an 851-bp macronuclear gene previously known to specify soluble and membrane-bound pheromone molecules through an intron-splicing mechanism. This chimeric gene, designated mac-er-1*, conserved the native pheromone-gene structure throughout its coding and 3' regions. Instead, its 5' region is completely unrelated to the pheromone gene structure at the level of a 360-bp sequence, which derives from the assembly with a MDS destined to compound a 2417-bp gene encoding a 696-amino acid protein with unknown function. This mac-er-1* gene characterization provides further evidence that ciliates rely on functional chimeric genes that originate in non-programmed phenomena of somatic MDS recombination to increase the species genetic variability independently of gene reshuffling phenomena of the germline genome.
Collapse
Affiliation(s)
- Francesca Ricci
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy
| | - Pierangelo Luporini
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy
| | - Claudio Alimenti
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy
| | - Adriana Vallesi
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy.
| |
Collapse
|
4
|
Rearrangement of macronucleus chromosomes correspond to TAD-like structures of micronucleus chromosomes in Tetrahymena thermophila. Genome Res 2020; 30:406-414. [PMID: 32165395 PMCID: PMC7111529 DOI: 10.1101/gr.241687.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 02/25/2020] [Indexed: 12/16/2022]
Abstract
The somatic macronucleus (MAC) and germline micronucleus (MIC) of Tetrahymena thermophila differ in chromosome numbers, sizes, functions, transcriptional activities, and cohesin complex location. However, the higher-order chromatin organization in T. thermophila is still largely unknown. Here, we explored the higher-order chromatin organization in the two distinct nuclei of T. thermophila using the Hi-C and HiChIP methods. We found that the meiotic crescent MIC has a specific chromosome interaction pattern, with all the telomeres or centromeres on the five MIC chromosomes clustering together, respectively, which is also helpful to identify the midpoints of centromeres in the MIC. We revealed that the MAC chromosomes lack A/B compartments, topologically associating domains (TADs), and chromatin loops. The MIC chromosomes have TAD-like structures but not A/B compartments and chromatin loops. The boundaries of the TAD-like structures in the MIC are highly consistent with the chromatin breakage sequence (CBS) sites, suggesting that each TAD-like structure of the MIC chromosomes develops into one MAC chromosome during MAC development, which provides a mechanism of the formation of MAC chromosomes during conjugation. Overall, we demonstrated the distinct higher-order chromatin organization in the two nuclei of the T. thermophila and suggest that the higher-order chromatin structures may play important roles during the development of the MAC chromosomes.
Collapse
|
5
|
Zhao X, Xiong J, Mao F, Sheng Y, Chen X, Feng L, Dui W, Yang W, Kapusta A, Feschotte C, Coyne RS, Miao W, Gao S, Liu Y. RNAi-dependent Polycomb repression controls transposable elements in Tetrahymena. Genes Dev 2019; 33:348-364. [PMID: 30808657 PMCID: PMC6411011 DOI: 10.1101/gad.320796.118] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/02/2019] [Indexed: 12/30/2022]
Abstract
RNAi and Polycomb repression play evolutionarily conserved and often coordinated roles in transcriptional silencing. Here, we show that, in the protozoan Tetrahymena thermophila, germline-specific internally eliminated sequences (IESs)-many related to transposable elements (TEs)-become transcriptionally activated in mutants deficient in the RNAi-dependent Polycomb repression pathway. Germline TE mobilization also dramatically increases in these mutants. The transition from noncoding RNA (ncRNA) to mRNA production accompanies transcriptional activation of TE-related sequences and vice versa for transcriptional silencing. The balance between ncRNA and mRNA production is potentially affected by cotranscriptional processing as well as RNAi and Polycomb repression. We posit that interplay between RNAi and Polycomb repression is a widely conserved phenomenon, whose ancestral role is epigenetic silencing of TEs.
Collapse
Affiliation(s)
- Xiaolu Zhao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fengbiao Mao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yalan Sheng
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Xiao Chen
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Lifang Feng
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Wen Dui
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Wentao Yang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Aurélie Kapusta
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Robert S Coyne
- J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shan Gao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
6
|
Ludewig-Klingner AK, Michael V, Jarek M, Brinkmann H, Petersen J. Distribution and Evolution of Peroxisomes in Alveolates (Apicomplexa, Dinoflagellates, Ciliates). Genome Biol Evol 2018; 10:1-13. [PMID: 29202176 PMCID: PMC5755239 DOI: 10.1093/gbe/evx250] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
The peroxisome was the last organelle to be discovered and five decades later it is still the Cinderella of eukaryotic compartments. Peroxisomes have a crucial role in the detoxification of reactive oxygen species, the beta-oxidation of fatty acids, and the biosynthesis of etherphospholipids, and they are assumed to be present in virtually all aerobic eukaryotes. Apicomplexan parasites including the malaria and toxoplasmosis agents were described as the first group of mitochondriate protists devoid of peroxisomes. This study was initiated to reassess the distribution and evolution of peroxisomes in the superensemble Alveolata (apicomplexans, dinoflagellates, ciliates). We established transcriptome data from two chromerid algae (Chromera velia, Vitrella brassicaformis), and two dinoflagellates (Prorocentrum minimum, Perkinsus olseni) and identified the complete set of essential peroxins in all four reference species. Our comparative genome analysis provides unequivocal evidence for the presence of peroxisomes in Toxoplasma gondii and related genera. Our working hypothesis of a common peroxisomal origin of all alveolates is supported by phylogenetic analyses of essential markers such as the import receptor Pex5. Vitrella harbors the most comprehensive set of peroxisomal proteins including the catalase and the glyoxylate cycle and it is thus a promising model organism to investigate the functional role of this organelle in Apicomplexa.
Collapse
Affiliation(s)
- Ann-Kathrin Ludewig-Klingner
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Protists and Cyanobacteria (PuC), Braunschweig, Germany
| | - Victoria Michael
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Protists and Cyanobacteria (PuC), Braunschweig, Germany
| | - Michael Jarek
- Helmholtz-Centre for Infection Research (HZI), Group of Genome Analytics, Braunschweig, Germany
| | - Henner Brinkmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Protists and Cyanobacteria (PuC), Braunschweig, Germany
| | - Jörn Petersen
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Protists and Cyanobacteria (PuC), Braunschweig, Germany
| |
Collapse
|
7
|
Wang Y, Wang Y, Sheng Y, Huang J, Chen X, AL-Rasheid KA, Gao S. A comparative study of genome organization and epigenetic mechanisms in model ciliates, with an emphasis on Tetrahymena , Paramecium and Oxytricha. Eur J Protistol 2017; 61:376-387. [DOI: 10.1016/j.ejop.2017.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
|
8
|
Hamilton EP, Kapusta A, Huvos PE, Bidwell SL, Zafar N, Tang H, Hadjithomas M, Krishnakumar V, Badger JH, Caler EV, Russ C, Zeng Q, Fan L, Levin JZ, Shea T, Young SK, Hegarty R, Daza R, Gujja S, Wortman JR, Birren BW, Nusbaum C, Thomas J, Carey CM, Pritham EJ, Feschotte C, Noto T, Mochizuki K, Papazyan R, Taverna SD, Dear PH, Cassidy-Hanley DM, Xiong J, Miao W, Orias E, Coyne RS. Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. eLife 2016; 5. [PMID: 27892853 PMCID: PMC5182062 DOI: 10.7554/elife.19090] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/14/2016] [Indexed: 12/30/2022] Open
Abstract
The germline genome of the binucleated ciliate Tetrahymena thermophila undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped Tetrahymena chromosome structure, locally and globally. Non-standard outcomes of rearrangement events, including the generation of short-lived somatic chromosomes and excision of DNA interrupting protein-coding regions, may represent novel forms of developmental gene regulation. We also compare Tetrahymena's germline/soma differentiation to that of other characterized ciliates, illustrating the wide diversity of adaptations that have occurred within this phylum.
