1
|
Zemlianski V, Marešová A, Princová J, Holič R, Häsler R, Ramos Del Río MJ, Lhoste L, Zarechyntsava M, Převorovský M. Nitrogen availability is important for preventing catastrophic mitosis in fission yeast. J Cell Sci 2024; 137:jcs262196. [PMID: 38780300 DOI: 10.1242/jcs.262196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Mitosis is a crucial stage in the cell cycle, controlled by a vast network of regulators responding to multiple internal and external factors. The fission yeast Schizosaccharomyces pombe demonstrates catastrophic mitotic phenotypes due to mutations or drug treatments. One of the factors provoking catastrophic mitosis is a disturbed lipid metabolism, resulting from, for example, mutations in the acetyl-CoA/biotin carboxylase (cut6), fatty acid synthase (fas2, also known as lsd1) or transcriptional regulator of lipid metabolism (cbf11) genes, as well as treatment with inhibitors of fatty acid synthesis. It has been previously shown that mitotic fidelity in lipid metabolism mutants can be partially rescued by ammonium chloride supplementation. In this study, we demonstrate that mitotic fidelity can be improved by multiple nitrogen sources. Moreover, this improvement is not limited to lipid metabolism disturbances but also applies to a number of unrelated mitotic mutants. Interestingly, the partial rescue is not achieved by restoring the lipid metabolism state, but rather indirectly. Our results highlight a novel role for nitrogen availability in mitotic fidelity.
Collapse
Affiliation(s)
- Viacheslav Zemlianski
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Anna Marešová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Jarmila Princová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Roman Holič
- Centre of Biosciences SAS, Institute of Animal Biochemistry and Genetics, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Robert Häsler
- Center for Inflammatory Skin Diseases, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 9, 24105 Kiel, Germany
| | - Manuel José Ramos Del Río
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Laurane Lhoste
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Maryia Zarechyntsava
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| |
Collapse
|
2
|
Xu Z, Li Y, Xu A, Xue L, Soteyome T, Yuan L, Ma Q, Seneviratne G, Hong W, Mao Y, Kjellerup BV, Liu J. Differential alteration in Lactiplantibacillus plantarum subsp. plantarum quorum-sensing systems and reduced Candida albicans yeast survival and virulence gene expression in dual-species interaction. Microbiol Spectr 2024; 12:e0035324. [PMID: 38717160 PMCID: PMC11237386 DOI: 10.1128/spectrum.00353-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 06/06/2024] Open
Abstract
Candida albicans (C. albicans) and Lactiplantibacillus plantarum subsp. plantarum (L. plantarum) are frequently identified in various niches, but their dual-species interaction, especially with C. albicans in yeast form, remains unclear. This study aimed to investigate the dual-species interaction of L. plantarum and C. albicans, including proliferation, morphology, and transcriptomes examined by selective agar plate counting, microscopy, and polymicrobial RNA-seq, respectively. Maintaining a stable and unchanged growth rate, L. plantarum inhibited C. albicans yeast cell proliferation but not hyphal growth. Combining optical microscopy and atomic force microscopy, cell-to-cell direct contact and co-aggregation with L. plantarum cells surrounding C. albicans yeast cells were observed during dual-species interaction. Reduced C. albicans yeast cell proliferation in mixed culture was partially due to L. plantarum cell-free culture supernatant but not the acidic environment. Upon polymicrobial transcriptomics analysis, interesting changes were identified in both L. plantarum and C. albicans gene expression. First, two L. plantarum quorum-sensing systems showed contrary changes, with the activation of lamBDCA and repression of luxS. Second, the upregulation of stress response-related genes and downregulation of cell cycle, cell survival, and cell integrity-related pathways were identified in C. albicans, possibly connected to the stress posed by L. plantarum and the reduced yeast cell proliferation. Third, a large scale of pathogenesis and virulence factors were downregulated in C. albicans, indicating the potential interruption of pathogenic activities by L. plantarum. Fourth, partial metabolism and transport pathways were changed in L. plantarum and C. albicans. The information in this study might aid in understanding the behavior of L. plantarum and C. albicans in dual-species interaction.IMPORTANCEThe anti-Candida albicans activity of Lactiplantibacillus plantarum has been explored in the past decades. However, the importance of C. albicans yeast form and the effect of C. albicans on L. plantarum had also been omitted. In this study, the dual-species interaction of L. plantarum and C. albicans was investigated with a focus on the transcriptomes. Cell-to-cell direct contact and co-aggregation with L. plantarum cells surrounding C. albicans yeast cells were observed. Upon polymicrobial transcriptomics analysis, interesting changes were identified, including contrary changes in two L. plantarum quorum-sensing systems and reduced cell survival-related pathways and pathogenesis determinants in C. albicans.
Collapse
Affiliation(s)
- Zhenbo Xu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yaqin Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Aijuan Xu
- Guangzhou Hybribio Medical Laboratory, Guangzhou, China
| | - Liang Xue
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China, Guangzhou, Guangdong
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qin Ma
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuzhu Mao
- Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland, USA
| | - Birthe V. Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland, USA
| | - Junyan Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Science, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
3
|
Li J, Pang D, Zhou L, Ouyang H, Tian Y, Yu H. miR-26a-5p inhibits the proliferation of psoriasis-like keratinocytes in vitro and in vivo by dual interference with the CDC6/CCNE1 axis. Aging (Albany NY) 2024; 16:4631-4653. [PMID: 38446584 PMCID: PMC10968694 DOI: 10.18632/aging.205618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Psoriasis is a chronic inflammatory proliferative dermatological ailment that currently lacks a definitive cure. Employing data mining techniques, this study identified a collection of substantially downregulated miRNAs (top 10). Notably, 32 targets were implicated in both the activation of the IL-17 signaling pathway and cell cycle dysregulation. In silico analysis revealed that one of these miRNAs, miR-26a-5p, is a highly conserved cross-species miRNA. Strikingly, the miR-26a-5p sequences in humans and mice are identical, and mmu-miR-26a-5p was found to target the same 7 cell cycle targets as its human counterpart, hsa-miR-26a-5p. Among these targets, CDC6 and CCNE1 were the most effective targets of miR-26a-5p, which was further validated in vitro using a dual luciferase reporter system and qPCR assay. The therapeutic assessment of miR-26a-5p revealed its remarkable efficacy in inhibiting the proliferation and G1/S transition of keratinocytes (HaCaT and HEKs) in vitro. In vivo experiments corroborated these findings, demonstrating that miR-26a-5p effectively suppressed imiquimod (IMQ)-induced psoriasis-like skin lesions in mice over an 8-day treatment period. Histological analysis via H&E staining revealed that miR-26a-5p treatment resulted in reduced keratinocyte thickness and immune cell infiltration into the spleens of IMQ-treated mice. Mechanistic investigations revealed that miR-26a-5p induced a cascade of downregulated genes associated with the IL-23/IL-17A axis, which is known to be critical in psoriasis pathogenesis, while concomitantly suppressing CDC6 and CCNE1 expression. These findings were corroborated by qPCR and Western blot analyses. Collectively, our study provides compelling evidence supporting the therapeutic potential of miR-26a-5p as a safe and reliable endogenous small nucleic acid for the treatment of psoriasis.
Collapse
Affiliation(s)
- Jianing Li
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
| | - Lin Zhou
- Joint International Research Laboratory of Reproduction and Development, School of Basic Medicine, Chong-qing Medical University, Chongqing 400016, China
| | - Hongsheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
| | - Yaping Tian
- Department of Dermatology and Venerology, First Bethune Hospital of Jilin University, Changchun 130021, China
| | - Hao Yu
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
4
|
Tjärnberg A, Beheler-Amass M, Jackson CA, Christiaen LA, Gresham D, Bonneau R. Structure-primed embedding on the transcription factor manifold enables transparent model architectures for gene regulatory network and latent activity inference. Genome Biol 2024; 25:24. [PMID: 38238840 PMCID: PMC10797903 DOI: 10.1186/s13059-023-03134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Modeling of gene regulatory networks (GRNs) is limited due to a lack of direct measurements of genome-wide transcription factor activity (TFA) making it difficult to separate covariance and regulatory interactions. Inference of regulatory interactions and TFA requires aggregation of complementary evidence. Estimating TFA explicitly is problematic as it disconnects GRN inference and TFA estimation and is unable to account for, for example, contextual transcription factor-transcription factor interactions, and other higher order features. Deep-learning offers a potential solution, as it can model complex interactions and higher-order latent features, although does not provide interpretable models and latent features. RESULTS We propose a novel autoencoder-based framework, StrUcture Primed Inference of Regulation using latent Factor ACTivity (SupirFactor) for modeling, and a metric, explained relative variance (ERV), for interpretation of GRNs. We evaluate SupirFactor with ERV in a wide set of contexts. Compared to current state-of-the-art GRN inference methods, SupirFactor performs favorably. We evaluate latent feature activity as an estimate of TFA and biological function in S. cerevisiae as well as in peripheral blood mononuclear cells (PBMC). CONCLUSION Here we present a framework for structure-primed inference and interpretation of GRNs, SupirFactor, demonstrating interpretability using ERV in multiple biological and experimental settings. SupirFactor enables TFA estimation and pathway analysis using latent factor activity, demonstrated here on two large-scale single-cell datasets, modeling S. cerevisiae and PBMC. We find that the SupirFactor model facilitates biological analysis acquiring novel functional and regulatory insight.
Collapse
Affiliation(s)
- Andreas Tjärnberg
- Center for Developmental Genetics, New York University, New York, NY, 10003, USA.
- Center For Genomics and Systems Biology, NYU, New York, NY, 10008, USA.
- Department of Biology, NYU, New York, NY, 10008, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10010, USA.
- Department of Neuro-Science, University of Wisconsin-Madison - Waisman Center, Madison, USA.
| | - Maggie Beheler-Amass
- Center For Genomics and Systems Biology, NYU, New York, NY, 10008, USA
- Department of Biology, NYU, New York, NY, 10008, USA
| | - Christopher A Jackson
- Center For Genomics and Systems Biology, NYU, New York, NY, 10008, USA
- Department of Biology, NYU, New York, NY, 10008, USA
| | - Lionel A Christiaen
- Center for Developmental Genetics, New York University, New York, NY, 10003, USA
- Department of Biology, NYU, New York, NY, 10008, USA
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - David Gresham
- Center For Genomics and Systems Biology, NYU, New York, NY, 10008, USA
- Department of Biology, NYU, New York, NY, 10008, USA
| | - Richard Bonneau
- Center For Genomics and Systems Biology, NYU, New York, NY, 10008, USA.
- Department of Biology, NYU, New York, NY, 10008, USA.
- Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY, 10010, USA.
- Courant Institute of Mathematical Sciences, Computer Science Department, New York University, New York, NY, 10003, USA.
- Center For Data Science, NYU, New York, NY, 10008, USA.
- Prescient Design, a Genentech accelerator, New York, NY, 10010, USA.
| |
Collapse
|
5
|
Foltman M, Sanchez-Diaz A. TOR Complex 1: Orchestrating Nutrient Signaling and Cell Cycle Progression. Int J Mol Sci 2023; 24:15745. [PMID: 37958727 PMCID: PMC10647266 DOI: 10.3390/ijms242115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The highly conserved TOR signaling pathway is crucial for coordinating cellular growth with the cell cycle machinery in eukaryotes. One of the two TOR complexes in budding yeast, TORC1, integrates environmental cues and promotes cell growth. While cells grow, they need to copy their chromosomes, segregate them in mitosis, divide all their components during cytokinesis, and finally physically separate mother and daughter cells to start a new cell cycle apart from each other. To maintain cell size homeostasis and chromosome stability, it is crucial that mechanisms that control growth are connected and coordinated with the cell cycle. Successive periods of high and low TORC1 activity would participate in the adequate cell cycle progression. Here, we review the known molecular mechanisms through which TORC1 regulates the cell cycle in the budding yeast Saccharomyces cerevisiae that have been extensively used as a model organism to understand the role of its mammalian ortholog, mTORC1.
