1
|
Nicoloff H, Hjort K, Andersson DI, Wang H. Three concurrent mechanisms generate gene copy number variation and transient antibiotic heteroresistance. Nat Commun 2024; 15:3981. [PMID: 38730266 PMCID: PMC11087502 DOI: 10.1038/s41467-024-48233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Heteroresistance is a medically relevant phenotype where small antibiotic-resistant subpopulations coexist within predominantly susceptible bacterial populations. Heteroresistance reduces treatment efficacy across diverse bacterial species and antibiotic classes, yet its genetic and physiological mechanisms remain poorly understood. Here, we investigated a multi-resistant Klebsiella pneumoniae isolate and identified three primary drivers of gene dosage-dependent heteroresistance for several antibiotic classes: tandem amplification, increased plasmid copy number, and transposition of resistance genes onto cryptic plasmids. All three mechanisms imposed fitness costs and were genetically unstable, leading to fast reversion to susceptibility in the absence of antibiotics. We used a mouse gut colonization model to show that heteroresistance due to elevated resistance-gene dosage can result in antibiotic treatment failures. Importantly, we observed that the three mechanisms are prevalent among Escherichia coli bloodstream isolates. Our findings underscore the necessity for treatment strategies that address the complex interplay between plasmids, resistance cassettes, and transposons in bacterial populations.
Collapse
Affiliation(s)
- Hervé Nicoloff
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Karin Hjort
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Garber AI, Sano EB, Gallagher AL, Miller SR. Duplicate Gene Expression and Possible Mechanisms of Paralog Retention During Bacterial Genome Expansion. Genome Biol Evol 2024; 16:evae089. [PMID: 38670115 PMCID: PMC11086944 DOI: 10.1093/gbe/evae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
Gene duplication contributes to the evolution of expression and the origin of new genes, but the relative importance of different patterns of duplicate gene expression and mechanisms of retention remains debated and particularly poorly understood in bacteria. Here, we investigated gene expression patterns for two lab strains of the cyanobacterium Acaryochloris marina with expanding genomes that contain about 10-fold more gene duplicates compared with most bacteria. Strikingly, we observed a generally stoichiometric pattern of greater combined duplicate transcript dosage with increased gene copy number, in contrast to the prevalence of expression reduction reported for many eukaryotes. We conclude that increased transcript dosage is likely an important mechanism of initial duplicate retention in these bacteria and may persist over long periods of evolutionary time. However, we also observed that paralog expression can diverge rapidly, including possible functional partitioning, for which different copies were respectively more highly expressed in at least one condition. Divergence may be promoted by the physical separation of most Acaryochloris duplicates on different genetic elements. In addition, expression pattern for ancestrally shared duplicates could differ between strains, emphasizing that duplicate expression fate need not be deterministic. We further observed evidence for context-dependent transcript dosage, where the aggregate expression of duplicates was either greater or lower than their single-copy homolog depending on physiological state. Finally, we illustrate how these different expression patterns of duplicated genes impact Acaryochloris biology for the innovation of a novel light-harvesting apparatus and for the regulation of recA paralogs in response to environmental change.
Collapse
Affiliation(s)
- Arkadiy I Garber
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Emiko B Sano
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Amy L Gallagher
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Scott R Miller
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
3
|
Meng XN, Ma JF, Liu YH, Li SQ, Wang X, Zhu J, Cai MD, Zhang HS, Song T, Xing S, Hou LQ, Guo H, Cui XB, Han J, Liu P, Ji GH, Sun WJ, Yu JC, Fu SB. Dynamic genomic changes in methotrexate-resistant human cancer cell lines beyond DHFR amplification suggest potential new targets for preventing drug resistance. Br J Cancer 2024; 130:1819-1827. [PMID: 38594370 PMCID: PMC11130306 DOI: 10.1038/s41416-024-02664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Although DHFR gene amplification has long been known as a major mechanism for methotrexate (MTX) resistance in cancer, the early changes and detailed development of the resistance are not yet fully understood. METHODS We performed genomic, transcriptional and proteomic analyses of human colon cancer cells with sequentially increasing levels of MTX-resistance. RESULTS The genomic amplification evolved in three phases (pre-amplification, homogenously staining region (HSR) and extrachromosomal DNA (ecDNA)). We confirm that genomic amplification and increased expression of DHFR, with formation of HSRs and especially ecDNAs, is the major driver of resistance. However, DHFR did not play a detectable role in the early phase. In the late phase (ecDNA), increase in FAM151B protein level may also have an important role by decreasing sensitivity to MTX. In addition, although MSH3 and ZFYVE16 may be subject to different posttranscriptional regulations and therefore protein expressions are decreased in ecDNA stages compared to HSR stages, they still play important roles in MTX resistance. CONCLUSION The study provides a detailed evolutionary trajectory of MTX-resistance and identifies new targets, especially ecDNAs, which could help to prevent drug resistance. It also presents a proof-of-principal approach which could be applied to other cancer drug resistance studies.