Collapse
Affiliation(s)
- Eileen P Hamilton
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Aurélie Kapusta
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Piroska E Huvos
- Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, United States
| | | | - Nikhat Zafar
- J. Craig Venter Institute, Rockville, United States
| | - Haibao Tang
- J. Craig Venter Institute, Rockville, United States
| | | | | | | | | | - Carsten Russ
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Qiandong Zeng
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Lin Fan
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Joshua Z Levin
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Terrance Shea
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Sarah K Young
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Ryan Hegarty
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Riza Daza
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Sharvari Gujja
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Jennifer R Wortman
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Bruce W Birren
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Chad Nusbaum
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Jainy Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Clayton M Carey
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Tomoko Noto
- Institute of Molecular Biotechnology, Vienna, Austria
| | | | - Romeo Papazyan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Sean D Taverna
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Paul H Dear
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Jie Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Miao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | | |
Collapse
|
9
|
SUMOylation is developmentally regulated and required for cell pairing during conjugation in Tetrahymena thermophila. EUKARYOTIC CELL 2014; 14:170-81. [PMID: 25527524 DOI: 10.1128/ec.00252-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The covalent attachment of small ubiquitin-like modifier (SUMO) to target proteins regulates numerous nuclear events in eukaryotes, including transcription, mitosis and meiosis, and DNA repair. Despite extensive interest in nuclear pathways within the field of ciliate molecular biology, there have been no investigations of the SUMO pathway in Tetrahymena. The developmental program of sexual reproduction of this organism includes cell pairing, micronuclear meiosis, and the formation of a new somatic macronucleus. We identified the Tetrahymena thermophila SMT3 (SUMO) and UBA2 (SUMO-activating enzyme) genes and demonstrated that the corresponding green fluorescent protein (GFP) tagged gene products are found predominantly in the somatic macronucleus during vegetative growth. Use of an anti-Smt3p antibody to perform immunoblot assays with whole-cell lysates during conjugation revealed a large increase in SUMOylation that peaked during formation of the new macronucleus. Immunofluorescence using the same antibody showed that the increase was localized primarily within the new macronucleus. To initiate functional analysis of the SUMO pathway, we created germ line knockout cell lines for both the SMT3 and UBA2 genes and found both are essential for cell viability. Conditional Smt3p and Uba2p cell lines were constructed by incorporation of the cadmium-inducible metallothionein promoter. Withdrawal of cadmium resulted in reduced cell growth and increased sensitivity to DNA-damaging agents. Interestingly, Smt3p and Uba2p conditional cell lines were unable to pair during sexual reproduction in the absence of cadmium, consistent with a function early in conjugation. Our studies are consistent with multiple roles for SUMOylation in Tetrahymena, including a dynamic regulation associated with the sexual life cycle.
Collapse
|
10
|
Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development. BMC Genomics 2014; 15:186. [PMID: 24618421 PMCID: PMC4029161 DOI: 10.1186/1471-2164-15-186] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/03/2014] [Indexed: 12/15/2022] Open
Abstract
Background Chromatin diminution is the programmed deletion of DNA from presomatic cell or nuclear lineages during development, producing single organisms that contain two different nuclear genomes. Phylogenetically diverse taxa undergo chromatin diminution — some ciliates, nematodes, copepods, and vertebrates. In cyclopoid copepods, chromatin diminution occurs in taxa with massively expanded germline genomes; depending on species, germline genome sizes range from 15 – 75 Gb, 12–74 Gb of which are lost from pre-somatic cell lineages at germline – soma differentiation. This is more than an order of magnitude more sequence than is lost from other taxa. To date, the sequences excised from copepods have not been analyzed using large-scale genomic datasets, and the processes underlying germline genomic gigantism in this clade, as well as the functional significance of chromatin diminution, have remained unknown. Results Here, we used high-throughput genomic sequencing and qPCR to characterize the germline and somatic genomes of Mesocyclops edax, a freshwater cyclopoid copepod with a germline genome of ~15 Gb and a somatic genome of ~3 Gb. We show that most of the excised DNA consists of repetitive sequences that are either 1) verifiable transposable elements (TEs), or 2) non-simple repeats of likely TE origin. Repeat elements in both genomes are skewed towards younger (i.e. less divergent) elements. Excised DNA is a non-random sample of the germline repeat element landscape; younger elements, and high frequency DNA transposons and LINEs, are disproportionately eliminated from the somatic genome. Conclusions Our results suggest that germline genome expansion in M. edax reflects explosive repeat element proliferation, and that billions of base pairs of such repeats are deleted from the somatic genome every generation. Thus, we hypothesize that chromatin diminution is a mechanism that controls repeat element load, and that this load can evolve to be divergent between tissue types within single organisms.
Collapse
|
11
|
Abstract
Research using ciliates revealed early examples of epigenetic phenomena and continues to provide novel findings. These protozoans maintain separate germline and somatic nuclei that carry transcriptionally silent and active genomes, respectively. Examining the differences in chromatin within distinct nuclei of Tetrahymena identified histone variants and established that transcriptional regulators act by modifying histones. Formation of somatic nuclei requires both transcriptional activation of silent chromatin and large-scale DNA elimination. This somatic genome remodeling is directed by homologous RNAs, acting with an RNA interference (RNAi)-related machinery. Furthermore, the content of the parental somatic genome provides a homologous template to guide this genome restructuring. The mechanisms regulating ciliate DNA rearrangements reveal the surprising power of homologous RNAs to remodel the genome and transmit information transgenerationally.
Collapse
Affiliation(s)
- Douglas L Chalker
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | | |
Collapse
|
12
|
Morgens DW, Lindbergh KM, Adachi M, Radunskaya A, Cavalcanti ARO. A model for the evolution of extremely fragmented macronuclei in ciliates. PLoS One 2013; 8:e64997. [PMID: 23705024 PMCID: PMC3660376 DOI: 10.1371/journal.pone.0064997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 04/22/2013] [Indexed: 11/19/2022] Open
Abstract
While all ciliates possess nuclear dimorphism, several ciliates - like those in the classes Phyllopharyngea, Spirotrichea, and Armophorea - have an extreme macronuclear organization. Their extensively fragmented macronuclei contain upwards of 20,000 chromosomes, each with upwards of thousands of copies. These features have evolved independently on multiple occasions throughout ciliate evolutionary history, and currently no models explain these structures in an evolutionary context. In this paper, we propose that competition between two forces - the limitation and avoidance of chromosomal imbalances as a ciliate undergoes successive asexual divisions, and the costs of replicating massive genomes - is sufficient to explain this particular nuclear structure. We present a simulation of ciliate cell evolution under control of these forces, allowing certain features of the population to change over time. Over a wide range of parameters, we observe the repeated emergence of this unusual genomic organization found in nature. Although much remains to be understood about the evolution of macronuclear genome organization, our results show that the proposed model is a plausible explanation for the emergence of these extremely fragmented, highly polyploid genomes.
Collapse
Affiliation(s)
- David W. Morgens
- Department of Biology, Pomona College, Claremont, California, United States of America
- Department of Mathematics, Pomona College, Claremont, California, United States of America
| | - Kristen M. Lindbergh
- Department of Biology, Pomona College, Claremont, California, United States of America
- Department of Mathematics, Pomona College, Claremont, California, United States of America
| | - Marie Adachi
- Department of Biology, Pomona College, Claremont, California, United States of America
- Department of Mathematics, Pomona College, Claremont, California, United States of America
| | - Ami Radunskaya
- Department of Mathematics, Pomona College, Claremont, California, United States of America
| | | |
Collapse
|
13
|
Transposon Invasion of the Paramecium Germline Genome Countered by a Domesticated PiggyBac Transposase and the NHEJ Pathway. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:436196. [PMID: 22888464 PMCID: PMC3408717 DOI: 10.1155/2012/436196] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/07/2012] [Indexed: 12/15/2022]
Abstract
Sequences related to transposons constitute a large fraction of extant genomes, but insertions within coding sequences have generally not been tolerated during evolution. Thanks to their unique nuclear dimorphism and to their original mechanism of programmed DNA elimination from their somatic nucleus (macronucleus), ciliates are emerging model organisms for the study of the impact of transposable elements on genomes. The germline genome of the ciliate Paramecium, located in its micronucleus, contains thousands of short intervening sequences, the IESs, which interrupt 47% of genes. Recent data provided support to the hypothesis that an evolutionary link exists between Paramecium IESs and Tc1/mariner transposons. During development of the macronucleus, IESs are excised precisely thanks to the coordinated action of PiggyMac, a domesticated piggyBac transposase, and of the NHEJ double-strand break repair pathway. A PiggyMac homolog is also required for developmentally programmed DNA elimination in another ciliate, Tetrahymena. Here, we present an overview of the life cycle of these unicellular eukaryotes and of the developmentally programmed genome rearrangements that take place at each sexual cycle. We discuss how ancient domestication of a piggyBac transposase might have allowed Tc1/mariner elements to spread throughout the germline genome of Paramecium, without strong counterselection against insertion within genes.