Collapse
Affiliation(s)
- Magdalena Foltman
- Mechanisms and Regulation of Cell Division Research Unit, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, 39011 Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
| | - Alberto Sanchez-Diaz
- Mechanisms and Regulation of Cell Division Research Unit, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, 39011 Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|
6
|
Chen Y, Su H, Zhao J, Na Z, Jiang K, Bacchiocchi A, Loh KH, Halaban R, Wang Z, Cao X, Slavoff SA. Unannotated microprotein EMBOW regulates the interactome and chromatin and mitotic functions of WDR5. Cell Rep 2023; 42:113145. [PMID: 37725512 PMCID: PMC10629662 DOI: 10.1016/j.celrep.2023.113145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
The conserved WD40-repeat protein WDR5 interacts with multiple proteins both inside and outside the nucleus. However, it is currently unclear whether and how the distribution of WDR5 between complexes is regulated. Here, we show that an unannotated microprotein EMBOW (endogenous microprotein binder of WDR5) dually encoded in the human SCRIB gene interacts with WDR5 and regulates its binding to multiple interaction partners, including KMT2A and KIF2A. EMBOW is cell cycle regulated, with two expression maxima at late G1 phase and G2/M phase. Loss of EMBOW decreases WDR5 interaction with KIF2A, aberrantly shortens mitotic spindle length, prolongs G2/M phase, and delays cell proliferation. In contrast, loss of EMBOW increases WDR5 interaction with KMT2A, leading to WDR5 binding to off-target genes, erroneously increasing H3K4me3 levels, and activating transcription of these genes. Together, these results implicate EMBOW as a regulator of WDR5 that regulates its interactions and prevents its off-target binding in multiple contexts.
Collapse
Affiliation(s)
- Yanran Chen
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Haomiao Su
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Jianing Zhao
- Frontier Innovation Center, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200433, China; Shanghai Fifth People's Hospital, Fudan University, Shanghai 200433, China
| | - Zhenkun Na
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Kevin Jiang
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Antonella Bacchiocchi
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ken H Loh
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zhentian Wang
- Frontier Innovation Center, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200433, China; Shanghai Fifth People's Hospital, Fudan University, Shanghai 200433, China
| | - Xiongwen Cao
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Sciences, East China Normal University, Shanghai 200062, China.
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA.
| |
Collapse
|
7
|
Gal C, Cochrane GA, Morgan BA, Rallis C, Bähler J, Whitehall SK. The longevity and reversibility of quiescence in Schizosaccharomyces pombe are dependent upon the HIRA histone chaperone. Cell Cycle 2023; 22:1921-1936. [PMID: 37635373 PMCID: PMC10599175 DOI: 10.1080/15384101.2023.2249705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Quiescence (G0) is a reversible non-dividing state that facilitates cellular survival in adverse conditions. Here, we demonstrate that the HIRA histone chaperone complex is required for the reversibility and longevity of nitrogen starvation-induced quiescence in Schizosaccharomyces pombe. The HIRA protein, Hip1 is not required for entry into G0 or the induction of autophagy. Although hip1Δ cells retain metabolic activity in G0, they rapidly lose the ability to resume proliferation. After a short period in G0 (1 day), hip1Δ mutants can resume cell growth in response to the restoration of a nitrogen source but do not efficiently reenter the vegetative cell cycle. This correlates with a failure to induce the expression of MBF transcription factor-dependent genes that are critical for S phase. In addition, hip1Δ G0 cells rapidly progress to a senescent state in which they can no longer re-initiate growth following nitrogen source restoration. Analysis of a conditional hip1 allele is consistent with these findings and indicates that HIRA is required for efficient exit from quiescence and prevents an irreversible cell cycle arrest.
Collapse
Affiliation(s)
- Csenge Gal
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Grace A. Cochrane
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Brian A. Morgan
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charalampos Rallis
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment and Institute of Healthy Ageing, University College London, London, UK
| | - Simon K. Whitehall
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Luther CH, Brandt P, Vylkova S, Dandekar T, Müller T, Dittrich M. Integrated analysis of SR-like protein kinases Sky1 and Sky2 links signaling networks with transcriptional regulation in Candida albicans. Front Cell Infect Microbiol 2023; 13:1108235. [PMID: 37082713 PMCID: PMC10111165 DOI: 10.3389/fcimb.2023.1108235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023] Open
Abstract
Fungal infections are a major global health burden where Candida albicans is among the most common fungal pathogen in humans and is a common cause of invasive candidiasis. Fungal phenotypes, such as those related to morphology, proliferation and virulence are mainly driven by gene expression, which is primarily regulated by kinase signaling cascades. Serine-arginine (SR) protein kinases are highly conserved among eukaryotes and are involved in major transcriptional processes in human and S. cerevisiae. Candida albicans harbors two SR protein kinases, while Sky2 is important for metabolic adaptation, Sky1 has similar functions as in S. cerevisiae. To investigate the role of these SR kinases for the regulation of transcriptional responses in C. albicans, we performed RNA sequencing of sky1Δ and sky2Δ and integrated a comprehensive phosphoproteome dataset of these mutants. Using a Systems Biology approach, we study transcriptional regulation in the context of kinase signaling networks. Transcriptomic enrichment analysis indicates that pathways involved in the regulation of gene expression are downregulated and mitochondrial processes are upregulated in sky1Δ. In sky2Δ, primarily metabolic processes are affected, especially for arginine, and we observed that arginine-induced hyphae formation is impaired in sky2Δ. In addition, our analysis identifies several transcription factors as potential drivers of the transcriptional response. Among these, a core set is shared between both kinase knockouts, but it appears to regulate different subsets of target genes. To elucidate these diverse regulatory patterns, we created network modules by integrating the data of site-specific protein phosphorylation and gene expression with kinase-substrate predictions and protein-protein interactions. These integrated signaling modules reveal shared parts but also highlight specific patterns characteristic for each kinase. Interestingly, the modules contain many proteins involved in fungal morphogenesis and stress response. Accordingly, experimental phenotyping shows a higher resistance to Hygromycin B for sky1Δ. Thus, our study demonstrates that a combination of computational approaches with integration of experimental data can offer a new systems biological perspective on the complex network of signaling and transcription. With that, the investigation of the interface between signaling and transcriptional regulation in C. albicans provides a deeper insight into how cellular mechanisms can shape the phenotype.
Collapse
Affiliation(s)
- Christian H. Luther
- University of Würzburg, Department of Bioinformatics, Biocenter/Am Hubland 97074, Würzburg, Germany
| | - Philipp Brandt
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Thomas Dandekar
- University of Würzburg, Department of Bioinformatics, Biocenter/Am Hubland 97074, Würzburg, Germany
| | - Tobias Müller
- University of Würzburg, Department of Bioinformatics, Biocenter/Am Hubland 97074, Würzburg, Germany
| | - Marcus Dittrich
- University of Würzburg, Department of Bioinformatics, Biocenter/Am Hubland 97074, Würzburg, Germany
- University of Würzburg, Institut of Human Genetics, Biocenter/Am Hubland 97074, Würzburg, Germany
- *Correspondence: Marcus Dittrich,
| |
Collapse
|
9
|
Xuyang L, Cristina LM, Laura MA, Xu P. A clade of RHH proteins ubiquitous in Sulfolobales and their viruses regulates cell cycle progression. Nucleic Acids Res 2023; 51:1724-1739. [PMID: 36727447 PMCID: PMC9976892 DOI: 10.1093/nar/gkad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/30/2022] [Accepted: 01/29/2023] [Indexed: 02/03/2023] Open
Abstract
Cell cycle regulation is crucial for all living organisms and is often targeted by viruses to facilitate their own propagation, yet cell cycle progression control is largely underexplored in archaea. In this work, we reveal a cell cycle regulator (aCcr1) carrying a ribbon-helix-helix (RHH) domain and ubiquitous in the Thermoproteota of the order Sulfolobales and their viruses. Overexpression of several aCcr1 members including gp21 of rudivirus SIRV2 and its host homolog SiL_0190 of Saccharolobus islandicus LAL14/1 results in impairment of cell division, evidenced by growth retardation, cell enlargement and an increase in cellular DNA content. Additionally, both gp21 and SiL_0190 can bind to the motif AGTATTA conserved in the promoter of several genes involved in cell division, DNA replication and cellular metabolism thereby repressing or inducing their transcription. Our results suggest that aCcr1 silences cell division and drives progression to the S-phase in Sulfolobales, a function exploited by viruses to facilitate viral propagation.
Collapse
Affiliation(s)
- Li Xuyang
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Lozano-Madueño Cristina
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Martínez-Alvarez Laura
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Peng Xu
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
10
|
Tjärnberg A, Beheler-Amass M, Jackson CA, Christiaen LA, Gresham D, Bonneau R. Structure primed embedding on the transcription factor manifold enables transparent model architectures for gene regulatory network and latent activity inference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526909. [PMID: 36778259 PMCID: PMC9915715 DOI: 10.1101/2023.02.02.526909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The modeling of gene regulatory networks (GRNs) is limited due to a lack of direct measurements of regulatory features in genome-wide screens. Most GRN inference methods are therefore forced to model relationships between regulatory genes and their targets with expression as a proxy for the upstream independent features, complicating validation and predictions produced by modeling frameworks. Separating covariance and regulatory influence requires aggregation of independent and complementary sets of evidence, such as transcription factor (TF) binding and target gene expression. However, the complete regulatory state of the system, e.g. TF activity (TFA) is unknown due to a lack of experimental feasibility, making regulatory relations difficult to infer. Some methods attempt to account for this by modeling TFA as a latent feature, but these models often use linear frameworks that are unable to account for non-linearities such as saturation, TF-TF interactions, and other higher order features. Deep learning frameworks may offer a solution, as they are capable of modeling complex interactions and capturing higher-order latent features. However, these methods often discard central concepts in biological systems modeling, such as sparsity and latent feature interpretability, in favor of increased model complexity. We propose a novel deep learning autoencoder-based framework, StrUcture Primed Inference of Regulation using latent Factor ACTivity (SupirFactor), that scales to single cell genomic data and maintains interpretability to perform GRN inference and estimate TFA as a latent feature. We demonstrate that SupirFactor outperforms current leading GRN inference methods, predicts biologically relevant TFA and elucidates functional regulatory pathways through aggregation of TFs.