Collapse
Affiliation(s)
- Xiang-Ning Meng
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Jin-Fa Ma
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Yang-He Liu
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Si-Qing Li
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Xu Wang
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Jing Zhu
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Meng-Di Cai
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Hui-Shu Zhang
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Tiantian Song
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Shukai Xing
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Li-Qing Hou
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Huan Guo
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Xiao-Bo Cui
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Jiang Han
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Peng Liu
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Guo-Hua Ji
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Wen-Jing Sun
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Jing-Cui Yu
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Song-Bin Fu
- Key laboratory of preservation of human genetic resources and disease control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China.
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
4
|
Khomarbaghi Z, Ngan WY, Ayan GB, Lim S, Dechow-Seligmann G, Nandy P, Gallie J. Large-scale duplication events underpin population-level flexibility in tRNA gene copy number in Pseudomonas fluorescens SBW25. Nucleic Acids Res 2024; 52:2446-2462. [PMID: 38296823 PMCID: PMC10954465 DOI: 10.1093/nar/gkae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
The complement of tRNA genes within a genome is typically considered to be a (relatively) stable characteristic of an organism. Here, we demonstrate that bacterial tRNA gene set composition can be more flexible than previously appreciated, particularly regarding tRNA gene copy number. We report the high-rate occurrence of spontaneous, large-scale, tandem duplication events in laboratory populations of the bacterium Pseudomonas fluorescens SBW25. The identified duplications are up to ∼1 Mb in size (∼15% of the wildtype genome) and are predicted to change the copy number of up to 917 genes, including several tRNA genes. The observed duplications are inherently unstable: they occur, and are subsequently lost, at extremely high rates. We propose that this unusually plastic type of mutation provides a mechanism by which tRNA gene set diversity can be rapidly generated, while simultaneously preserving the underlying tRNA gene set in the absence of continued selection. That is, if a tRNA set variant provides no fitness advantage, then high-rate segregation of the duplication ensures the maintenance of the original tRNA gene set. However, if a tRNA gene set variant is beneficial, the underlying duplication fragment(s) may persist for longer and provide raw material for further, more stable, evolutionary change.
Collapse
Affiliation(s)
- Zahra Khomarbaghi
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Wing Y Ngan
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Gökçe B Ayan
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Sungbin Lim
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Gunda Dechow-Seligmann
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Pabitra Nandy
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Jenna Gallie
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| |
Collapse
|
5
|
Losilla M, Gallant JR. Molecular evolution of the ependymin-related gene epdl2 in African weakly electric fish. G3 (BETHESDA, MD.) 2023; 13:6931758. [PMID: 36529459 PMCID: PMC9997568 DOI: 10.1093/g3journal/jkac331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Gene duplication and subsequent molecular evolution can give rise to taxon-specific gene specializations. In previous work, we found evidence that African weakly electric fish (Mormyridae) may have as many as three copies of the epdl2 gene, and the expression of two epdl2 genes is correlated with electric signal divergence. Epdl2 belongs to the ependymin-related family (EPDR), a functionally diverse family of secretory glycoproteins. In this study, we first describe vertebrate EPDR evolution and then present a detailed evolutionary history of epdl2 in Mormyridae with emphasis on the speciose genus Paramormyrops. Using Sanger sequencing, we confirm three apparently functional epdl2 genes in Paramormyrops kingsleyae. Next, we developed a nanopore-based amplicon sequencing strategy and bioinformatics pipeline to obtain and classify full-length epdl2 gene sequences (N = 34) across Mormyridae. Our phylogenetic analysis proposes three or four epdl2 paralogs dating from early Paramormyrops evolution. Finally, we conducted selection tests which detected positive selection around the duplication events and identified ten sites likely targeted by selection in the resulting paralogs. These sites' locations in our modeled 3D protein structure involve four sites in ligand binding and six sites in homodimer formation. Together, these findings strongly imply an evolutionary mechanism whereby epdl2 genes underwent selection-driven functional specialization after tandem duplications in the rapidly speciating Paramormyrops. Considering previous evidence, we propose that epdl2 may contribute to electric signal diversification in mormyrids, an important aspect of species recognition during mating.