Collapse
|
14
|
Song X, Bowen J, Miao W, Liu Y, Gorovsky MA. The nonhistone, N-terminal tail of an essential, chimeric H2A variant regulates mitotic H3-S10 dephosphorylation. Genes Dev 2012; 26:615-29. [PMID: 22426537 PMCID: PMC3315122 DOI: 10.1101/gad.182683.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 02/06/2012] [Indexed: 12/21/2022]
Abstract
H2A.Y is an essential, divergent Tetrahymena thermophila histone variant. It has a long nonhistone N terminus that contains leucine-rich repeats (LRR) and an LRR cap domain with similarity to Sds22p, a regulator of yeast protein phosphatase 1 (PP1) activity in the nucleus. In growing cells, H2A.Y is incorporated into micronuclei only during S phase, which occurs immediately after micronuclear mitosis. Depletion of H2A.Y causes prolonged retention of mitosis-associated histone H3-S10 phosphorylation and mitotic abnormalities that mimic S10E mutation. In cells where H2A.Y is depleted, an inducible chimeric gene, in which the H2A.Y N terminus is attached to H2A.X, is shown to regulate micronuclear H3-S10 phosphorylation. H2A.Y can also be specifically coimmunoprecipitated with a Tetrahymena PP1 ortholog (Ppo1p). Taken together, these results argue that the N terminus of H2A.Y functions to regulate H3-S10 dephosphorylation. This striking in vivo case of "cross-talk" between a H2A variant and a specific post-translational modification of another histone demonstrates a novel function for a histone variant.
Collapse
Affiliation(s)
- Xiaoyuan Song
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Josephine Bowen
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Wei Miao
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Yifan Liu
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Martin A. Gorovsky
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
15
|
|
16
|
Abstract
The genetic code has received a great amount of attention from investigators, and the media since its discovery, and then again with the sequencing of the human genome in 2000. A decade later, investigators are beginning to look beyond the raw sequence to other mechanisms that affect gene expression. The main function of the nucleus is to maintain the genome and regulate gene expression. Changes in the expression of genes can drastically change the properties of the cell therefore giving the nucleus a role as the cell's "command post." In the past few years, one of the most notable discoveries in the study of the nucleus is that this organelle is not homogeneous. It is also not randomly organized; everything within the nucleus has a specific location with a specific function. Chromosome location within the nucleus relative to its center is directly related to transcription level. Additionally, there are specific regions of the nucleus where content and function differ. The various structures of the nucleus such as the membranes and matrix that supply support to the well protected chromatin offer ever increasing layers of complexity to the nucleus. Here, we focus on the nuclear matrix and its possible effects on signaling and cellular transformation leading to cancer.
Collapse
Affiliation(s)
- Amanda L Rynearson
- Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
17
|
On the nature of species: insights from Paramecium and other ciliates. Genetica 2011; 139:677-84. [PMID: 21505762 DOI: 10.1007/s10709-011-9571-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
Abstract
The multiple species concepts currently in use by the scientific community (e.g. Morphological, Biological, Phylogenetic) are united in that they all aim to capture the process of divergence between populations. For example, the Biological Species Concept defines a species as a natural group of organisms that is reproductively isolated from other such groups. Here we synthesize nearly a century of research on the ciliate genus Paramecium that highlights the shortcomings of our prevailing notions on the nature of species. In this lineage, there is discordance between morphology, mating behavior, and genetics, features assumed to be correlated, at least after sufficient time has passed, under all species concepts. Intriguingly, epigenetic phenomena are well documented in ciliates where they influence features such as germline/soma differentiation and mating type determination. Consequently, we hypothesize that divergence within ciliate populations is due to a dynamic interaction between genetic and epigenetic factors. The growing list of examples of epigenetic phenomena that potentially impact speciation (i.e. by influencing the dynamics of sex chromosomes, fate of hybrids, zygotic drive and genomic conflicts) suggests that interactions between genetics and epigenetics may also drive divergence in other eukaryotic lineages.
Collapse
|
18
|
|
19
|
Nishiyama N, Mikami K, Matsuoka A, Ochiai T, Yamauchi K. Extreme heterogeneous composition of the Paramecium caudatum macronuclear genomic DNA between hemoglobin and nucleosome assembly protein-1 genes. Genes Genet Syst 2010; 85:9-17. [PMID: 20410661 DOI: 10.1266/ggs.85.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The intergenic region between the hemoglobin (hb) and nucleosome assembly protein-1 (nap-1) genes in the Paramecium caudatum macronuclear genome was previously found to be heterogeneously composed. Cloning of this intergenic region from the macronuclear genomic DNA identified four unique DNA fragments of different sizes. Sequencing of the cloned fragments revealed extreme heterogeneity and characteristics of both internal eliminated sequence (IES) and imprecise internal deletion sequences (IIDSs) in the intergenic region. Missing sequences were an AT-rich and direct repeats existed in their boundaries. Southern blotting of the total genomic DNA and polymerase chain reaction (PCR) of the total genomic DNAs indicated that there exist a dozen DNA fragments of different sizes in this intergenic region. It is likely that the heterogeneity found in the P. caudatum macronuclear genome results from the variable removal of an intergenic region.
Collapse
Affiliation(s)
- Norihito Nishiyama
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | | | | | | | | |
Collapse
|
20
|
Cheng CY, Vogt A, Mochizuki K, Yao MC. A domesticated piggyBac transposase plays key roles in heterochromatin dynamics and DNA cleavage during programmed DNA deletion in Tetrahymena thermophila. Mol Biol Cell 2010; 21:1753-62. [PMID: 20357003 PMCID: PMC2869380 DOI: 10.1091/mbc.e09-12-1079] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study suggests that a TPB2 piggyBac transposase has evolved to facilitate heterochromatin assembly and carry out the final DNA excision step of programmed DNA deletion in Tetrahymena thermophila. TPB2 appears to have gone through a domestication process to become a host gene and be maintained in the macronuclear genome. Transposons comprise large fractions of eukaryotic genomes and provide genetic reservoirs for the evolution of new cellular functions. We identified TPB2, a homolog of the piggyBac transposase gene that is required for programmed DNA deletion in Tetrahymena. TPB2 was expressed exclusively during the time of DNA excision, and its encoded protein Tpb2p was localized in DNA elimination heterochromatin structures. Notably, silencing of TPB2 by RNAi disrupts the final assembly of these heterochromatin structures and prevents DNA deletion to occur. In vitro studies revealed that Tpb2p is an endonuclease that produces double-strand breaks with four-base 5′ protruding ends, similar to the ends generated during DNA deletion. These findings suggest that Tpb2p plays a key role in the assembly of specialized DNA elimination chromatin architectures and is likely responsible for the DNA cleavage step of programmed DNA deletion.