Collapse
Affiliation(s)
- Andreas Tjärnberg
- Center for Developmental Genetics, New York University, New York 10003 NY, USA
- Center For Genomics and Systems Biology, NYU, New York, NY 10008, USA
- Department of Biology, NYU, New York, NY 10008, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10010, USA
| | - Maggie Beheler-Amass
- Center For Genomics and Systems Biology, NYU, New York, NY 10008, USA
- Department of Biology, NYU, New York, NY 10008, USA
| | - Christopher A Jackson
- Center For Genomics and Systems Biology, NYU, New York, NY 10008, USA
- Department of Biology, NYU, New York, NY 10008, USA
| | - Lionel A Christiaen
- Center for Developmental Genetics, New York University, New York 10003 NY, USA
- Department of Biology, NYU, New York, NY 10008, USA
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - David Gresham
- Center For Genomics and Systems Biology, NYU, New York, NY 10008, USA
- Department of Biology, NYU, New York, NY 10008, USA
| | - Richard Bonneau
- Center For Genomics and Systems Biology, NYU, New York, NY 10008, USA
- Department of Biology, NYU, New York, NY 10008, USA
- Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY 10010, USA
- Courant Institute of Mathematical Sciences, Computer Science Department, New York University, New York, NY 10003, USA
- Center For Data Science, NYU, New York, NY 10008, USA
- Prescient Design, a Genentech accelerator, New York, NY, 10010, USA
| |
Collapse
|
11
|
Liu Q, Chang CE, Wooldredge AC, Fong B, Kennedy BK, Zhou C. Tom70-based transcriptional regulation of mitochondrial biogenesis and aging. eLife 2022; 11:e75658. [PMID: 35234609 PMCID: PMC8926401 DOI: 10.7554/elife.75658] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial biogenesis has two major steps: the transcriptional activation of nuclear genome-encoded mitochondrial proteins and the import of nascent mitochondrial proteins that are synthesized in the cytosol. These nascent mitochondrial proteins are aggregation-prone and can cause cytosolic proteostasis stress. The transcription factor-dependent transcriptional regulations and the TOM-TIM complex-dependent import of nascent mitochondrial proteins have been extensively studied. Yet, little is known regarding how these two steps of mitochondrial biogenesis coordinate with each other to avoid the cytosolic accumulation of these aggregation-prone nascent mitochondrial proteins. Here, we show that in budding yeast, Tom70, a conserved receptor of the TOM complex, moonlights to regulate the transcriptional activity of mitochondrial proteins. Tom70's transcription regulatory role is conserved in Drosophila. The dual roles of Tom70 in both transcription/biogenesis and import of mitochondrial proteins allow the cells to accomplish mitochondrial biogenesis without compromising cytosolic proteostasis. The age-related reduction of Tom70, caused by reduced biogenesis and increased degradation of Tom70, is associated with the loss of mitochondrial membrane potential, mtDNA, and mitochondrial proteins. While loss of Tom70 accelerates aging and age-related mitochondrial defects, overexpressing TOM70 delays these mitochondrial dysfunctions and extends the replicative lifespan. Our results reveal unexpected roles of Tom70 in mitochondrial biogenesis and aging.
Collapse
Affiliation(s)
- Qingqing Liu
- Buck Institute for Research on AgingNovatoUnited States
| | | | | | - Benjamin Fong
- Buck Institute for Research on AgingNovatoUnited States
| | - Brian K Kennedy
- Buck Institute for Research on AgingNovatoUnited States
- Healthy Longevity Programme, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Centre for Healthy Longevity, National University Health SystemSingaporeSingapore
- Singapore Institute of Clinical Sciences, A(∗)STARSingaporeSingapore
| | - Chuankai Zhou
- Buck Institute for Research on AgingNovatoUnited States
- USC Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
12
|
Cohen A, Pataki E, Kupiec M, Weisman R. TOR complex 2 contributes to regulation of gene expression via inhibiting Gcn5 recruitment to subtelomeric and DNA replication stress genes. PLoS Genet 2022; 18:e1010061. [PMID: 35157728 PMCID: PMC8880919 DOI: 10.1371/journal.pgen.1010061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/25/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022] Open
Abstract
The fission yeast TOR complex 2 (TORC2) is required for gene silencing at subtelomeric regions and for the induction of gene transcription in response to DNA replication stress. Thus, TORC2 affects transcription regulation both negatively and positively. Whether these two TORC2-dependent functions share a common molecular mechanism is currently unknown. Here, we show that Gad8 physically interacts with proteins that regulate transcription, including subunits of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex and the BET bromodomain protein Bdf2. We demonstrate that in the absence of TORC2, Gcn5, the histone acetyltransferase subunit of SAGA, accumulates at subtelomeric genes and at non-induced promoters of DNA replication genes. Remarkably, the loss of Gcn5 in TORC2 mutant cells restores gene silencing as well as transcriptional induction in response to DNA replication stress. Loss of Bdf2 alleviates excess of Gcn5 binding in TORC2 mutant cells and also rescues the aberrant regulation of transcription in these cells. Furthermore, the loss of either SAGA or Bdf2 suppresses the sensitivity of TORC2 mutant cells to a variety of stresses, including DNA replication, DNA damage, temperature and nutrient stresses. We suggest a role of TORC2 in transcriptional regulation that is critical for gene silencing and gene induction in response to stress and involves the binding of Gcn5 to the chromatin.
Collapse
Affiliation(s)
- Adiel Cohen
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana, Israel
| | - Emese Pataki
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Weisman
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana, Israel
| |
Collapse
|
13
|
Semiparametric Mixed-Effects Ordinary Differential Equation Models with Heavy-Tailed Distributions. JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS 2021; 26:428-445. [PMID: 33840991 PMCID: PMC8020077 DOI: 10.1007/s13253-021-00446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 11/01/2022]
Abstract
Ordinary differential equation (ODE) models are popularly used to describe complex dynamical systems. When estimating ODE parameters from noisy data, a common distribution assumption is using the Gaussian distribution. It is known that the Gaussian distribution is not robust when abnormal data exist. In this article, we develop a hierarchical semiparametric mixed-effects ODE model for longitudinal data under the Bayesian framework. For robust inference on ODE parameters, we consider a class of heavy-tailed distributions to model the random effects of ODE parameters and observations errors. An MCMC method is proposed to sample ODE parameters from the posterior distributions. Our proposed method is illustrated by studying a gene regulation experiment. Simulation studies show that our proposed method provides satisfactory results for the semiparametric mixed-effects ODE models with finite samples. Supplementary materials accompanying this paper appear online.
Collapse
|
14
|
Dong Q, Yang J, Gao J, Li F. Recent insights into mechanisms preventing ectopic centromere formation. Open Biol 2021; 11:210189. [PMID: 34493071 PMCID: PMC8424319 DOI: 10.1098/rsob.210189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The centromere is a specialized chromosomal structure essential for chromosome segregation. Centromere dysfunction leads to chromosome segregation errors and genome instability. In most eukaryotes, centromere identity is specified epigenetically by CENP-A, a centromere-specific histone H3 variant. CENP-A replaces histone H3 in centromeres, and nucleates the assembly of the kinetochore complex. Mislocalization of CENP-A to non-centromeric regions causes ectopic assembly of CENP-A chromatin, which has a devastating impact on chromosome segregation and has been linked to a variety of human cancers. How non-centromeric regions are protected from CENP-A misincorporation in normal cells is largely unexplored. Here, we review the most recent advances on the mechanisms underlying the prevention of ectopic centromere formation, and discuss the implications in human disease.
Collapse
Affiliation(s)
- Qianhua Dong
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | - Jinpu Yang
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | - Jinxin Gao
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | - Fei Li
- Department of Biology, New York University, New York, NY 10003-6688, USA
| |
Collapse
|
15
|
Delgado-Román I, Muñoz-Centeno MC. Coupling Between Cell Cycle Progression and the Nuclear RNA Polymerases System. Front Mol Biosci 2021; 8:691636. [PMID: 34409067 PMCID: PMC8365833 DOI: 10.3389/fmolb.2021.691636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic life is possible due to the multitude of complex and precise phenomena that take place in the cell. Essential processes like gene transcription, mRNA translation, cell growth, and proliferation, or membrane traffic, among many others, are strictly regulated to ensure functional success. Such systems or vital processes do not work and adjusts independently of each other. It is required to ensure coordination among them which requires communication, or crosstalk, between their different elements through the establishment of complex regulatory networks. Distortion of this coordination affects, not only the specific processes involved, but also the whole cell fate. However, the connection between some systems and cell fate, is not yet very well understood and opens lots of interesting questions. In this review, we focus on the coordination between the function of the three nuclear RNA polymerases and cell cycle progression. Although we mainly focus on the model organism Saccharomyces cerevisiae, different aspects and similarities in higher eukaryotes are also addressed. We will first focus on how the different phases of the cell cycle affect the RNA polymerases activity and then how RNA polymerases status impacts on cell cycle. A good example of how RNA polymerases functions impact on cell cycle is the ribosome biogenesis process, which needs the coordinated and balanced production of mRNAs and rRNAs synthesized by the three eukaryotic RNA polymerases. Distortions of this balance generates ribosome biogenesis alterations that can impact cell cycle progression. We also pay attention to those cases where specific cell cycle defects generate in response to repressed synthesis of ribosomal proteins or RNA polymerases assembly defects.
Collapse
Affiliation(s)
- Irene Delgado-Román
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. Del Rocío, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Mari Cruz Muñoz-Centeno
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. Del Rocío, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
16
|
Ding JL, Hou J, Li XH, Feng MG, Ying SH. Transcription Activator Swi6 Interacts with Mbp1 in MluI Cell Cycle Box-Binding Complex and Regulates Hyphal Differentiation and Virulence in Beauveria bassiana. J Fungi (Basel) 2021; 7:jof7060411. [PMID: 34070348 PMCID: PMC8273693 DOI: 10.3390/jof7060411] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Mbp1 protein acts as a DNA-binding protein in MluI cell cycle box-binding complex (MBF) and plays an essential role in filamentous myco-pathogen Beauveria bassiana.In the current study, BbSwi6 (a homologue of yeast Swi6) was functionally characterized in B.bassiana. Both BbSwi6 and BbMbp1 localize in the nucleus and display a direct interaction relationship which is indicated by a yeast two-hybrid assay. BbSwi6 significantly contributes to hyphal growth, asexual sporulation and virulence. On the aerial surface, ΔBbSwi6 grew slower on various nutrients and displayed abnormal conidia-producing structures, which hardly produced conidia. In liquid media, BbSwi6 loss led to 90% reduction in blastospore yield. Finally, the virulence of the ΔBbSwi6 mutant was modestly weakened with a reduction of 20% in median lethal time. Comparative transcriptomics revealed that BbSwi6 mediated different transcriptomes during fungal development into conidia and blastospores. Notably, under the indicated condition, the BbSwi6-mediated transcriptome significantly differed to that mediated by BbMbp1. Our results demonstrate that, in addition to their roles as the interactive components in MBF, BbSwi6 and BbMbp1 mediate divergent genetic pathways during morphological transitions in B. bassiana.
Collapse
|
17
|
Matsuura Y, Noguchi A, Sakai S, Yokota N, Kawahara H. Nuclear accumulation of ZFP36L1 is cell cycle-dependent and determined by a C-terminal serine-rich cluster. J Biochem 2021; 168:477-489. [PMID: 32687160 DOI: 10.1093/jb/mvaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/26/2020] [Indexed: 11/14/2022] Open
Abstract
ZFP36L1 is an RNA-binding protein responsible for mRNA decay in the cytoplasm. ZFP36L1 has also been suggested as a nuclear-cytoplasmic shuttling protein because it contains a potential nuclear localization signal and a nuclear export signal. However, it remains unclear how the nuclear localization of ZFP36L1 is controlled. In this study, we provide evidence that the nuclear accumulation of ZFP36L1 protein is modulated in a cell cycle-dependent manner. ZFP36L1 protein accumulation in fractionated nuclei was particularly prominent in cells arrested at G1-/S-phase boundary, while it was downregulated in S-phase cells, and eventually disappeared in G2-phase nuclei. Moreover, forced nuclear targeting of ZFP36L1 revealed marked downregulation of this protein in S- and G2-phase cells, suggesting that ZFP36L1 can be eliminated in the nucleus. The C-terminal serine-rich cluster of ZFP36L1 is critical for the regulation of its nuclear accumulation because truncation of this probable disordered region enhanced the nuclear localization of ZFP36L1, increased its stability and abolished its cell cycle-dependent fluctuations. These findings provide the first hints to the question of how ZFP36L1 nuclear accumulation is controlled during the course of the cell cycle.