Collapse
Affiliation(s)
- Mauricio Losilla
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.,Graduate Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - Jason R Gallant
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.,Graduate Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Fernández-Fernández R, Olivenza DR, Sánchez-Romero MA. Identifying Bacterial Lineages in Salmonella by Flow Cytometry. EcoSal Plus 2022; 10:eESP00182021. [PMID: 35148202 PMCID: PMC10729938 DOI: 10.1128/ecosalplus.esp-0018-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022]
Abstract
Advances in technologies that permit high-resolution analysis of events in single cells have revealed that phenotypic heterogeneity is a widespread phenomenon in bacteria. Flow cytometry has the potential to describe the distribution of cellular properties within a population of bacterial cells and has yielded invaluable information about the ability of isogenic cells to diversify into phenotypic subpopulations. This review will discuss several single-cell approaches that have recently been applied to define phenotypic heterogeneity in populations of Salmonella enterica.
Collapse
Affiliation(s)
| | - David R. Olivenza
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | |
Collapse
|
7
|
Srikant S, Guegler CK, Laub MT. The evolution of a counter-defense mechanism in a virus constrains its host range. eLife 2022; 11:e79549. [PMID: 35924892 PMCID: PMC9391042 DOI: 10.7554/elife.79549] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria use diverse immunity mechanisms to defend themselves against their viral predators, bacteriophages. In turn, phages can acquire counter-defense systems, but it remains unclear how such mechanisms arise and what factors constrain viral evolution. Here, we experimentally evolved T4 phage to overcome a phage-defensive toxin-antitoxin system, toxIN, in Escherichia coli. Through recombination, T4 rapidly acquires segmental amplifications of a previously uncharacterized gene, now named tifA, encoding an inhibitor of the toxin, ToxN. These amplifications subsequently drive large deletions elsewhere in T4's genome to maintain a genome size compatible with capsid packaging. The deleted regions include accessory genes that help T4 overcome defense systems in alternative hosts. Thus, our results reveal a trade-off in viral evolution; the emergence of one counter-defense mechanism can lead to loss of other such mechanisms, thereby constraining host range. We propose that the accessory genomes of viruses reflect the integrated evolutionary history of the hosts they infected.