Collapse
Affiliation(s)
- Chao-Yin Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | |
Collapse
|
21
|
Abstract
Transposons populate the landscape of all eukaryotic genomes. Often considered purely genomic parasites, transposons can also benefit their hosts, playing roles in gene regulation and in genome organization and evolution. Peaceful coexistence with mobile elements depends upon adaptive control mechanisms, since unchecked transposon activity can impact long-term fitness and acutely reduce the fertility of progeny. Here, we review the conserved roles played by small RNAs in the adaptation of eukaryotes to coexist with their genomic colonists. An understanding of transposon-defense pathways has uncovered recurring themes in the mechanisms by which genomes distinguish "self" from "non-self" and selectively silence the latter.
Collapse
Affiliation(s)
- Colin D Malone
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
22
|
Coyne RS, Thiagarajan M, Jones KM, Wortman JR, Tallon LJ, Haas BJ, Cassidy-Hanley DM, Wiley EA, Smith JJ, Collins K, Lee SR, Couvillion MT, Liu Y, Garg J, Pearlman RE, Hamilton EP, Orias E, Eisen JA, Methé BA. Refined annotation and assembly of the Tetrahymena thermophila genome sequence through EST analysis, comparative genomic hybridization, and targeted gap closure. BMC Genomics 2008; 9:562. [PMID: 19036158 PMCID: PMC2612030 DOI: 10.1186/1471-2164-9-562] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 11/26/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tetrahymena thermophila, a widely studied model for cellular and molecular biology, is a binucleated single-celled organism with a germline micronucleus (MIC) and somatic macronucleus (MAC). The recent draft MAC genome assembly revealed low sequence repetitiveness, a result of the epigenetic removal of invasive DNA elements found only in the MIC genome. Such low repetitiveness makes complete closure of the MAC genome a feasible goal, which to achieve would require standard closure methods as well as removal of minor MIC contamination of the MAC genome assembly. Highly accurate preliminary annotation of Tetrahymena's coding potential was hindered by the lack of both comparative genomic sequence information from close relatives and significant amounts of cDNA evidence, thus limiting the value of the genomic information and also leaving unanswered certain questions, such as the frequency of alternative splicing. RESULTS We addressed the problem of MIC contamination using comparative genomic hybridization with purified MIC and MAC DNA probes against a whole genome oligonucleotide microarray, allowing the identification of 763 genome scaffolds likely to contain MIC-limited DNA sequences. We also employed standard genome closure methods to essentially finish over 60% of the MAC genome. For the improvement of annotation, we have sequenced and analyzed over 60,000 verified EST reads from a variety of cellular growth and development conditions. Using this EST evidence, a combination of automated and manual reannotation efforts led to updates that affect 16% of the current protein-coding gene models. By comparing EST abundance, many genes showing apparent differential expression between these conditions were identified. Rare instances of alternative splicing and uses of the non-standard amino acid selenocysteine were also identified. CONCLUSION We report here significant progress in genome closure and reannotation of Tetrahymena thermophila. Our experience to date suggests that complete closure of the MAC genome is attainable. Using the new EST evidence, automated and manual curation has resulted in substantial improvements to the over 24,000 gene models, which will be valuable to researchers studying this model organism as well as for comparative genomics purposes.
Collapse
Affiliation(s)
- Robert S Coyne
- J. Craig Venter Institute (formerly The Institute for Genomic Research), 9704 Medical Center Dr., Rockville, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zufall RA, Katz LA. Micronuclear and macronuclear forms of beta-tubulin genes in the ciliate Chilodonella uncinata reveal insights into genome processing and protein evolution. J Eukaryot Microbiol 2007; 54:275-82. [PMID: 17552983 DOI: 10.1111/j.1550-7408.2007.00267.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chilodonella uncinata, like all ciliates, contains two distinct nuclei in every cell: a germline micronucleus and a somatic macronucleus. During development of the macronucleus from a zygotic nucleus, the genome is processed in several ways, including elimination of internal sequences. In this study, we analyze micronuclear and macronuclear copies of beta-tubulin in C. uncinata and find at least four divergent paralogs of beta-tubulin in the macronucleus. We characterize the micronuclear version of one paralog and compare its internally eliminated sequences (IESs) with previously described IESs in this species. These comparisons reveal the presence of a conserved sequence motif within IESs. In addition, we compare the sequences of beta-tubulin from C. uncinata with other ciliates and to other alveolates in order to test the hypothesis that the mode of molecular evolution in ciliates obscures phylogenetic signal in protein-coding genes. We find that heterogeneous rates of substitution in beta-tubulin across ciliates result in unstable genealogies that are inconsistent with phylogenies based on small subunit rDNA genes and on ultrastructure. We discuss the implications of our findings for genome processing and protein evolution in ciliates.
Collapse
Affiliation(s)
- Rebecca A Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA.
| | | |
Collapse
|
24
|
Liu Y, Taverna SD, Muratore TL, Shabanowitz J, Hunt DF, Allis CD. RNAi-dependent H3K27 methylation is required for heterochromatin formation and DNA elimination in Tetrahymena. Genes Dev 2007; 21:1530-45. [PMID: 17575054 PMCID: PMC1891430 DOI: 10.1101/gad.1544207] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 05/01/2007] [Indexed: 01/17/2023]
Abstract
Methylated H3K27 is an important mark for Polycomb group (PcG) protein-mediated transcriptional gene silencing (TGS) in multicellular eukaryotes. Here a Drosophila E(z) homolog, EZL1, is characterized in the ciliated protozoan Tetrahymena thermophila and is shown to be responsible for H3K27 methylation associated with developmentally regulated heterochromatin formation and DNA elimination. Importantly, Ezl1p-catalyzed H3K27 methylation occurs in an RNA interference (RNAi)-dependent manner. H3K27 methylation also regulates H3K9 methylation in these processes. Furthermore, an "effector" of programmed DNA elimination, the chromodomain protein Pdd1p, is shown to bind both K27- and K9-methylated H3. These studies provide a framework for an RNAi-dependent, Polycomb group protein-mediated heterochromatin formation pathway in Tetrahymena and underscore the connection between the two highly conserved machineries in eukaryotes.
Collapse
Affiliation(s)
- Yifan Liu
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | - Sean D. Taverna
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | - Tara L. Muratore
- Department of Chemistry, University of Virginia, Charlottesville, Virgina 22904, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virgina 22904, USA
| | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virgina 22904, USA
- Department of Pathology, Health Science Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | - C. David Allis
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| |
Collapse
|
25
|
Fillingham JS, Garg J, Tsao N, Vythilingum N, Nishikawa T, Pearlman RE. Molecular genetic analysis of an SNF2/brahma-related gene in Tetrahymena thermophila suggests roles in growth and nuclear development. EUKARYOTIC CELL 2007; 5:1347-59. [PMID: 16896218 PMCID: PMC1539136 DOI: 10.1128/ec.00149-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used a reverse genetic approach to identify three members of the SNF2 superfamily of chromatin remodeling genes in the ciliated protozoan Tetrahymena thermophila in order to investigate possible functions of ATP-dependent chromatin remodeling factors in growth and nuclear development. Comparative sequence analysis of the gene product of the Tetrahymena brahma-related gene (TtBRG1) indicates it is a member of the SNF2/BRM subgroup of the SNF2 superfamily. Northern analysis suggests that TtBRG1 has roles in growth and nuclear development in Tetrahymena. Indirect immunofluorescence analysis during nuclear development indicates that TtBrg1p localizes to both the parental and developing macronucleus of Tetrahymena during the time period corresponding to genome rearrangements. We generated germ line knockout heterokaryons for TtBRG1 and demonstrated that expression of the gene is required to complete nuclear development of Tetrahymena. In addition, the formation of distinct Pdd1p-containing structures is disturbed during the late stages of conjugation in TtBRG1 germ line knockout heterokaryons. We discuss these results in light of possible roles of SNF2-related proteins in growth and nuclear development of Tetrahymena.