Collapse
Affiliation(s)
- Yuki Matsuura
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Aya Noguchi
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shunsuke Sakai
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Naoto Yokota
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Hiroyuki Kawahara
- Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
18
|
Aref R, Sanad MNME, Schüller HJ. Forkhead transcription factor Fkh1: insights into functional regulatory domains crucial for recruitment of Sin3 histone deacetylase complex. Curr Genet 2021; 67:487-499. [PMID: 33635403 PMCID: PMC8139909 DOI: 10.1007/s00294-021-01158-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/05/2022]
Abstract
Transcription factors are inextricably linked with histone deacetylases leading to compact chromatin. The Forkhead transcription factor Fkh1 is mainly a negative transcriptional regulator which affects cell cycle control, silencing of mating-type cassettes and induction of pseudohyphal growth in the yeast Saccharomyces cerevisiae. Markedly, Fkh1 impinges chromatin architecture by recruiting large regulatory complexes. Implication of Fkh1 with transcriptional corepressor complexes remains largely unexplored. In this work we show that Fkh1 directly recruits corepressors Sin3 and Tup1 (but not Cyc8), providing evidence for its influence on epigenetic regulation. We also identified the specific domain of Fkh1 mediating Sin3 recruitment and substantiated that amino acids 51–125 of Fkh1 bind PAH2 of Sin3. Importantly, this part of Fkh1 overlaps with its Forkhead-associated domain (FHA). To analyse this domain in more detail, selected amino acids were replaced by alanine, revealing that hydrophobic amino acids L74 and I78 are important for Fkh1-Sin3 binding. In addition, we could prove Fkh1 recruitment to promoters of cell cycle genes CLB2 and SWI5. Notably, Sin3 is also recruited to these promoters but only in the presence of functional Fkh1. Our results disclose that recruitment of Sin3 to Fkh1 requires precisely positioned Fkh1/Sin3 binding sites which provide an extended view on the genetic control of cell cycle genes CLB2 and SWI5 and the mechanism of transcriptional repression by modulation of chromatin architecture at the G2/M transition.
Collapse
Affiliation(s)
- Rasha Aref
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Shoubra El-Khaymah, Cairo, 11241, Egypt. .,Center for Functional Genomics of Microbes, Abteilung Molekulare Genetik Und Infektionsbiologie, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany.
| | - Marwa N M E Sanad
- Department of Genetics and Cytology, National Research Centre, Cairo, Dokki, Egypt
| | - Hans-Joachim Schüller
- Center for Functional Genomics of Microbes, Abteilung Molekulare Genetik Und Infektionsbiologie, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| |
Collapse
|
19
|
The S. pombe CDK5 Orthologue Pef1 Cooperates with Three Cyclins, Clg1, Pas1 and Psl1, to Promote Pre-Meiotic DNA Replication. Biomolecules 2021; 11:biom11010089. [PMID: 33445784 PMCID: PMC7828282 DOI: 10.3390/biom11010089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Meiosis is a specialized cell division process that mediates genetic information transfer to the next generation. Meiotic chromosomal segregation occurs when DNA replication is completed during the pre-meiotic S phase. Here, we show that Schizosaccharomyces pombe Pef1, an orthologue of mammalian cyclin-dependent kinase 5 (CDK5), is required to promote pre-meiotic DNA replication. We examined the efficiency of meiotic initiation using pat1-114 mutants and found that, meiotic nuclear divisions did not occur in the pef1Δ pat1-114 strain. Deletion of pef1 also suppressed the expression of DNA replication factors and the phosphorylation of Cdc2 Tyr-15. The double deletion of clg1 and psl1 arrested meiotic initiation in pat1-114 mutant cells, similar to that of pef1-deficient cells. Meiotic progression was also slightly delayed in the pas1-deficient strain. Our results reveal that Pef1 regulates cyclin-coordinated meiotic progression.
Collapse
|
20
|
Jishage M, Roeder RG. Regulation of hepatocyte cell cycle re-entry by RNA polymerase II-associated Gdown1. Cell Cycle 2020; 19:3222-3230. [PMID: 33238793 PMCID: PMC7751663 DOI: 10.1080/15384101.2020.1843776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023] Open
Abstract
Liver is the central organ responsible for whole-body metabolism, and its constituent hepatocytes are the major players that carry out liver functions. Although they are highly differentiated and rarely divide, hepatocytes re-enter the cell cycle following hepatic loss due to liver damage or injury. However, the exact molecular mechanisms underlying cell cycle re-entry remain undefined. Gdown1 is an RNA polymerase II (Pol II)-associated protein that has been linked to the function of the Mediator transcriptional coactivator complex. We recently found that Gdown1 ablation in mouse liver leads to down-regulation of highly expressed liver-specific genes and a concomitant cell cycle re-entry associated with the induction of cell cycle-related genes. Unexpectedly, in view of a previously documented inhibitory effect on transcription initiation by Pol II in vitro, we found that Gdown1 is associated with elongating Pol II on the highly expressed genes and that its ablation leads to a reduced Pol II occupancy that correlates with the reduced expression of these genes. Based on these observations, we discuss the in vitro and in vivo functions of Gdown1 and consider mechanisms by which the dysregulated Pol II recruitment associated with Gdown1 loss might induce quiescent cell re-entry into the cell cycle.
Collapse
Affiliation(s)
- Miki Jishage
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
21
|
Green B, Lian H, Yu Y, Zu T. Ultra high-dimensional semiparametric longitudinal data analysis. Biometrics 2020; 77:903-913. [PMID: 32750150 DOI: 10.1111/biom.13348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/08/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022]
Abstract
As ultra high-dimensional longitudinal data are becoming ever more apparent in fields such as public health and bioinformatics, developing flexible methods with a sparse model is of high interest. In this setting, the dimension of the covariates can potentially grow exponentially as exp ( n 1 / 2 ) with respect to the number of clusters n. We consider a flexible semiparametric approach, namely, partially linear single-index models, for ultra high-dimensional longitudinal data. Most importantly, we allow not only the partially linear covariates but also the single-index covariates within the unknown flexible function estimated nonparametrically to be ultra high dimensional. Using penalized generalized estimating equations, this approach can capture correlation within subjects, can perform simultaneous variable selection and estimation with a smoothly clipped absolute deviation penalty, and can capture nonlinearity and potentially some interactions among predictors. We establish asymptotic theory for the estimators including the oracle property in ultra high dimension for both the partially linear and nonparametric components, and we present an efficient algorithm to handle the computational challenges. We show the effectiveness of our method and algorithm via a simulation study and a yeast cell cycle gene expression data.
Collapse
Affiliation(s)
- Brittany Green
- Department of Computer Information Systems, University of Louisville, Louisville, Kentucky
| | - Heng Lian
- Department of Mathematics, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Yan Yu
- Department of Operations, Business Analytics, & Information Systems, University of Cincinnati, Cincinnati, Ohio
| | - Tianhai Zu
- Department of Operations, Business Analytics, & Information Systems, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
22
|
Katebi A, Kohar V, Lu M. Random Parametric Perturbations of Gene Regulatory Circuit Uncover State Transitions in Cell Cycle. iScience 2020; 23:101150. [PMID: 32450514 PMCID: PMC7251928 DOI: 10.1016/j.isci.2020.101150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/05/2020] [Accepted: 05/05/2020] [Indexed: 02/03/2023] Open
Abstract
Many biological processes involve precise cellular state transitions controlled by complex gene regulation. Here, we use budding yeast cell cycle as a model system and explore how a gene regulatory circuit encodes essential information of state transitions. We present a generalized random circuit perturbation method for circuits containing heterogeneous regulation types and its usage to analyze both steady and oscillatory states from an ensemble of circuit models with random kinetic parameters. The stable steady states form robust clusters with a circular structure that are associated with cell cycle phases. This circular structure in the clusters is consistent with single-cell RNA sequencing data. The oscillatory states specify the irreversible state transitions along cell cycle progression. Furthermore, we identify possible mechanisms to understand the irreversible state transitions from the steady states. We expect this approach to be robust and generally applicable to unbiasedly predict dynamical transitions of a gene regulatory circuit.
Collapse
Affiliation(s)
- Ataur Katebi
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Vivek Kohar
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Mingyang Lu
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| |
Collapse
|
23
|
Gallegos JE, Hayrynen S, Adames NR, Peccoud J. Challenges and opportunities for strain verification by whole-genome sequencing. Sci Rep 2020; 10:5873. [PMID: 32245992 PMCID: PMC7125075 DOI: 10.1038/s41598-020-62364-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 03/11/2020] [Indexed: 11/28/2022] Open
Abstract
Laboratory strains, cell lines, and other genetic materials change hands frequently in the life sciences. Despite evidence that such materials are subject to mix-ups, contamination, and accumulation of secondary mutations, verification of strains and samples is not an established part of many experimental workflows. With the plummeting cost of next generation technologies, it is conceivable that whole genome sequencing (WGS) could be applied to routine strain and sample verification in the future. To demonstrate the need for strain validation by WGS, we sequenced haploid yeast segregants derived from a popular commercial mutant collection and identified several unexpected mutations. We determined that available bioinformatics tools may be ill-suited for verification and highlight the importance of finishing reference genomes for commonly used laboratory strains.
Collapse
Affiliation(s)
| | | | | | - Jean Peccoud
- Colorado State University, Colorado, USA.
- GenoFAB, Inc, Fort Collins, USA.
| |
Collapse
|
24
|
Panchy NL, Lloyd JP, Shiu SH. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data. BMC Genomics 2020; 21:159. [PMID: 32054475 PMCID: PMC7020519 DOI: 10.1186/s12864-020-6554-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Gene expression is regulated by DNA-binding transcription factors (TFs). Together with their target genes, these factors and their interactions collectively form a gene regulatory network (GRN), which is responsible for producing patterns of transcription, including cyclical processes such as genome replication and cell division. However, identifying how this network regulates the timing of these patterns, including important interactions and regulatory motifs, remains a challenging task. RESULTS We employed four in vivo and in vitro regulatory data sets to investigate the regulatory basis of expression timing and phase-specific patterns cell-cycle expression in Saccharomyces cerevisiae. Specifically, we considered interactions based on direct binding between TF and target gene, indirect effects of TF deletion on gene expression, and computational inference. We found that the source of regulatory information significantly impacts the accuracy and completeness of recovering known cell-cycle expressed genes. The best approach involved combining TF-target and TF-TF interactions features from multiple datasets in a single model. In addition, TFs important to multiple phases of cell-cycle expression also have the greatest impact on individual phases. Important TFs regulating a cell-cycle phase also tend to form modules in the GRN, including two sub-modules composed entirely of unannotated cell-cycle regulators (STE12-TEC1 and RAP1-HAP1-MSN4). CONCLUSION Our findings illustrate the importance of integrating both multiple omics data and regulatory motifs in order to understand the significance regulatory interactions involved in timing gene expression. This integrated approached allowed us to recover both known cell-cycles interactions and the overall pattern of phase-specific expression across the cell-cycle better than any single data set. Likewise, by looking at regulatory motifs in the form of TF-TF interactions, we identified sets of TFs whose co-regulation of target genes was important for cell-cycle expression, even when regulation by individual TFs was not. Overall, this demonstrates the power of integrating multiple data sets and models of interaction in order to understand the regulatory basis of established biological processes and their associated gene regulatory networks.