Collapse
Affiliation(s)
- Sriram Srikant
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Chantal K Guegler
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
8
|
Avecilla G, Chuong JN, Li F, Sherlock G, Gresham D, Ram Y. Neural networks enable efficient and accurate simulation-based inference of evolutionary parameters from adaptation dynamics. PLoS Biol 2022; 20:e3001633. [PMID: 35622868 PMCID: PMC9140244 DOI: 10.1371/journal.pbio.3001633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
The rate of adaptive evolution depends on the rate at which beneficial mutations are introduced into a population and the fitness effects of those mutations. The rate of beneficial mutations and their expected fitness effects is often difficult to empirically quantify. As these 2 parameters determine the pace of evolutionary change in a population, the dynamics of adaptive evolution may enable inference of their values. Copy number variants (CNVs) are a pervasive source of heritable variation that can facilitate rapid adaptive evolution. Previously, we developed a locus-specific fluorescent CNV reporter to quantify CNV dynamics in evolving populations maintained in nutrient-limiting conditions using chemostats. Here, we use CNV adaptation dynamics to estimate the rate at which beneficial CNVs are introduced through de novo mutation and their fitness effects using simulation-based likelihood-free inference approaches. We tested the suitability of 2 evolutionary models: a standard Wright-Fisher model and a chemostat model. We evaluated 2 likelihood-free inference algorithms: the well-established Approximate Bayesian Computation with Sequential Monte Carlo (ABC-SMC) algorithm, and the recently developed Neural Posterior Estimation (NPE) algorithm, which applies an artificial neural network to directly estimate the posterior distribution. By systematically evaluating the suitability of different inference methods and models, we show that NPE has several advantages over ABC-SMC and that a Wright-Fisher evolutionary model suffices in most cases. Using our validated inference framework, we estimate the CNV formation rate at the GAP1 locus in the yeast Saccharomyces cerevisiae to be 10-4.7 to 10-4 CNVs per cell division and a fitness coefficient of 0.04 to 0.1 per generation for GAP1 CNVs in glutamine-limited chemostats. We experimentally validated our inference-based estimates using 2 distinct experimental methods-barcode lineage tracking and pairwise fitness assays-which provide independent confirmation of the accuracy of our approach. Our results are consistent with a beneficial CNV supply rate that is 10-fold greater than the estimated rates of beneficial single-nucleotide mutations, explaining the outsized importance of CNVs in rapid adaptive evolution. More generally, our study demonstrates the utility of novel neural network-based likelihood-free inference methods for inferring the rates and effects of evolutionary processes from empirical data with possible applications ranging from tumor to viral evolution.
Collapse
Affiliation(s)
- Grace Avecilla
- Department of Biology, New York University, New York, New York, United States of America
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Julie N. Chuong
- Department of Biology, New York University, New York, New York, United States of America
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Fangfei Li
- Department of Genetics, Stanford University, California, Stanford, United States of America
| | - Gavin Sherlock
- Department of Genetics, Stanford University, California, Stanford, United States of America
| | - David Gresham
- Department of Biology, New York University, New York, New York, United States of America
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Arashida H, Odake H, Sugawara M, Noda R, Kakizaki K, Ohkubo S, Mitsui H, Sato S, Minamisawa K. Evolution of rhizobial symbiosis islands through insertion sequence-mediated deletion and duplication. THE ISME JOURNAL 2022; 16:112-121. [PMID: 34272493 PMCID: PMC8692435 DOI: 10.1038/s41396-021-01035-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 11/08/2022]
Abstract
Symbiosis between organisms influences their evolution via adaptive changes in genome architectures. Immunity of soybean carrying the Rj2 allele is triggered by NopP (type III secretion system [T3SS]-dependent effector), encoded by symbiosis island A (SymA) in B. diazoefficiens USDA122. This immunity was overcome by many mutants with large SymA deletions that encompassed T3SS (rhc) and N2 fixation (nif) genes and were bounded by insertion sequence (IS) copies in direct orientation, indicating homologous recombination between ISs. Similar deletion events were observed in B. diazoefficiens USDA110 and B. japonicum J5. When we cultured a USDA122 strain with a marker gene sacB inserted into the rhc gene cluster, most sucrose-resistant mutants had deletions in nif/rhc gene clusters, similar to the mutants above. Some deletion mutants were unique to the sacB system and showed lower competitive nodulation capability, indicating that IS-mediated deletions occurred during free-living growth and the host plants selected the mutants. Among 63 natural bradyrhizobial isolates, 2 possessed long duplications (261-357 kb) harboring nif/rhc gene clusters between IS copies in direct orientation via homologous recombination. Therefore, the structures of symbiosis islands are in a state of flux via IS-mediated duplications and deletions during rhizobial saprophytic growth, and host plants select mutualistic variants from the resultant pools of rhizobial populations. Our results demonstrate that homologous recombination between direct IS copies provides a natural mechanism generating deletions and duplications on symbiosis islands.