Collapse
Affiliation(s)
- Jeffrey S Fillingham
- Department of Biology, York University, 4700 Keele St, Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | | | |
Collapse
|
26
|
Juranek SA, Lipps HJ. New Insights into the Macronuclear Development in Ciliates. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 262:219-51. [PMID: 17631190 DOI: 10.1016/s0074-7696(07)62005-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During macronuclear differentiation in ciliated protozoa, most amazing "DNA gymnastics" takes place, which includes DNA excision, DNA elimination, DNA reorganization, and DNA-specific amplification. Although the morphological events occurring during macronuclear development are well described, a detailed knowledge of the molecular mechanisms and the regulation of this differentiation process is still missing. However, recently several models have been proposed for the molecular regulation of macronuclear differentiation, but these models have yet to be verified experimentally. The scope of this review is to summarize recent discoveries in different ciliate species and to compare and discuss the different models proposed. Results obtained in these studies are not only relevant for our understanding of nuclear differentiation in ciliates, but also for cellular differentiation in eukaryotic organisms in general as well as for other disciplines such as bioinformatics and computational biology.
Collapse
Affiliation(s)
- Stefan A Juranek
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
27
|
Hamilton EP, Williamson S, Dunn S, Merriam V, Lin C, Vong L, Russell-Colantonio J, Orias E. The highly conserved family of Tetrahymena thermophila chromosome breakage elements contains an invariant 10-base-pair core. EUKARYOTIC CELL 2006; 5:771-80. [PMID: 16607024 PMCID: PMC1459666 DOI: 10.1128/ec.5.4.771-780.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a typical ciliate, Tetrahymena thermophila is a unicellular eukaryote that exhibits nuclear dimorphism: each cell contains a diploid, germ line micronucleus (MICN) and a polyploid, somatic macronucleus (MACN). During conjugation, when a new MACN differentiates from a mitotic descendant of the diploid fertilization nucleus, the five MICN chromosomes are site-specifically fragmented into 250 to 300 MACN chromosomes. The classic chromosome breakage sequence (CBS) is a 15-bp element (TAAACCAACCTCTTT) reported to be necessary and sufficient for chromosome breakage. To determine whether a CBS is present at every site of chromosome fragmentation and to assess the range of sequence variation tolerated, 31 CBSs were isolated without preconception as to the sequence of the chromosome breakage element. Additional CBS-related sequences were identified in the whole-genome sequence by their similarities to the classic CBS. Forty CBS elements behaved as authentic chromosome breakage sites. The CBS nucleotide sequence is more diverse than previously thought: nearly half of the CBS elements identified by unbiased methods have a variant of the classic CBS. Only an internal 10-bp core is completely conserved, but the entire 15-bp chromosome breakage sequence shows significant sequence conservation. Our results suggest that any one member of the CBS family provides a necessary and sufficient cis element for chromosome breakage. No chromosome breakage element totally unrelated to the classic CBS element was found; such elements, if they exist at all, must be rare.
Collapse
Affiliation(s)
- Eileen P Hamilton
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Howard-Till RA, Yao MC. Induction of gene silencing by hairpin RNA expression in Tetrahymena thermophila reveals a second small RNA pathway. Mol Cell Biol 2006; 26:8731-42. [PMID: 17000759 PMCID: PMC1636817 DOI: 10.1128/mcb.01430-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unlike in other eukaryotes, in which it causes gene silencing, RNA interference (RNAi) has been linked to programmed DNA deletion in the ciliate Tetrahymena thermophila. Here we have developed an efficient method to inducibly express double-stranded RNA hairpins and demonstrated that they cause gene silencing through targeted mRNA degradation in all phases of the life cycle, including growth, starvation, and mating. This technique offers a new tool for gene silencing in this model organism. Induction of RNA hairpins causes dramatic upregulation of Dicer and Argonaute family genes, revealing a system capable of rapidly responding to double-stranded RNA. These hairpins are processed into 23- to 24-nucleotide (nt) small RNAs, which are distinctly different from the 28- to 30-nt small RNAs known to be associated with DNA deletion. Thus, two different small RNA pathways appear to be responsible for gene silencing and DNA deletion. Surprisingly, expression of the RNA hairpin also causes targeted DNA deletion during conjugation, although at low efficiencies, which suggests a possible crossover of these two molecular paths.
Collapse
Affiliation(s)
- Rachel A Howard-Till
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., Seattle, WA 98109, USA
| | | |
Collapse
|
29
|
Hamilton EP, Dear PH, Rowland T, Saks K, Eisen JA, Orias E. Use of HAPPY mapping for the higher order assembly of the Tetrahymena genome. Genomics 2006; 88:443-51. [PMID: 16782302 PMCID: PMC3169840 DOI: 10.1016/j.ygeno.2006.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 05/05/2006] [Accepted: 05/06/2006] [Indexed: 10/24/2022]
Abstract
Tetrahymena thermophila is the best studied of the ciliates, a diversified and successful lineage of eukaryotic protists. Mirroring the way in which many metazoans partition their germ line and soma into distinct cell types, ciliates separate germ line and soma into two distinct nuclei in a single cell. The diploid, transcriptionally silent micronucleus undergoes meiosis and fertilization during sexual reproduction and determines the genotype of the progeny; in contrast, the expressed macronucleus contains many copies of hundreds of small chromosomes, determines the cell's phenotype, and is inherited only through vegetative reproduction. Here we demonstrate the power of HAPPY physical mapping to aid the complete assembly of T. thermophila macronuclear chromosomes from shotgun sequence scaffolds. The finished genome, one of only two ciliate genomes shotgun sequenced, will shed valuable additional light upon the biology of this extraordinary, diverse, and, from a genomics standpoint, as yet largely unexplored evolutionary branch of eukaryotes.
Collapse
Affiliation(s)
- Eileen P Hamilton
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Yao MC, Chao JL. RNA-guided DNA deletion in Tetrahymena: an RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 2006; 39:537-59. [PMID: 16285871 DOI: 10.1146/annurev.genet.39.073003.095906] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ciliated protozoan are unicellular eukaryotes. Most species in this diverse group display nuclear dualism, a special feature that supports both somatic and germline nuclei in the same cell. Probably due to this unique life style, they exhibit unusual nuclear characteristics that have intrigued researchers for decades. Among them are large-scale DNA rearrangements, which restructure the somatic genome to become drastically different from its germline origin. They resemble the classical phenomenon of chromatin diminution in some nematodes discovered more than a century ago. The mechanisms of such rearrangements, their biological roles, and their evolutionary origins have been difficult to understand. Recent studies have revealed a clear link to RNA interference, and begin to shed light on these issues. Using the simple ciliate Tetrahymena as a model, this chapter summarizes the physical characterization of these processes, describes recent findings that connect them to RNA interference, and discusses the details of their mechanisms, potential roles in genome defense, and possible occurrences in other organisms.
Collapse
Affiliation(s)
- Meng-Chao Yao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China.
| | | |
Collapse
|
31
|
Liu Y, Song X, Gorovsky MA, Karrer KM. Elimination of foreign DNA during somatic differentiation in Tetrahymena thermophila shows position effect and is dosage dependent. EUKARYOTIC CELL 2005; 4:421-31. [PMID: 15701804 PMCID: PMC549336 DOI: 10.1128/ec.4.2.421-431.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the ciliate Tetrahymena thermophila, approximately 15% of the germ line micronuclear DNA sequences are eliminated during formation of the somatic macronucleus. The vast majority of the internal eliminated sequences (IESs) are repeated in the micronuclear genome, and several of them resemble transposable elements. Thus, it has been suggested that DNA elimination evolved as a means for removing invading DNAs. In the present study, bacterial neo genes introduced into the germ line micronuclei were eliminated from the somatic genome. The efficiency of elimination from two different loci increased dramatically with the copy number of the neo genes in the micronuclei. The timing of neo elimination is similar to that of endogenous IESs, and they both produce bidirectional transcripts of the eliminated element, suggesting that the deletion of neo occurred by the same mechanism as elimination of endogenous IESs. These results indicate that repetition of an element in the micronucleus enhances the efficiency of its elimination from the newly formed somatic genome of Tetrahymena thermophila. The implications of these data in relation to the function and mechanism of IES elimination are discussed.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Biology, University of Rochester, Rochester, New York, USA
| | | | | | | |
Collapse
|
32
|
Abstract
In the universe of science, two worlds have recently collided-those of RNA and chromatin. The intersection of these two fields has been impending, but evidence for such a meaningful collision has only recently become apparent. In this review, we discuss the implications for noncoding RNAs and the formation of specialized chromatin domains in various epigenetic processes as diverse as dosage compensation, RNA interference-mediated heterochromatin assembly and gene silencing, and programmed DNA elimination. While mechanistic details as to how the RNA and chromatin worlds connect remain unclear, intriguing parallels exist in the overall design and machinery used in model organisms from all eukaryotic kingdoms. The role of potential RNA-binding chromatin-associated proteins will be discussed as one possible link between RNA and chromatin.