Collapse
Affiliation(s)
- Nicholas L Panchy
- Genetics Graduate Program, Michigan State University, East Lansing, MI, 48824, USA.,Present address: National Institute for Mathematical and Biological Synthesis, University of Tennessee, 1122 Volunteer Blvd., Suite 106, Knoxville, TN, 37996-3410, USA
| | - John P Lloyd
- Department of Human Genetics and Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shin-Han Shiu
- Genetics Graduate Program, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA. .,Michigan State University, Plant Biology Laboratories, 612 Wilson Road, Room 166, East Lansing, MI, 48824-1312, USA.
| |
Collapse
|
25
|
Dokshin GA, Davis GM, Sawle AD, Eldridge MD, Nicholls PK, Gourley TE, Romer KA, Molesworth LW, Tatnell HR, Ozturk AR, de Rooij DG, Hannon GJ, Page DC, Mello CC, Carmell MA. GCNA Interacts with Spartan and Topoisomerase II to Regulate Genome Stability. Dev Cell 2020; 52:53-68.e6. [PMID: 31839538 PMCID: PMC7227305 DOI: 10.1016/j.devcel.2019.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/14/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022]
Abstract
GCNA proteins are expressed across eukarya in pluripotent cells and have conserved functions in fertility. GCNA homologs Spartan (DVC-1) and Wss1 resolve DNA-protein crosslinks (DPCs), including Topoisomerase-DNA adducts, during DNA replication. Here, we show that GCNA mutants in mouse and C. elegans display defects in genome maintenance including DNA damage, aberrant chromosome condensation, and crossover defects in mouse spermatocytes and spontaneous genomic rearrangements in C. elegans. We show that GCNA and topoisomerase II (TOP2) physically interact in both mice and worms and colocalize on condensed chromosomes during mitosis in C. elegans embryos. Moreover, C. elegans gcna-1 mutants are hypersensitive to TOP2 poison. Together, our findings support a model in which GCNA provides genome maintenance functions in the germline and may do so, in part, by promoting the resolution of TOP2 DPCs.
Collapse
Affiliation(s)
- Gregoriy A Dokshin
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gregory M Davis
- School of Health and Life Sciences, Federation University, VIC 3841, Australia
| | - Ashley D Sawle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Matthew D Eldridge
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Taylin E Gourley
- School of Health and Life Sciences, Federation University, VIC 3841, Australia
| | - Katherine A Romer
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA; Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Luke W Molesworth
- School of Health and Life Sciences, Federation University, VIC 3841, Australia
| | - Hannah R Tatnell
- School of Health and Life Sciences, Federation University, VIC 3841, Australia
| | - Ahmet R Ozturk
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dirk G de Rooij
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA; Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584, the Netherlands; Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam 1105, the Netherlands
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David C Page
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Michelle A Carmell
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
26
|
Campbell JM, Habibalahi A, Mahbub S, Gosnell M, Anwer AG, Paton S, Gronthos S, Goldys E. Non-destructive, label free identification of cell cycle phase in cancer cells by multispectral microscopy of autofluorescence. BMC Cancer 2019; 19:1242. [PMID: 31864316 PMCID: PMC6925881 DOI: 10.1186/s12885-019-6463-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/15/2019] [Indexed: 01/08/2023] Open
Abstract
Background Cell cycle analysis is important for cancer research. However, available methodologies have drawbacks including limited categorisation and reliance on fixation, staining or transformation. Multispectral analysis of endogenous cell autofluorescence has been shown to be sensitive to changes in cell status and could be applied to the discrimination of cell cycle without these steps. Methods Cells from the MIA-PaCa-2, PANC-1, and HeLa cell lines were plated on gridded dishes and imaged using a multispectral fluorescence microscope. They were then stained for proliferating cell nuclear antigen (PCNA) and DNA intensity as a reference standard for their cell cycle position (G1, S, G2, M). The multispectral data was split into training and testing datasets and models were generated to discriminate between G1, S, and G2 + M phase cells. A standard decision tree classification approach was taken, and a two-step system was generated for each line. Results Across cancer cell lines accuracy ranged from 68.3% (MIA-PaCa-2) to 73.3% (HeLa) for distinguishing G1 from S and G2 + M, and 69.0% (MIA-PaCa-2) to 78.0% (PANC1) for distinguishing S from G2 + M. Unmixing the multispectral data showed that the autofluorophores NADH, FAD, and PPIX had significant differences between phases. Similarly, the redox ratio and the ratio of protein bound to free NADH were significantly affected. Conclusions These results demonstrate that multispectral microscopy could be used for the non-destructive, label free discrimination of cell cycle phase in cancer cells. They provide novel information on the mechanisms of cell-cycle progression and control, and have practical implications for oncology research.
Collapse
Affiliation(s)
- Jared M Campbell
- Department of Physics and Astronomy, Macquarie University, North Ryde, New South Wales, 2109, Australia. .,ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, New South Wales, 2109, Australia. .,ARC Centre of Excellence in Nanoscale Biophotonics, The University of New South Wales, Sydney, New South Wales, 2052, Australia. .,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia.
| | - Abbas Habibalahi
- Department of Physics and Astronomy, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence in Nanoscale Biophotonics, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,School of Engineering, Faculty of Science and Engineering, Macquarie University, 2109, North Ryde, NSW, 2109, Australia
| | - Saabah Mahbub
- Department of Physics and Astronomy, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence in Nanoscale Biophotonics, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Martin Gosnell
- Department of Physics and Astronomy, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, New South Wales, 2109, Australia.,Quantitative Pty Ltd, Mt Victoria, New South Wales, 2786, Australia
| | - Ayad G Anwer
- Department of Physics and Astronomy, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence in Nanoscale Biophotonics, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Sharon Paton
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Ewa Goldys
- Department of Physics and Astronomy, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence in Nanoscale Biophotonics, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
27
|
Ding J, Lin H, Feng M, Ying S. Mbp1, a component of the MluI cell cycle box‐binding complex, contributes to morphological transition and virulence in the filamentous entomopathogenic fungus
Beauveria bassiana. Environ Microbiol 2019; 22:584-597. [DOI: 10.1111/1462-2920.14868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Jin‐Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou 310058 China
| | - Hai‐Yan Lin
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou 310058 China
| | - Ming‐Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou 310058 China
| | - Sheng‐Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou 310058 China
| |
Collapse
|
28
|
Kishkevich A, Cooke SL, Harris MRA, de Bruin RAM. Gcn5 and Rpd3 have a limited role in the regulation of cell cycle transcripts during the G1 and S phases in Saccharomyces cerevisiae. Sci Rep 2019; 9:10686. [PMID: 31337860 PMCID: PMC6650506 DOI: 10.1038/s41598-019-47170-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/26/2019] [Indexed: 01/12/2023] Open
Abstract
Activation of cell cycle regulated transcription during the G1-to-S transition initiates S phase entry and cell cycle commitment. The molecular mechanisms involving G1/S transcriptional regulation are well established and have been shown to be evolutionary conserved from yeast to humans. Previous work has suggested that changes to the chromatin state, specifically through histone acetylation, has an important role in the regulation of G1/S transcription in both yeast and human cells. Here we investigate the role of histone acetylation in G1/S transcriptional regulation in the budding yeast Saccharomyces cerevisiae. Our work shows that histone acetylation at specific sites at G1/S target gene promoters peaks at the G1-to-S transition, coinciding with their peak transcription levels. Acetylation at G1/S target promoters is significantly reduced upon deletion of the previously implicated histone acetyltransferase Gcn5, but G1/S cell cycle regulated transcription is largely unaffected. The histone deacetylase Rpd3, suggested to have a role in Whi5-dependent repression, is required for full repression of G1/S target genes in the G1 and S phases. However, in the context of transcriptionally active levels during the G1-to-S transition, this seems to play a minor role in the regulation of cell cycle transcription. Our data suggests that histone acetylation might modulate the amplitude of G1/S cell cycle regulated transcription in Saccharomyces cerevisiae, but has a limited role in its overall regulation.
Collapse
Affiliation(s)
- A Kishkevich
- MRC Laboratory for Molecular Cell Biology University College London, WC1E 6BT, London, UK
- Department of Biochemistry, University of Oxford, OX3 1QU, Oxford, UK
| | - S L Cooke
- MRC Laboratory for Molecular Cell Biology University College London, WC1E 6BT, London, UK
| | - M R A Harris
- MRC Laboratory for Molecular Cell Biology University College London, WC1E 6BT, London, UK
| | - R A M de Bruin
- MRC Laboratory for Molecular Cell Biology University College London, WC1E 6BT, London, UK.
- UCL Cancer Institute, University College London, WC1E 6BT, London, UK.
| |
Collapse
|
29
|
Catala M, Abou Elela S. Promoter-dependent nuclear RNA degradation ensures cell cycle-specific gene expression. Commun Biol 2019; 2:211. [PMID: 31240249 PMCID: PMC6572803 DOI: 10.1038/s42003-019-0441-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/29/2019] [Indexed: 11/09/2022] Open
Abstract
Cell cycle progression depends on phase-specific gene expression. Here we show that the nuclear RNA degradation machinery plays a lead role in promoting cell cycle-dependent gene expression by triggering promoter-dependent co-transcriptional RNA degradation. Single molecule quantification of RNA abundance in different phases of the cell cycle indicates that relative curtailment of gene expression in certain phases is attained even when transcription is not completely inhibited. When nuclear ribonucleases are deleted, transcription of the Saccharomyces cerevisiae G1-specific axial budding gene AXL2 is detected throughout the cell cycle and its phase-specific expression is lost. Promoter replacement abolished cell cycle-dependent RNA degradation and rendered the RNA insensitive to the deletion of nuclear ribonucleases. Together the data reveal a model of gene regulation whereby RNA abundance is controlled by promoter-dependent induction of RNA degradation.
Collapse
Affiliation(s)
- Mathieu Catala
- Département de microbiologie et d’infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8 Canada
| | - Sherif Abou Elela
- Département de microbiologie et d’infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8 Canada
| |
Collapse
|
30
|
Haliki E, Alpagut Keskin N, Masalci O. Boolean gene regulatory network model of centromere function in Saccharomyces cerevisiae. J Biol Phys 2019; 45:235-251. [PMID: 31175490 DOI: 10.1007/s10867-019-09526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/09/2019] [Indexed: 10/26/2022] Open
Abstract
Centromeres, a highly conserved locus of eukaryotic chromosomes, have critical function for genome stability and integrity. Because their centromeric DNA sequences are necessary and sufficient for kinetochore recruitment and DNA segregation, point centromeres of Saccharomyces cerevisiae chromosomes provide an attractive system for the study of the regulation of centromere function. Using the mathematical model of Boolean gene regulatory networks, the gene regulatory dynamics of centromere region of S. cerevisiae (budding yeast), which is actively involved in the cell-cycle, has been examined. A gene regulatory network containing the relevant centromere genes of the model organism from biological databases was established and all possible cellular phenotypes subjected to a synchronous gene regulation and attracted to several basins. Gene expression in the largest attractor was compared with the biological data by obtaining changes in the cell-cycle. We show that the model for centromere function recovers a single cyclic attractor. The trajectory flow diagram plotted over all initial conditions of the system also shows good correspondence with the cell-cycle phases. Although other upstream signals are possibly involved in the regulation of centromere genes, proposed interactions with selected cell-cycle genes were sufficient to recover whole cell-cycle process. To truly clarify these proposed regulatory interactions of candidate genes for centromere function, profiling and analyzing their expression levels over time with expanded nodes/edges are required. Moreover, a previously modeled gene knock-down mechanism applied to the network and robustness versus knock-down was interpreted based on the obtained consequences.