Collapse
Affiliation(s)
- Haruka Arashida
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Haruka Odake
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Masayuki Sugawara
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Ryota Noda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Kaori Kakizaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Satoshi Ohkubo
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan.
| |
Collapse
|
10
|
Tomanek I, Guet CC. Adaptation dynamics between copy-number and point mutations. eLife 2022; 11:82240. [PMID: 36546673 PMCID: PMC9833825 DOI: 10.7554/elife.82240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Together, copy-number and point mutations form the basis for most evolutionary novelty, through the process of gene duplication and divergence. While a plethora of genomic data reveals the long-term fate of diverging coding sequences and their cis-regulatory elements, little is known about the early dynamics around the duplication event itself. In microorganisms, selection for increased gene expression often drives the expansion of gene copy-number mutations, which serves as a crude adaptation, prior to divergence through refining point mutations. Using a simple synthetic genetic reporter system that can distinguish between copy-number and point mutations, we study their early and transient adaptive dynamics in real time in Escherichia coli. We find two qualitatively different routes of adaptation, depending on the level of functional improvement needed. In conditions of high gene expression demand, the two mutation types occur as a combination. However, under low gene expression demand, copy-number and point mutations are mutually exclusive; here, owing to their higher frequency, adaptation is dominated by copy-number mutations, in a process we term amplification hindrance. Ultimately, due to high reversal rates and pleiotropic cost, copy-number mutations may not only serve as a crude and transient adaptation, but also constrain sequence divergence over evolutionary time scales.
Collapse
Affiliation(s)
- Isabella Tomanek
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Călin C Guet
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
11
|
Mukherjee A, Dechow-Seligmann G, Gallie J. Evolutionary flexibility in routes to mat formation by Pseudomonas. Mol Microbiol 2021; 117:394-410. [PMID: 34856020 DOI: 10.1111/mmi.14855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022]
Abstract
Many bacteria form mats at the air-liquid interface of static microcosms. These structures typically involve the secretion of exopolysaccharides, the production of which is often controlled by the secondary messenger c-di-GMP. Mechanisms of mat formation have been particularly well characterized in Pseudomonas fluorescens SBW25; stimuli or mutations that increase c-di-GMP production by diguanylate cyclases (WspR, AwsR, and MwsR) result in the secretion of cellulose and mat formation. Here, we characterize and compare mat formation in two close relatives of SBW25: Pseudomonas simiae PICF7 and P. fluorescens A506. We find that PICF7-the strain more closely related to SBW25-can form mats through mutations affecting the activity of the same three diguanylate cyclases as SBW25. However, instead of cellulose, these mutations activate production of the exopolysaccharide Pel. We also provide evidence for at least two further-as yet uncharacterized-routes to mat formation by PICF7. P. fluorescens A506, while retaining the same mutational routes to mat formation as SBW25 and PICF7, preferentially forms mats by a semi-heritable mechanism that culminates in Psl and Pga over-production. Our results demonstrate a high level of evolutionary flexibility in the molecular and structural routes to mat formation, even among close relatives.
Collapse
Affiliation(s)
- Anuradha Mukherjee
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Gunda Dechow-Seligmann
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jenna Gallie
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
12
|
Han Y, Hou Z, He Q, Zhang X, Yan K, Han R, Liang Z. Genome-Wide Characterization and Expression Analysis of bZIP Gene Family Under Abiotic Stress in Glycyrrhiza uralensis. Front Genet 2021; 12:754237. [PMID: 34675967 PMCID: PMC8525656 DOI: 10.3389/fgene.2021.754237] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
bZIP gene family is one of the largest transcription factor families. It plays an important role in plant growth, metabolic, and environmental response. However, complete genome-wide investigation of bZIP gene family in Glycyrrhiza uralensis remains unexplained. In this study, 66 putative bZIP genes in the genome of G. uralensis were identified. And their evolutionary classification, physicochemical properties, conserved domain, functional differentiation, and the expression level under different stress conditions were further analyzed. All the members were clustered into 13 subfamilies (A–K, M, and S). A total of 10 conserved motifs were found in GubZIP proteins. Members from the same subfamily shared highly similar gene structures and conserved domains. Tandem duplication events acted as a major driving force for the evolution of bZIP gene family in G. uralensis. Cis-acting elements and protein–protein interaction networks showed that GubZIPs in one subfamily are involved in multiple functions, while some GubZIPs from different subfamilies may share the same functional category. The miRNA network targeting GubZIPs showed that the regulation at the transcriptional level may affect protein–protein interaction networks. We suspected that domain-mediated interactions may categorize a protein family into subfamilies in G. uralensis. Furthermore, the tissue-specific gene expression patterns of GubZIPs were analyzed using the public RNA-seq data. Moreover, gene expression level of 66 bZIP family members under abiotic stress treatments was quantified by using qRT-PCR. The results of this study may serve as potential candidates for functional characterization in the future.