Collapse
Affiliation(s)
- Emily Bernstein
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
33
|
de La Roche Saint-André C. Tails and cuts: the role of histone post-translational modifications in the formation of programmed double-strand breaks. Biochimie 2005; 87:603-12. [PMID: 15989977 DOI: 10.1016/j.biochi.2004.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Accepted: 11/26/2004] [Indexed: 11/18/2022]
Abstract
In eukaryotic organisms, various DNA recombination mechanisms have been described that are an integral part of nuclear differentiation processes. In several places, the recombination is initiated by one or more double-strand breaks that result from the action of specific endonucleolytic activities. The importance of chromatin in controlling susceptibility of DNA to various DNA transactions has been recognized for long. Recent literature links post-transcriptional modifications of the amino-terminal part of histones (the tails) to the formation of developmentally regulated DNA double-strand break (the cuts). In this review, I compare the existing data in three different DNA rearrangement-based processes, i.e., genetic recombination associated to meiosis, lymphoid-specific V(D)J recombination and excision of DNA fragments in the nucleus of ciliates. Inspired by some of the concepts established in the field of transcription, models are proposed for molecular mechanisms that sustain the epigenetic control of programmed double-strand break formation.
Collapse
|
34
|
Nolan T, Cogoni C. The long hand of the small RNAs reaches into several levels of gene regulation. Biochem Cell Biol 2005; 82:472-81. [PMID: 15284900 DOI: 10.1139/o04-046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Small RNA molecules such as siRNAs and miRNAs represent a new class of molecules that have been implicated in a wide range of diverse gene silencing phenomena. It is now becoming clear that these two similar molecules share several common features in both their biogenesis and their mechanism of action. Thus, the siRNA and miRNA pathways may have evolved from a common ancestral mechanism that has diverged to play important roles in developmental regulation, genomic organisation, and cellular defence against foreign nucleic acids.
Collapse
Affiliation(s)
- Tony Nolan
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma La Sapeinza, Italy
| | | |
Collapse
|
35
|
Mochizuki K, Gorovsky MA. A Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes Dev 2004; 19:77-89. [PMID: 15598983 PMCID: PMC540227 DOI: 10.1101/gad.1265105] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous studies indicated that genome rearrangement involving DNA sequence elimination that occurs at late stages of conjugation in Tetrahymena is epigenetically controlled by siRNA-like scan (scn) RNAs produced from nongenic, heterogeneous, bidirectional, micronuclear transcripts synthesized at early stages of conjugation. Here, we show that Dcl1p, one of three Tetrahymena Dicer-like enzymes, is required for processing the micronuclear transcripts to scnRNAs. DCL1 is also required for methylation of histone H3 at Lys 9, which, in wild-type cells, specifically occurs on the sequences (IESs) being eliminated. These results argue that Dcl1p processes nongenic micronuclear transcripts to scnRNAs and is required for IES elimination. This is the first evidence linking nongenic micronuclear transcripts, scnRNAs, and genome rearrangement. Dcl1p also is required for proper mitotic and meiotic segregation of micronuclear chromosomes and for normal chromosome alignment in meiotic prophase, suggesting that DCL1 has multiple functions in regulating chromosome dynamics.
Collapse
Affiliation(s)
- Kazufumi Mochizuki
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | |
Collapse
|
36
|
Fillingham JS, Pearlman RE. Role of micronucleus-limited DNA in programmed deletion of mse2.9 during macronuclear development of Tetrahymena thermophila. EUKARYOTIC CELL 2004; 3:288-301. [PMID: 15075259 PMCID: PMC387634 DOI: 10.1128/ec.3.2.288-301.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extensive programmed DNA rearrangements occur during the development of the somatic macronucleus from the germ line micronucleus in the sexual cycle of the ciliated protozoan Tetrahymena thermophila. Using an in vivo processing assay, we analyzed the role of micronucleus-limited DNA during the programmed deletion of mse2.9, an internal eliminated sequence (IES). We identified a 200-bp region within mse2.9 that contains an important cis-acting element which is required for the targeting of efficient programmed deletion. Our results, obtained with a series of mse2.9-based chimeric IESs, led us to suggest that the cis-acting elements in both micronucleus-limited and macronucleus-retained flanking DNAs stimulate programmed deletion to different degrees depending on the particular eliminated sequence. The mse2.9 IES is situated within the second intron of the micronuclear locus of the ARP1 gene. We show that the expression of ARP1 is not essential for the growth of Tetrahymena. Our results also suggest that mse2.9 is not subject to epigenetic regulation of DNA deletion, placing possible constraints on the scan RNA model of IES excision.
Collapse
|
37
|
Fillingham JS, Thing TA, Vythilingum N, Keuroghlian A, Bruno D, Golding GB, Pearlman RE. A non-long terminal repeat retrotransposon family is restricted to the germ line micronucleus of the ciliated protozoan Tetrahymena thermophila. EUKARYOTIC CELL 2004; 3:157-69. [PMID: 14871946 PMCID: PMC329501 DOI: 10.1128/ec.3.1.157-169.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ciliated protozoan Tetrahymena thermophila undergoes extensive programmed DNA rearrangements during the development of a somatic macronucleus from the germ line micronucleus in its sexual cycle. To investigate the relationship between programmed DNA rearrangements and transposable elements, we identified several members of a family of non-long terminal repeat (LTR) retrotransposons (retroposons) in T. thermophila, the first characterized in the ciliated protozoa. This multiple-copy retrotransposon family is restricted to the micronucleus of T. thermophila. The REP (Tetrahymena non-LTR retroposon) elements encode an ORF2 typical of non-LTR elements that contains apurinic/apyrimidinic endonuclease (APE) and reverse transcriptase (RT) domains. Phylogenetic analysis of the RT and APE domains indicates that the element forms a deep-branching clade within the non-LTR retrotransposon family. Northern analysis with a probe to the conserved RT domain indicates that transcripts from the element are small and heterogeneous in length during early macronuclear development. The presence of a repeated transposable element in the genome is consistent with the model that programmed DNA deletion in T. thermophila evolved as a method of eliminating deleterious transposons from the somatic macronucleus.
Collapse
|
38
|
Le Mouël A, Butler A, Caron F, Meyer E. Developmentally regulated chromosome fragmentation linked to imprecise elimination of repeated sequences in paramecia. EUKARYOTIC CELL 2004; 2:1076-90. [PMID: 14555491 PMCID: PMC219357 DOI: 10.1128/ec.2.5.1076-1090.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chromosomes of ciliates are fragmented at reproducible sites during the development of the polyploid somatic macronucleus, but the mechanisms involved appear to be quite diverse in different species. In Paramecium aurelia, the process is imprecise and results in de novo telomere addition at locally heterogeneous positions. To search for possible determinants of chromosome fragmentation, we have studied an approximately 21-kb fragmentation region from the germ line genome of P. primaurelia. The mapping and sequencing of alternative macronuclear versions of the region show that two distinct multicopy elements, a minisatellite and a degenerate transposon copy, are eliminated by an imprecise mechanism leading either to chromosome fragmentation and the formation of new telomeres or to the rejoining of flanking sequences. Heterogeneous internal deletions occur between short direct repeats containing TA dinucleotides. The complex rearrangement patterns produced vary slightly among genetically identical cell lines, show non-Mendelian inheritance during sexual reproduction, and can be experimentally modified by transformation of the maternal macronucleus with homologous sequences. These results suggest that chromosome fragmentation in Paramecium is the consequence of imprecise DNA elimination events that are distinct from the precise excision of single-copy internal eliminated sequences and that target multicopy germ line sequences by homology-dependent epigenetic mechanisms.