Collapse
|
31
|
Jibrim RLM, de Carvalho CV, Invitti AL, Schor E. Expression of the TFDP1 gene in the endometrium of women with deep infiltrating endometriosis. Gynecol Endocrinol 2019; 35:490-493. [PMID: 30638096 DOI: 10.1080/09513590.2018.1540569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The field of endometriosis etiopathogenesis aims to identify the origin of disease in endometrial disorders. Changes in gene and protein expression related to cell adhesion, collagenases, and, mainly, cell cycle regulators have been identified. We set out to analyze the expression of the transcription factor DP-1 (TFDP1) gene, which encodes a protein that controls the G1/S phase passage of the cell cycle, in the endometrium of women with deep infiltrating endometriosis (DIE). Samples of endometrium from both endometriosis-affected women and healthy women were collected, cultured and maintained at the Cell Bank of the Pelvic Pain and Endometriosis Unit of the Federal University of Sao Paulo. This study analyzed five samples from the endometrium cell culture of healthy patients (i.e. no pelvic disease, as determined by means of laparoscopic tubal ligation) and six samples from women diagnosed with DIE. Samples were evaluated for TFDP1 gene expression by real-time PCR. We observed a downregulation of TFDP1 in the endometrium cells of women with DIE when compared to the control (a fold-change of -2.05, p value=.011). The TFDP1 gene is part of the cell cycle pathway, but its function is not yet clear. Additional studies are necessary to clarify the function of TFDP1 in endometriosis etiopathogenesis.
Collapse
Affiliation(s)
- Rodrigo Lopes Meime Jibrim
- a Gynecology Department, Pelvic Pain and Endometriosis Unit , Universidade Federal de São Paulo - Escola Paulista de Medicina (UNIFESP-EPM) , Sao Paulo , Brazil
| | - Cristina Valletta de Carvalho
- a Gynecology Department, Pelvic Pain and Endometriosis Unit , Universidade Federal de São Paulo - Escola Paulista de Medicina (UNIFESP-EPM) , Sao Paulo , Brazil
| | - Adriana Luckow Invitti
- a Gynecology Department, Pelvic Pain and Endometriosis Unit , Universidade Federal de São Paulo - Escola Paulista de Medicina (UNIFESP-EPM) , Sao Paulo , Brazil
| | - Eduardo Schor
- a Gynecology Department, Pelvic Pain and Endometriosis Unit , Universidade Federal de São Paulo - Escola Paulista de Medicina (UNIFESP-EPM) , Sao Paulo , Brazil
| |
Collapse
|
32
|
Dronamraju R, Hepperla AJ, Shibata Y, Adams AT, Magnuson T, Davis IJ, Strahl BD. Spt6 Association with RNA Polymerase II Directs mRNA Turnover During Transcription. Mol Cell 2019; 70:1054-1066.e4. [PMID: 29932900 DOI: 10.1016/j.molcel.2018.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/23/2018] [Accepted: 05/17/2018] [Indexed: 10/28/2022]
Abstract
Spt6 is an essential histone chaperone that mediates nucleosome reassembly during gene transcription. Spt6 also associates with RNA polymerase II (RNAPII) via a tandem Src2 homology domain. However, the significance of Spt6-RNAPII interaction is not well understood. Here, we show that Spt6 recruitment to genes and the nucleosome reassembly functions of Spt6 can still occur in the absence of its association with RNAPII. Surprisingly, we found that Spt6-RNAPII association is required for efficient recruitment of the Ccr4-Not de-adenylation complex to transcribed genes for essential degradation of a range of mRNAs, including mRNAs required for cell-cycle progression. These findings reveal an unexpected control mechanism for mRNA turnover during transcription facilitated by a histone chaperone.
Collapse
Affiliation(s)
- Raghuvar Dronamraju
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Austin J Hepperla
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yoichiro Shibata
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander T Adams
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Terry Magnuson
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, The Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, The Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Departments of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
33
|
Down-regulation of Cdk1 activity in G1 coordinates the G1/S gene expression programme with genome replication. Curr Genet 2019; 65:685-690. [DOI: 10.1007/s00294-018-00926-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 02/07/2023]
|
34
|
Cell Cycle-Regulated Transcription of CENP-A by the MBF Complex Ensures Optimal Level of CENP-A for Centromere Formation. Genetics 2019; 211:861-875. [PMID: 30635289 DOI: 10.1534/genetics.118.301745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/04/2019] [Indexed: 11/18/2022] Open
Abstract
The centromere plays an essential role in chromosome segregation. In most eukaryotes, centromeres are epigenetically defined by the conserved histone H3 variant CENP-A. Proper centromere assembly is dependent upon the tight regulation of CENP-A level. Cell cycle regulation of CENP-A transcription appears to be a universal feature across eukaryotes, but the molecular mechanism underlying the temporal control of CENP-A transcription and how such regulation contributes to centromere function remains elusive. CENP-A in fission yeast has been shown to be transcribed before S phase. Using various synchronization methods, we confirmed that CENP-A transcription occurs at G1, leading to an almost twofold increase of the protein during S phase. Through a genetic screen, we identified the MBF (MluI box-binding factors) complex as a key regulator of temporal control of CENP-A transcription. The periodic transcription of CENP-A is lost in MBF mutants, resulting in CENP-A mislocalization and chromosome segregation defects. We identified the MCB (MluI cell cycle box) motif in the CENP-A promoter, and further showed that the MBF complex binds to the motif to restrict CENP-A transcription to G1. Mutations of the MCB motif cause constitutive CENP-A expression and deleterious effects on cell survival. Using promoters driving transcription to different cell cycle stages, we found that timing of CENP-A transcription is dispensable for its centromeric localization. Our data instead indicate that cell cycle-regulated CENP-A transcription is a key step to ensure that a proper amount of CENP-A is generated across generations. This study provides mechanistic insights into the regulation of cell cycle-dependent CENP-A transcription, as well as its importance on centromere function.
Collapse
|
35
|
Abstract
Many yeasts undergo a morphological transition from yeast-to-hyphal growth in response to environmental conditions. We used forward and reverse genetic techniques to identify genes regulating this transition in Yarrowia lipolytica. We confirmed that the transcription factor Ylmsn2 is required for the transition to hyphal growth and found that signaling by the histidine kinases Ylchk1 and Ylnik1 as well as the MAP kinases of the HOG pathway (Ylssk2, Ylpbs2, and Ylhog1) regulates the transition to hyphal growth. These results suggest that Y. lipolytica transitions to hyphal growth in response to stress through multiple kinase pathways. Intriguingly, we found that a repetitive portion of the genome containing telomere-like and rDNA repeats may be involved in the transition to hyphal growth, suggesting a link between this region and the general stress response. The yeast Yarrowia lipolytica undergoes a morphological transition from yeast-to-hyphal growth in response to environmental conditions. A forward genetic screen was used to identify mutants that reliably remain in the yeast phase, which were then assessed by whole-genome sequencing. All the smooth mutants identified, so named because of their colony morphology, exhibit independent loss of DNA at a repetitive locus made up of interspersed ribosomal DNA and short 10- to 40-mer telomere-like repeats. The loss of repetitive DNA is associated with downregulation of genes with stress response elements (5′-CCCCT-3′) and upregulation of genes with cell cycle box (5′-ACGCG-3′) motifs in their promoter region. The stress response element is bound by the transcription factor Msn2p in Saccharomyces cerevisiae. We confirmed that the Y. lipolyticamsn2 (Ylmsn2) ortholog is required for hyphal growth and found that overexpression of Ylmsn2 enables hyphal growth in smooth strains. The cell cycle box is bound by the Mbp1p/Swi6p complex in S. cerevisiae to regulate G1-to-S phase progression. We found that overexpression of either the Ylmbp1 or Ylswi6 homologs decreased hyphal growth and that deletion of either Ylmbp1 or Ylswi6 promotes hyphal growth in smooth strains. A second forward genetic screen for reversion to hyphal growth was performed with the smooth-33 mutant to identify additional genetic factors regulating hyphal growth in Y. lipolytica. Thirteen of the mutants sequenced from this screen had coding mutations in five kinases, including the histidine kinases Ylchk1 and Ylnik1 and kinases of the high-osmolarity glycerol response (HOG) mitogen-activated protein (MAP) kinase cascade Ylssk2, Ylpbs2, and Ylhog1. Together, these results demonstrate that Y. lipolytica transitions to hyphal growth in response to stress through multiple signaling pathways. IMPORTANCE Many yeasts undergo a morphological transition from yeast-to-hyphal growth in response to environmental conditions. We used forward and reverse genetic techniques to identify genes regulating this transition in Yarrowia lipolytica. We confirmed that the transcription factor Ylmsn2 is required for the transition to hyphal growth and found that signaling by the histidine kinases Ylchk1 and Ylnik1 as well as the MAP kinases of the HOG pathway (Ylssk2, Ylpbs2, and Ylhog1) regulates the transition to hyphal growth. These results suggest that Y. lipolytica transitions to hyphal growth in response to stress through multiple kinase pathways. Intriguingly, we found that a repetitive portion of the genome containing telomere-like and rDNA repeats may be involved in the transition to hyphal growth, suggesting a link between this region and the general stress response.
Collapse
|
36
|
Rubio A, García-Blanco N, Vázquez-Bolado A, Belén Suárez M, Moreno S. Nutritional cell cycle reprogramming reveals that inhibition of Cdk1 is required for proper MBF-dependent transcription. J Cell Sci 2018; 131:jcs.218743. [PMID: 30154212 DOI: 10.1242/jcs.218743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/20/2018] [Indexed: 01/22/2023] Open
Abstract
In nature, cells and in particular unicellular microorganisms are exposed to a variety of nutritional environments. Fission yeast cells cultured in nitrogen-rich media grow fast, divide with a large size and show a short G1 and a long G2. However, when cultured in nitrogen-poor media, they exhibit reduced growth rate and cell size and a long G1 and a short G2. In this study, we compared the phenotypes of cells lacking the highly conserved cyclin-dependent kinase (Cdk) inhibitor Rum1 and the anaphase-promoting complex/cyclosome (APC/C) activator Ste9 in nitrogen-rich and nitrogen-poor media. Rum1 and Ste9 are dispensable for cell division in nitrogen-rich medium. However, in nitrogen-poor medium they are essential for generating a proper wave of MluI cell-cycle box binding factor (MBF)-dependent transcription at the end of G1, which is crucial for promoting a successful S phase. Mutants lacking Rum1 and Ste9 showed premature entry into S phase and a reduced wave of MBF-dependent transcription, leading to replication stress, DNA damage and G2 cell cycle arrest. This work demonstrates how reprogramming the cell cycle by changing the nutritional environment may reveal new roles for cell cycle regulators.
Collapse
Affiliation(s)
- Angela Rubio
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - Natalia García-Blanco
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - Alicia Vázquez-Bolado
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - María Belén Suárez
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain.,Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca. Spain
| | - Sergio Moreno
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
37
|
Zamanighomi M, Zamanian M, Kimber M, Wang Z. Gene Regulatory Network Inference from Perturbed Time-Series Expression Data via Ordered Dynamical Expansion of Non-Steady State Actors. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1093-1106. [PMID: 26701893 DOI: 10.1109/tcbb.2015.2509992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The reconstruction of gene regulatory networks from gene expression data has been the subject of intense research activity. A variety of models and methods have been developed to address different aspects of this important problem. However, these techniques are narrowly focused on particular biological and experimental platforms, and require experimental data that are typically unavailable and difficult to ascertain. The more recent availability of higher-throughput sequencing platforms, combined with more precise modes of genetic perturbation, presents an opportunity to formulate more robust and comprehensive approaches to gene network inference. Here, we propose a step-wise framework for identifying gene-gene regulatory interactions that expand from a known point of genetic or chemical perturbation using time series gene expression data. This novel approach sequentially identifies non-steady state genes post-perturbation and incorporates them into a growing series of low-complexity optimization problems. The governing ordinary differential equations of this model are rooted in the biophysics of stochastic molecular events that underlie gene regulation, delineating roles for both protein and RNA-mediated gene regulation. We show the successful application of our core algorithms for network inference using simulated and real datasets.