Collapse
Affiliation(s)
- Yuxuan Han
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhuoni Hou
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qiuling He
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xuemin Zhang
- Tasly R&D Institute, Tasly Holding Group Co., Ltd., Tianjin, China
| | - Kaijing Yan
- Tasly R&D Institute, Tasly Holding Group Co., Ltd., Tianjin, China
| | - Ruilian Han
- Institute of Landscape and Plant Ecology, The School of Engineering and Architecture, Zhejiang Sci-tech University, Hangzhou, China
| | - Zongsuo Liang
- The Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
13
|
Adu-Yeboah P, Malone JM, Gill G, Preston C. Stability of EPSPS gene copy number in Hordeum glaucum Steud (barley grass) in the presence and absence of glyphosate selection. PEST MANAGEMENT SCIENCE 2021; 77:3080-3087. [PMID: 33729658 DOI: 10.1002/ps.6367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Gene amplification has been shown to provide resistance to glyphosate in several weed species, including Hordeum glaucum populations in South Australia. The stability of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene copies in resistant populations in the presence or absence of glyphosate selection has not been determined. RESULTS Applying glyphosate to a cloned plant resulted in an increase in resistance and EPSPS copy number in the progeny of that plant compared to the untreated clone. The LD50 (herbicide concentration required for 50% mortality) increased by 75% to 79% in the progeny of the treated clones compared to the untreated in both populations (YP-17 and YP-16). EPSPS copy number estimates were higher in treated individuals compared to untreated individuals with an average of seven copies compared to six in YP-16 and 11 compared to six in YP-17. There was a positive correlation (R2 = 0.78) between EPSPS copy number and LD50 of all populations. CONCLUSION EPSPS gene copy number and resistance to glyphosate increased in H. glaucum populations under glyphosate selection, suggesting the number of EPSPS gene copies present is dependent on glyphosate selection. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Patricia Adu-Yeboah
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, Australia
| | - Jenna M Malone
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, Australia
| | - Gurjeet Gill
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, Australia
| | - Christopher Preston
- School of Agriculture Food and Wine, University of Adelaide, Glen Osmond, Australia
| |
Collapse
|
14
|
Brandis G. Reconstructing the Evolutionary History of a Highly Conserved Operon Cluster in Gammaproteobacteria and Bacilli. Genome Biol Evol 2021; 13:6156628. [PMID: 33677562 PMCID: PMC8046335 DOI: 10.1093/gbe/evab041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 12/01/2022] Open
Abstract
The evolution of gene order rearrangements within bacterial chromosomes is a fast process. Closely related species can have almost no conservation in long-range gene order. A prominent exception to this rule is a >40 kb long cluster of five core operons (secE-rpoBC-str-S10-spc-alpha) and three variable adjacent operons (cysS, tufB, and ecf) that together contain 57 genes of the transcriptional and translational machinery. Previous studies have indicated that at least part of this operon cluster might have been present in the last common ancestor of bacteria and archaea. Using 204 whole genome sequences, ∼2 Gy of evolution of the operon cluster were reconstructed back to the last common ancestors of the Gammaproteobacteria and of the Bacilli. A total of 163 independent evolutionary events were identified in which the operon cluster was altered. Further examination showed that the process of disconnecting two operons generally follows the same pattern. Initially, a small number of genes is inserted between the operons breaking the concatenation followed by a second event that fully disconnects the operons. While there is a general trend for loss of gene synteny over time, there are examples of increased alteration rates at specific branch points or within specific bacterial orders. This indicates the recurrence of relaxed selection on the gene order within bacterial chromosomes. The analysis of the alternation events indicates that segmental genome duplications and/or transposon-directed recombination play a crucial role in rearrangements of the operon cluster.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Sweden