Collapse
Affiliation(s)
- Anne Le Mouël
- Laboratoire de Génétique Moléculaire, CNRS UMR 8541, Ecole Normale Supérieure, 75005 Paris, France
| | | | | | | |
Collapse
|
39
|
Jacob NK, Stout AR, Price CM. Modulation of telomere length dynamics by the subtelomeric region of tetrahymena telomeres. Mol Biol Cell 2004; 15:3719-28. [PMID: 15169872 PMCID: PMC491831 DOI: 10.1091/mbc.e04-03-0237] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tetrahymena telomeres usually consist of approximately 250 base pairs of T(2)G(4) repeats, but they can grow to reach a new length set point of up to 900 base pairs when kept in log culture at 30 degrees C. We have examined the growth profile of individual macronuclear telomeres and have found that the rate and extent of telomere growth are affected by the subtelomeric region. When the sequence of the rDNA subtelomeric region was altered, we observed a decrease in telomere growth regardless of whether the GC content was increased or decreased. In both cases, the ordered structure of the subtelomeric chromatin was disrupted, but the effect on the telomeric complex was relatively minor. Examination of the telomeres from non-rDNA chromosomes showed that each telomere exhibited a unique and characteristic growth profile. The subtelomeric regions from individual chromosome ends did not share common sequence elements, and they each had a different chromatin structure. Thus, telomere growth is likely to be regulated by the organization of the subtelomeric chromatin rather than by a specific DNA element. Our findings suggest that at each telomere the telomeric complex and subtelomeric chromatin cooperate to form a unique higher order chromatin structure that controls telomere length.
Collapse
Affiliation(s)
- Naduparambil K Jacob
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | | | |
Collapse
|
40
|
Huvos P. A member of a repeat family is the source of an insertion-deletion polymorphism inside a developmentally eliminated sequence of Tetrahymena thermophila. J Mol Biol 2004; 336:1061-73. [PMID: 15037069 DOI: 10.1016/j.jmb.2003.12.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 12/15/2003] [Accepted: 12/17/2003] [Indexed: 11/21/2022]
Abstract
In Tetrahymena thermophila, the development of a transcriptionally active macronucleus from a transcriptionally inert micronucleus is accompanied by the elimination of numerous DNA segments, called internally eliminated sequences (IESs), many of which belong to dispersed repetitive sequence families. To examine the relationship between the insertion and deletion events expected to occur during evolution of the repeats and the developmental elimination process, IESs were compared among different Tetrahymena strains. A 600 base-pair DNA segment, the R Indel, was discovered inside the R IES, one of the ten sequenced IESs out of an estimated 6000 total in the Tetrahymena genome. The R Indel was found in strains B3 and C2 but not in several other strains examined, indicating that the Indel was probably present in a progenitor of strains B3 and C2. The R Indel was found to belong to a moderately large sequence family of about 200 members; however, BLAST searches did not reveal meaningful similarities with other mobile elements. Sequence comparisons revealed that a 300 base-pair stretch, very closely related to the first half of the R Indel, was present inside the previously described B IES, another of the ten sequenced IESs. This is the first example of shared sequences between two of the known IESs.
Collapse
Affiliation(s)
- Piroska Huvos
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, IL 62901, USA.
| |
Collapse
|
41
|
Tanaka T, Watanabe T. Spatiotemporal sites of DNA replication in macro- and micronuclei of the ciliate Paramecium caudatum. Chromosome Res 2003; 11:153-64. [PMID: 12733642 DOI: 10.1023/a:1022820032433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Spatiotemporal sites of DNA replication in macro- and micronuclei of the ciliated protozoan Paramecium caudatum were analyzed by confocal laser scanning microscopy following incorporation of the thymidine analogue BrdU and indirect immunofluorescence. In the macronucleus, replication sites were localized to numerous small domains and scattered throughout the nucleoplasm. This pattern persisted during all periods of the S phase. A single constant pattern with discrete replication foci was also observed in the micronucleus. No obvious differences were seen between the two kinds of nuclei. Pulse-chase-pulse double-labeling experiments with two thymidine analogues (CldU and IdU) revealed that dispersed sites of replication were activated at different times during the S phase and a replication site takes about 2h to complete replication in the macronucleus. When cells were labeled by BrUTP to examine transcriptional activity in the two kinds of nuclei, incorporation of BrUTP into the macronucleus occurred throughout the cell cycle, whereas there was no detectable RNA synthesis in the micronucleus. From these findings, we conclude that, despite large differences in structure and function of macro- and micronuclear genomes, both nuclei show a similar replication pattern with discrete subnuclear foci scattered throughout the nucleoplasm at all times during the S phase.
Collapse
Affiliation(s)
- Tsubasa Tanaka
- Graduate School of Life Sciences, Tohoku University, Aoba, Aramaki, Aoba, Sendai, 980-8578, Japan
| | | |
Collapse
|
42
|
Wuitschick JD, Karrer KM. Diverse sequences within Tlr elements target programmed DNA elimination in Tetrahymena thermophila. EUKARYOTIC CELL 2003; 2:678-89. [PMID: 12912887 PMCID: PMC178349 DOI: 10.1128/ec.2.4.678-689.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tlr elements are a novel family of approximately 30 putative mobile genetic elements that are confined to the germ line micronuclear genome in Tetrahymena thermophila. Thousands of diverse germ line-limited sequences, including the Tlr elements, are specifically eliminated from the differentiating somatic macronucleus. Macronucleus-retained sequences flanking deleted regions are known to contain cis-acting signals that delineate elimination boundaries. It is unclear whether sequences within deleted DNA also play a regulatory role in the elimination process. In the current study, an in vivo DNA rearrangement assay was used to identify internal sequences required in cis for the elimination of Tlr elements. Multiple, nonoverlapping regions from the approximately 23-kb Tlr elements were independently sufficient to stimulate developmentally regulated DNA elimination when placed within the context of flanking sequences from the most thoroughly characterized family member, Tlr1. Replacement of element DNA with macronuclear or foreign DNA abolished elimination activity. Thus, diverse sequences dispersed throughout Tlr DNA contain cis-acting signals that target these elements for programmed elimination. Surprisingly, Tlr DNA was also efficiently deleted when Tlr1 flanking sequences were replaced with DNA from a region of the genome that is not normally associated with rearrangement, suggesting that specific flanking sequences are not required for the elimination of Tlr element DNA.
Collapse
Affiliation(s)
- Jeffrey D Wuitschick
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, USA
| | | |
Collapse
|
43
|
LUSHAI GUGS, LOXDALE HUGHD, ALLEN JOHNA. The dynamic clonal genome and its adaptive potential. Biol J Linn Soc Lond 2003. [DOI: 10.1046/j.1095-8312.2003.00189.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Jacob NK, Kirk KE, Price CM. Generation of Telomeric G Strand Overhangs Involves Both G and C Strand Cleavage. Mol Cell 2003; 11:1021-32. [PMID: 12718887 DOI: 10.1016/s1097-2765(03)00131-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Processing of telomeric DNA is required to generate the 3' G strand overhangs necessary for capping chromosome ends. We have investigated the steps involved in telomere processing by examining G overhang structure in Tetrahymena cells that lack telomerase or have altered telomeric sequences. We show that overhangs are generated by two precise cleavage steps involving nucleases that are robust but lack sequence specificity. Our data suggest that a G overhang binding protein delineates the boundaries for G and C strand cleavage. We also show that telomerase is not the nuclease responsible for G strand cleavage, although telomerase depletion alters the precision of processing. This change in processing indicates that telomerase affects multiple transactions at the telomere and provides a physical footprint for the continued association of telomerase with the telomere after repeat addition is complete.