Collapse
|
38
|
Singh B, Wu PYJ. Regulation of the program of DNA replication by CDK: new findings and perspectives. Curr Genet 2018; 65:79-85. [PMID: 29926159 DOI: 10.1007/s00294-018-0860-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022]
Abstract
Progression through the cell cycle is driven by the activities of the cyclin-dependent kinase (CDK) family of enzymes, which establish an ordered passage through the cell cycle phases. CDK activity is crucial for the cellular transitions from G1 to S and G2 to M, which are highly controlled to promote the faithful duplication of the genetic material and the transmission of the genome into daughter cells, respectively. While oscillations in CDK activity are essential for cell division, how its specific dynamics may shape cellular processes remains an open question. Recently, we have investigated the potential role of CDK in establishing the profile of replication initiation along the chromosomes, also referred to as the replication program. Our results demonstrated that the timing and level of CDK activity at G1/S provide two critical and independent inputs that modulate the pattern of origin usage. In this review, we will present the conclusions of our study and discuss the implications of our findings for cellular function and physiology.
Collapse
Affiliation(s)
- Balveer Singh
- CNRS, Institute of Genetics and Development of Rennes, University of Rennes, UMR 6290, 2 avenue du Pr. Léon Bernard, 35043, Rennes, France
| | - Pei-Yun Jenny Wu
- CNRS, Institute of Genetics and Development of Rennes, University of Rennes, UMR 6290, 2 avenue du Pr. Léon Bernard, 35043, Rennes, France.
| |
Collapse
|
39
|
Takenaka Y, Mikami K, Seno S, Matsuda H. Automated transition analysis of activated gene regulation during diauxic nutrient shift in Escherichia coli and adipocyte differentiation in mouse cells. BMC Bioinformatics 2018; 19:89. [PMID: 29745848 PMCID: PMC5998889 DOI: 10.1186/s12859-018-2072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Comprehensively understanding the dynamics of biological systems is among the biggest current challenges in biology and medicine. To acquire this understanding, researchers have measured the time-series expression profiles of cell lines of various organisms. Biological technologies have also drastically improved, providing a huge amount of information with support from bioinformatics and systems biology. However, the transitions between the activation and inactivation of gene regulations, at the temporal resolution of single time points, are difficult to extract from time-course gene expression profiles. Results Our proposed method reports the activation period of each gene regulation from gene expression profiles and a gene regulatory network. The correctness and effectiveness of the method were validated by analyzing the diauxic shift from glucose to lactose in Escherichia coli. The method completely detected the three periods of the shift; 1) consumption of glucose as nutrient source, 2) the period of seeking another nutrient source and 3) consumption of lactose as nutrient source. We then applied the method to mouse adipocyte differentiation data. Cell differentiation into adipocytes is known to involve two waves of the gene regulation cascade, and sub-waves are predicted. From the gene expression profiles of the cell differentiation process from ES to adipose cells (62 time points), our method acquired four periods; three periods covering the two known waves of the cascade, and a final period of gene regulations when the differentiation to adipocytes was completed. Conclusions Our proposed method identifies the transitions of gene regulations from time-series gene expression profiles. Dynamic analyses are essential for deep understanding of biological systems and for identifying the causes of the onset of diseases such as diabetes and osteoporosis. The proposed method can greatly contribute to the progress of biology and medicine.
Collapse
Affiliation(s)
- Yoichi Takenaka
- Faculty of Informatics, Kansai University, Ryousenji 2-1-1, Takatsuki, Osaka, Japan. .,Graduate School of Information Science and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka, Japan. .,Graduate School of Medicine, Osaka University, Yamadaoka 2, Suita, Osaka, Japan.
| | - Kazuma Mikami
- Recruit Holdings Co. Ltd., Marunouchi 1-9-2, Chiyoda, Tokyo, Japan
| | - Shigeto Seno
- Graduate School of Information Science and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka, Japan
| | - Hideo Matsuda
- Graduate School of Information Science and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka, Japan
| |
Collapse
|
40
|
Xu G, Yang S, Meng L, Wang BG. The plant hormone abscisic acid regulates the growth and metabolism of endophytic fungus Aspergillus nidulans. Sci Rep 2018; 8:6504. [PMID: 29695775 PMCID: PMC5916901 DOI: 10.1038/s41598-018-24770-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/10/2018] [Indexed: 01/14/2023] Open
Abstract
Plant hormones are well known chemical signals that regulate plant growth, development, and adaptation. However, after comparative transcriptome and metabolite analysis, we found that the plant hormone abscisic acid (ABA) also affect the growth and metabolism of endophytic fungus Aspergillus nidulans. There were 3148 up-regulated and 3160 down-regulated genes identified during 100 nM ABA induction. These differentially expressed genes (DEGs) were mainly involved in: RNA polymerase and basal transcription factors; ribosome biogenesis, protein processing, proteasome, and ubiquitin mediated proteolysis; nucleotide metabolism and tri-carboxylic acid (TCA) cycle; cell cycle and biosynthesis of secondary metabolites. Production of mycotoxins, which have insect-resistance or anti-pathogen activity, was also changed with ABA induction. This study provides the first global view of ABA induced transcription and metabolite changes in endophytic fungus, which might suggest a potential fungus-plant cross-talk via ABA.
Collapse
Affiliation(s)
- Gangming Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China. .,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, People's Republic of China.
| | - Suiqun Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Linghong Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, People's Republic of China
| | - Bin-Gui Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China. .,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
41
|
Soreanu I, Hendler A, Dahan D, Dovrat D, Aharoni A. Marker-free genetic manipulations in yeast using CRISPR/CAS9 system. Curr Genet 2018; 64:1129-1139. [PMID: 29626221 DOI: 10.1007/s00294-018-0831-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/20/2022]
Abstract
The budding yeast is currently one of the major model organisms for the study of a wide variety of biological processes. Genetic manipulation of yeast involves the extensive usage of selectable markers that can lead to undesired effects. Thus, marker-free genetic manipulation in yeast is highly desirable for gene/promoter replacement and various other applications. Here we combine the power of selectable markers followed by CRISPR/CAS9 genome editing for common genetic manipulations in yeast in a marker-free manner. We demonstrate our approach for whole gene and promoter replacements and for high-efficiency operator array integration. Our approach allows the utilization of many thousands of existing strains including library strains for the generation of significant genetic changes in yeast in a marker-free and cloning-free fashion.
Collapse
Affiliation(s)
- Inga Soreanu
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Adi Hendler
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Danielle Dahan
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Daniel Dovrat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel.
| |
Collapse
|
42
|
Hendler A, Medina EM, Buchler NE, de Bruin RAM, Aharoni A. The evolution of a G1/S transcriptional network in yeasts. Curr Genet 2018; 64:81-86. [PMID: 28744706 DOI: 10.1007/s00294-017-0726-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 11/28/2022]
Abstract
The G1-to-S cell cycle transition is promoted by the periodic expression of a large set of genes. In Saccharomyces cerevisiae G1/S gene expression is regulated by two transcription factor (TF) complexes, the MBF and SBF, which bind to specific DNA sequences, the MCB and SCB, respectively. Despite extensive research little is known regarding the evolution of the G1/S transcription regulation including the co-evolution of the DNA binding domains with their respective DNA binding sequences. We have recently examined the co-evolution of the G1/S TF specificity through the systematic generation and examination of chimeric Mbp1/Swi4 TFs containing different orthologue DNA binding domains in S. cerevisiae (Hendler et al. in PLoS Genet 13:e1006778. doi: 10.1371/journal.pgen.1006778 , 2017). Here, we review the co-evolution of G1/S transcriptional network and discuss the evolutionary dynamics and specificity of the MBF-MCB and SBF-SCB interactions in different fungal species.
Collapse
Affiliation(s)
- Adi Hendler
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Beersheba, Israel
| | - Edgar M Medina
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Nicolas E Buchler
- Department of Biology, Duke University, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Beersheba, Israel.
| |
Collapse
|
43
|
Hendler A, Medina EM, Kishkevich A, Abu-Qarn M, Klier S, Buchler NE, de Bruin RAM, Aharoni A. Gene duplication and co-evolution of G1/S transcription factor specificity in fungi are essential for optimizing cell fitness. PLoS Genet 2017; 13:e1006778. [PMID: 28505153 PMCID: PMC5448814 DOI: 10.1371/journal.pgen.1006778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 05/30/2017] [Accepted: 04/24/2017] [Indexed: 01/21/2023] Open
Abstract
Transcriptional regulatory networks play a central role in optimizing cell survival. How DNA binding domains and cis-regulatory DNA binding sequences have co-evolved to allow the expansion of transcriptional networks and how this contributes to cellular fitness remains unclear. Here we experimentally explore how the complex G1/S transcriptional network evolved in the budding yeast Saccharomyces cerevisiae by examining different chimeric transcription factor (TF) complexes. Over 200 G1/S genes are regulated by either one of the two TF complexes, SBF and MBF, which bind to specific DNA binding sequences, SCB and MCB, respectively. The difference in size and complexity of the G1/S transcriptional network across yeast species makes it well suited to investigate how TF paralogs (SBF and MBF) and DNA binding sequences (SCB and MCB) co-evolved after gene duplication to rewire and expand the network of G1/S target genes. Our data suggests that whilst SBF is the likely ancestral regulatory complex, the ancestral DNA binding element is more MCB-like. G1/S network expansion took place by both cis- and trans- co-evolutionary changes in closely related but distinct regulatory sequences. Replacement of the endogenous SBF DNA-binding domain (DBD) with that from more distantly related fungi leads to a contraction of the SBF-regulated G1/S network in budding yeast, which also correlates with increased defects in cell growth, cell size, and proliferation.
Collapse
Affiliation(s)
- Adi Hendler
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Edgar M. Medina
- Department of Biology, Duke University, Durham, United States
- Center for Genomic and Computational Biology, Duke University, Durham, United States
| | - Anastasiya Kishkevich
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Mehtap Abu-Qarn
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Steffi Klier
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Nicolas E. Buchler
- Department of Biology, Duke University, Durham, United States
- Center for Genomic and Computational Biology, Duke University, Durham, United States
| | - Robertus A. M. de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| |
Collapse
|
44
|
Ryu HY, Wilson NR, Mehta S, Hwang SS, Hochstrasser M. Loss of the SUMO protease Ulp2 triggers a specific multichromosome aneuploidy. Genes Dev 2016; 30:1881-94. [PMID: 27585592 PMCID: PMC5024685 DOI: 10.1101/gad.282194.116] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/02/2016] [Indexed: 01/15/2023]
Abstract
The SUMO protease Ulp2 modulates many of the SUMO-dependent processes in budding yeast. Ryu et al. discovered that cells lacking Ulp2 display a twofold increase in transcript levels across two particular chromosomes: chromosome I (ChrI) and ChrXII. Extra copies of ChrI and ChrXII can be eliminated following reintroduction of ULP2, suggesting that aneuploidy is a reversible adaptive mechanism to counteract loss of the SUMO protease. Post-translational protein modification by the small ubiquitin-related modifier (SUMO) regulates numerous cellular pathways, including transcription, cell division, and genome maintenance. The SUMO protease Ulp2 modulates many of these SUMO-dependent processes in budding yeast. From whole-genome RNA sequencing (RNA-seq), we unexpectedly discovered that cells lacking Ulp2 display a twofold increase in transcript levels across two particular chromosomes: chromosome I (ChrI) and ChrXII. This is due to the two chromosomes being present at twice their normal copy number. An abnormal number of chromosomes, termed aneuploidy, is usually deleterious. However, development of specific aneuploidies allows rapid adaptation to cellular stresses, and aneuploidy characterizes most human tumors. Extra copies of ChrI and ChrXII appear quickly following loss of active Ulp2 and can be eliminated following reintroduction of ULP2, suggesting that aneuploidy is a reversible adaptive mechanism to counteract loss of the SUMO protease. Importantly, increased dosage of two genes on ChrI—CLN3 and CCR4, encoding a G1-phase cyclin and a subunit of the Ccr4–Not deadenylase complex, respectively—suppresses ulp2Δ aneuploidy, suggesting that increased levels of these genes underlie the aneuploidy induced by Ulp2 loss. Our results reveal a complex aneuploidy mechanism that adapts cells to loss of the SUMO protease Ulp2.