Collapse
Affiliation(s)
- Naduparambil K Jacob
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Ohio 45267, USA
| | | | | |
Collapse
|
45
|
Sharp SI, Pickrell JK, Jahn CL. Identification of a novel "chromosome scaffold" protein that associates with Tec elements undergoing en masse elimination in Euplotes crassus. Mol Biol Cell 2003; 14:571-84. [PMID: 12589055 PMCID: PMC149993 DOI: 10.1091/mbc.e02-08-0542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During macronuclear development in the ciliate Euplotes crassus, the highly repetitive, transposon-like Tec elements possess an unusual chromatin structure. We observed that the Tec element chromatin is highly resistant to salt extraction and behaves like a nuclear matrix/chromosome scaffold-associated structure. Standard matrix/scaffold extraction procedures identified two major proteins: 1) an ~140-kDa protein that seems to be topoisomerase II based on its reactivity with anti-topoisomerase II antibodies, and 2) an 85-kDa protein that we further purified by acid extraction and have shown to be a novel protein by sequence analysis of its gene. The 85-kDa protein (p85) is a developmental stage-specific protein and is located exclusively in the developing macronucleus. Immunolocalization studies of p85 show that it colocalizes with topoisomerase II in chromatin. In addition, in situ hybridization combined with immunofluorescence localization of the proteins indicates that 100% of the Tec elements colocalize with 70% of the p85, whereas no significant colocalization with a total macronuclear sequence-specific probe is observed. p85 is the first developmental stage-specific protein identified as being specifically associated with sequences undergoing elimination in E. crassus.
Collapse
Affiliation(s)
- Suzanne I Sharp
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611-3008, USA
| | | | | |
Collapse
|
46
|
Abstract
The germline genomes of ciliated protozoa are dynamic structures, undergoing massive DNA rearrangement during the formation of a functional macronucleus. Macronuclear development involves chromosome fragmentation coupled with de novo telomere synthesis, numerous DNA splicing events that remove internal segments of DNA, and, in some ciliates, the reordering of scrambled gene segments. Despite the fact that all ciliates share similar forms of DNA rearrangement, there appears to be great diversity in both the nature of the rearranged DNA and the molecular mechanisms involved. Epigenetic effects on rearrangement have also been observed, and recent work suggests that chromatin differentiation plays a role in specifying DNA segments either for rearrangement or for elimination.
Collapse
Affiliation(s)
- Carolyn L Jahn
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
47
|
Taverna SD, Coyne RS, Allis CD. Methylation of Histone H3 at Lysine 9 Targets Programmed DNA Elimination in Tetrahymena. Cell 2002; 110:701-11. [PMID: 12297044 DOI: 10.1016/s0092-8674(02)00941-8] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Histone H3 lysine 9 methylation [Me(Lys9)H3] is an epigenetic mark for heterochromatin-dependent gene silencing, mediated by direct binding to chromodomain-containing proteins such as Heterochromatin Protein 1. In the ciliate Tetrahymena, two chromodomain proteins, Pdd1p and Pdd3p, are involved in the massive programmed DNA elimination that accompanies macronuclear development. We report that both proteins bind H3(Lys9)Me in vitro. In vivo, H3(Lys9)Me is confined to the time period and location where DNA elimination occurs, and associates with eliminated sequences. Loss of parental Pdd1p expression drastically reduces H3(Lys9)Me. Finally, tethering Pdd1p is sufficient to promote DNA excision. These results extend the range of H3(Lys9)Me involvement in chromatin activities outside transcriptional regulation and also strengthen the link between heterochromatin formation and programmed DNA elimination.
Collapse
Affiliation(s)
- Sean D Taverna
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
48
|
Williams KR, Doak TG, Herrick G. Telomere formation on macronuclear chromosomes of Oxytricha trifallax and O. fallax: alternatively processed regions have multiple telomere addition sites. BMC Genet 2002; 3:16. [PMID: 12199911 PMCID: PMC128808 DOI: 10.1186/1471-2156-3-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2002] [Accepted: 08/28/2002] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Ciliates employ massive chromatid breakage and de novo telomere formation during generation of the somatic macronucleus. Positions flanking the 81-MAC locus are reproducibly cut. But those flanking the Common Region are proposed to often escape cutting, generating three nested macronuclear chromosomes, two retaining "arms" still appended to the Common Region. Arm-distal positions must differ (in cis) from the Common Region flanks. RESULTS The Common-Region-flanking positions also differ from the arm-distal positions in that they are "multi-TAS" regions: anchored PCR shows heterogeneous patterns of telomere addition sites, but arm-distal sites do not. The multi-TAS patterns are reproducible, but are sensitive to the sequence of the allele being processed. Thus, random degradation following chromatid cutting does not create this heterogeneity; these telomere addition sites also must be dictated by cis-acting sequences. CONCLUSIONS Most ciliates show such micro-heterogeneity in the precise positions of telomere addition sites. Telomerase is believed to be tightly associated with, and act in concert with, the chromatid-cutting nuclease: heterogeneity must be the result of intervening erosion activity. Our "weak-sites" hypothesis explains the correlation between alternative chromatid cutting at the Common Region boundaries and their multi-TAS character: when the chromatid-breakage machine encounters either a weak binding site or a weak cut site at these regions, then telomerase dissociates prematurely, leaving the new end subject to erosion by an exonuclease, which pauses at cis-acting sequences; telomerase eventually heals these resected termini. Finally, we observe TAS positioning influenced by trans-allelic interactions, reminiscent of transvection.
Collapse
Affiliation(s)
- Kevin R Williams
- Department of Pathology, University of Utah School of Medicine, Salt Lake City UT 84132-2501, USA
| | - Thomas G Doak
- Department of Pathology, University of Utah School of Medicine, Salt Lake City UT 84132-2501, USA
| | - Glenn Herrick
- Department of Pathology, University of Utah School of Medicine, Salt Lake City UT 84132-2501, USA
| |
Collapse
|
49
|
Abstract
A comparative study of macronuclear DNA molecules from the following Paramecium species: the P. aurelia complex, P. caudatum, P. bursaria, P. putrinum and P. multimicronucleatum was performed using pulsed-field gel electrophoresis. The electrophoretic pattern was constant and unique for each species, and is referred to herein as its electrokaryotype. Large differences were observed between Paramecium species according to the range and major size of macronuclear DNA fragments, while different strains of the same species, even belonging to different syngens, were characterized by the same electrokaryotype. In this respect sibling species from the P. aurelia complex are as similar as syngens in other Paramecium species, but are unlike conventional species. The principles and value of electrokaryotype analysis for application to ciliates are discussed.
Collapse
Affiliation(s)
- Maria S Rautian
- Biological Institute of St. Petersburg State University, Stary Peterhof, Russia.
| | | |
Collapse
|
50
|
Wuitschick JD, Gershan JA, Lochowicz AJ, Li S, Karrer KM. A novel family of mobile genetic elements is limited to the germline genome in Tetrahymena thermophila. Nucleic Acids Res 2002; 30:2524-37. [PMID: 12034842 PMCID: PMC117186 DOI: 10.1093/nar/30.11.2524] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the ciliated protozoan Tetrahymena thermophila, extensive DNA elimination is associated with differentiation of the somatic macronucleus from the germline micronucleus. This study describes the isolation and complete characterization of Tlr elements, a family of approximately 30 micronuclear DNA sequences that are efficiently eliminated from the developing macronucleus. The data indicate that Tlr elements are comprised of an approximately 22 kb internal region flanked by complex and variable termini. The Tlr internal region is highly conserved among family members and contains 15 open reading frames, some of which resemble genes encoded by transposons and viruses. The Tlr termini appear to be long inverted repeats consisting of (i) a variable region containing multiple direct repeats which differ in number and sequence from element to element and (ii) a conserved terminal 47 bp sequence. Taken together, these results suggest that Tlr elements comprise a novel family of mobile genetic elements that are confined to the Tetrahymena germline genome. Possible mechanisms of developmentally programmed Tlr elimination are discussed.
Collapse
|