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Nicole R Wilson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Sameet Mehta
- Yale Center for Genome Analysis, Yale University, New Haven, Connecticut 06520, USA
| | - Soo Seok Hwang
- Department of Immunobiology, Yale University, New Haven, Connecticut 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
45
|
A high-resolution transcriptome map of cell cycle reveals novel connections between periodic genes and cancer. Cell Res 2016; 26:946-62. [PMID: 27364684 DOI: 10.1038/cr.2016.84] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/16/2015] [Accepted: 03/22/2016] [Indexed: 12/16/2022] Open
Abstract
Progression through the cell cycle is largely dependent on waves of periodic gene expression, and the regulatory networks for these transcriptome dynamics have emerged as critical points of vulnerability in various aspects of tumor biology. Through RNA-sequencing of human cells during two continuous cell cycles (>2.3 billion paired reads), we identified over 1 000 mRNAs, non-coding RNAs and pseudogenes with periodic expression. Periodic transcripts are enriched in functions related to DNA metabolism, mitosis, and DNA damage response, indicating these genes likely represent putative cell cycle regulators. Using our set of periodic genes, we developed a new approach termed "mitotic trait" that can classify primary tumors and normal tissues by their transcriptome similarity to different cell cycle stages. By analyzing >4 000 tumor samples in The Cancer Genome Atlas (TCGA) and other expression data sets, we found that mitotic trait significantly correlates with genetic alterations, tumor subtype and, notably, patient survival. We further defined a core set of 67 genes with robust periodic expression in multiple cell types. Proteins encoded by these genes function as major hubs of protein-protein interaction and are mostly required for cell cycle progression. The core genes also have unique chromatin features including increased levels of CTCF/RAD21 binding and H3K36me3. Loss of these features in uterine and kidney cancers is associated with altered expression of the core 67 genes. Our study suggests new chromatin-associated mechanisms for periodic gene regulation and offers a predictor of cancer patient outcomes.
Collapse
|
46
|
Abstract
Recent studies have revealed exciting new functions for forkhead transcription factors in cell proliferation and development. Cell proliferation is a fundamental process controlled by multiple overlapping mechanisms, and the control of gene expression plays a major role in the orderly and timely division of cells. This occurs through transcription factors regulating the expression of groups of genes at particular phases of the cell division cycle. In this way, the encoded gene products are present when they are required. This review outlines recent advances in our understanding of this process in yeast model systems and describes how this knowledge has informed analysis in more developmentally complex eukaryotes, particularly where it is relevant to human disease.
Collapse
|
47
|
Banyai G, Baïdi F, Coudreuse D, Szilagyi Z. Cdk1 activity acts as a quantitative platform for coordinating cell cycle progression with periodic transcription. Nat Commun 2016; 7:11161. [PMID: 27045731 PMCID: PMC4822045 DOI: 10.1038/ncomms11161] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 02/26/2016] [Indexed: 01/15/2023] Open
Abstract
Cell proliferation is regulated by cyclin-dependent kinases (Cdks) and requires the periodic expression of particular gene clusters in different cell cycle phases. However, the interplay between the networks that generate these transcriptional oscillations and the core cell cycle machinery remains largely unexplored. In this work, we use a synthetic regulable Cdk1 module to demonstrate that periodic expression is governed by quantitative changes in Cdk1 activity, with different clusters directly responding to specific activity levels. We further establish that cell cycle events neither participate in nor interfere with the Cdk1-driven transcriptional program, provided that cells are exposed to the appropriate Cdk1 activities. These findings contrast with current models that propose self-sustained and Cdk1-independent transcriptional oscillations. Our work therefore supports a model in which Cdk1 activity serves as a quantitative platform for coordinating cell cycle transitions with the expression of critical genes to bring about proper cell cycle progression. Cell proliferation is regulated by cyclin-dependent kinases (Cdks) and relies on periodic gene cluster expression according to cell cycle phases. Here the authors use a synthetic regulatable Cdk1 module to demonstrate that periodic expression is governed by quantitative changes in Cdk1 activity.
Collapse
Affiliation(s)
- Gabor Banyai
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicinaregatan 9A, PO Box 440, 41390 Gothenburg, Sweden
| | - Feriel Baïdi
- SyntheCell team, Institute of Genetics and Development of Rennes, CNRS UMR 6290, 2 Avenue du Pr. Léon Bernard, 35043 Rennes, France
| | - Damien Coudreuse
- SyntheCell team, Institute of Genetics and Development of Rennes, CNRS UMR 6290, 2 Avenue du Pr. Léon Bernard, 35043 Rennes, France
| | - Zsolt Szilagyi
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicinaregatan 9A, PO Box 440, 41390 Gothenburg, Sweden
| |
Collapse
|
48
|
Wang Z, Gu Z, Shen Y, Wang Y, Li J, Lv H, Huo K. The Natural Product Resveratrol Inhibits Yeast Cell Separation by Extensively Modulating the Transcriptional Landscape and Reprogramming the Intracellular Metabolome. PLoS One 2016; 11:e0150156. [PMID: 26950930 PMCID: PMC4780762 DOI: 10.1371/journal.pone.0150156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/10/2016] [Indexed: 12/28/2022] Open
Abstract
An increasing number of studies have shown that the promising compound resveratrol treats multiple diseases, such as cancer and aging; however, the resveratrol mode-of-action (MoA) remains largely unknown. Here, by virtue of multiple omics approaches, we adopted fission yeast as a model system with the goal of dissecting the common MoA of the anti-proliferative activity of resveratrol. We found that the anti-proliferative activity of resveratrol is mainly due to its unique role of inhibiting the separation of sister cells, similar phenotype with the C2H2 zinc finger transcription factor Ace2 knock-out strain. Microarray analysis shown that resveratrol has extensive impact on the fission yeast transcription levels. Among the changed gene's list, 40% of up-regulated genes are Core Environmental Stress Responses genes, and 57% of the down-regulated genes are periodically expressed. Moreover, resveratrol leverages the metabolome, which unbalances the intracellular pool sizes of several classes of amino acids, nucleosides, sugars and lipids, thus reflecting the remodulated metabolic networks. The complexity of the resveratrol MoA displayed in previous reports and our work demonstrates that multiple omics approaches must be applied together to obtain a complete picture of resveratrol's anti-proliferative function.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Song-Hu Road, Shanghai, 200438, China
- Division of Infectious Diseases, Weill Medical College of Cornell University, 413 E 69th St, New York, NY, 10021, United States of America
- * E-mail: (KH); (ZW); (HL)
| | - Zhongkai Gu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Song-Hu Road, Shanghai, 200438, China
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai, 200032, China
| | - Yan Shen
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai, 200032, China
| | - Yang Wang
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai, 200032, China
| | - Jing Li
- Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, 100084, China
| | - Hong Lv
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Song-Hu Road, Shanghai, 200438, China
- * E-mail: (KH); (ZW); (HL)
| | - Keke Huo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Song-Hu Road, Shanghai, 200438, China
- * E-mail: (KH); (ZW); (HL)
| |
Collapse
|
49
|
Cohen A, Kupiec M, Weisman R. Gad8 Protein Is Found in the Nucleus Where It Interacts with the MluI Cell Cycle Box-binding Factor (MBF) Transcriptional Complex to Regulate the Response to DNA Replication Stress. J Biol Chem 2016; 291:9371-81. [PMID: 26912660 DOI: 10.1074/jbc.m115.705251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 12/31/2022] Open
Abstract
The target of rapamycin (TOR) kinase is found at the core of two evolutionarily conserved complexes known as TOR complexes 1 and 2 (TORC1 and TORC2). In fission yeast, TORC2 is dispensable for proliferation under optimal growth conditions but is required for starvation and stress responses. We have previously reported that loss of function of TORC2 renders cells highly sensitive to DNA replication stress; however, the mechanism underlying this sensitivity is unknown. TORC2 has one known direct substrate, the kinase Gad8, which is related to AKT in human cells. Here we show that both TORC2 and its substrate Gad8 are found in the nucleus and are bound to the chromatin. We also demonstrate that Gad8 physically interacts with the MluI cell cycle box-binding factor (MBF) transcription complex that regulates the G1/S progression and the response to DNA stress. In mutant cells lacking TORC2 or Gad8, the binding of the MBF complex to its cognate promoters is compromised, and the induction of MBF target genes in response to DNA replication stress is reduced. Consistently, the protein levels of Cdt2 and Cig2, two MBF target genes, are reduced in the absence of TORC2-Gad8 signaling. Taken together, our findings highlight critical functions of TORC2 in the nucleus and suggest a role in surviving DNA replication stress via transcriptional regulation of MBF target genes.
Collapse
Affiliation(s)
- Adiel Cohen
- From the Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701 Raanana, Israel and
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ronit Weisman
- From the Department of Natural and Life Sciences, The Open University of Israel, University Road 1, 4353701 Raanana, Israel and
| |
Collapse
|
50
|
Deniz Ö, Flores O, Aldea M, Soler-López M, Orozco M. Nucleosome architecture throughout the cell cycle. Sci Rep 2016; 6:19729. [PMID: 26818620 PMCID: PMC4730144 DOI: 10.1038/srep19729] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/29/2015] [Indexed: 11/09/2022] Open
Abstract
Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity.
Collapse
Affiliation(s)
- Özgen Deniz
- Institute for Research in Biomedicine (IRB Barcelona). Baldiri Reixac 10-12. 08028 Barcelona, Spain.,Joint BSC-CRG-IRB Program in Computational Biology. Baldiri Reixac 10-12. 08028 Barcelona, Spain
| | - Oscar Flores
- Institute for Research in Biomedicine (IRB Barcelona). Baldiri Reixac 10-12. 08028 Barcelona, Spain.,Joint BSC-CRG-IRB Program in Computational Biology. Baldiri Reixac 10-12. 08028 Barcelona, Spain
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB) CSIC. Baldiri Reixac 4. 08028 Barcelona, Spain
| | - Montserrat Soler-López
- Institute for Research in Biomedicine (IRB Barcelona). Baldiri Reixac 10-12. 08028 Barcelona, Spain.,Joint BSC-CRG-IRB Program in Computational Biology. Baldiri Reixac 10-12. 08028 Barcelona, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona). Baldiri Reixac 10-12. 08028 Barcelona, Spain.,Joint BSC-CRG-IRB Program in Computational Biology. Baldiri Reixac 10-12. 08028 Barcelona, Spain.,Department of Biochemistry and Molecular Biology. University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|