| |
Collapse
|
15
|
Amplifying and Fine-Tuning Rsm sRNAs Expression and Stability to Optimize the Survival of Pseudomonas brassicacerum in Nutrient-Poor Environments. Microorganisms 2021; 9:microorganisms9020250. [PMID: 33530561 PMCID: PMC7911923 DOI: 10.3390/microorganisms9020250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/22/2022] Open
Abstract
In the beneficial plant root-associated Pseudomonas brassicacearum strain NFM421, the GacS/GacA two-component system positively controls biofilm formation and the production of secondary metabolites through the synthesis of rsmX, rsmY and rsmZ. Here, we evidenced the genetic amplification of Rsm sRNAs by the discovery of a novel 110-nt long sRNA encoding gene, rsmX-2, generated by the duplication of rsmX-1 (formerly rsmX). Like the others rsm genes, its overexpression overrides the gacA mutation. We explored the expression and the stability of rsmX-1, rsmX-2, rsmY and rsmZ encoding genes under rich or nutrient-poor conditions, and showed that their amount is fine-tuned at the transcriptional and more interestingly at the post-transcriptional level. Unlike rsmY and rsmZ, we noticed that the expression of rsmX-1 and rsmX-2 genes was exclusively GacA-dependent. The highest expression level and longest half-life for each sRNA were correlated with the highest ppGpp and cyclic-di-GMP levels and were recorded under nutrient-poor conditions. Together, these data support the view that the Rsm system in P. brassicacearum is likely linked to the stringent response, and seems to be required for bacterial adaptation to nutritional stress.
Collapse
|
16
|
Prawer YDJ, Stroehlein AJ, Young ND, Kapoor S, Hall RS, Ghazali R, Batterham P, Gasser RB, Perry T, Anstead CA. Major SCP/TAPS protein expansion in Lucilia cuprina is associated with novel tandem array organisation and domain architecture. Parasit Vectors 2020; 13:598. [PMID: 33246493 PMCID: PMC7694928 DOI: 10.1186/s13071-020-04476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/05/2020] [Indexed: 11/20/2022] Open
Abstract
Background Larvae of the Australian sheep blowfly, Lucilia cuprina, parasitise sheep by feeding on skin excretions, dermal tissue and blood, causing severe damage known as flystrike or myiasis. Recent advances in -omic technologies and bioinformatic data analyses have led to a greater understanding of blowfly biology and should allow the identification of protein families involved in host-parasite interactions and disease. Current literature suggests that proteins of the SCP (Sperm-Coating Protein)/TAPS (Tpx-1/Ag5/PR-1/Sc7) (SCP/TAPS) superfamily play key roles in immune modulation, cross-talk between parasite and host as well as developmental and reproductive processes in parasites. Methods Here, we employed a bioinformatics workflow to curate the SCP/TAPS protein gene family in L. cuprina. Protein sequence, the presence and number of conserved CAP-domains and phylogeny were used to group identified SCP/TAPS proteins; these were compared to those found in Drosophila melanogaster to make functional predictions. In addition, transcription levels of SCP/TAPS protein-encoding genes were explored in different developmental stages. Results A total of 27 genes were identified as belonging to the SCP/TAPS gene family: encoding 26 single-domain proteins each with a single CAP domain and a solitary double-domain protein containing two conserved cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domains. Surprisingly, 16 SCP/TAPS predicted proteins formed an extended tandem array spanning a 53 kb region of one genomic region, which was confirmed by MinION long-read sequencing. RNA-seq data indicated that these 16 genes are highly transcribed in all developmental stages (excluding the embryo). Conclusions Future work should assess the potential of selected SCP/TAPS proteins as novel targets for the control of L. cuprina and related parasitic flies of major socioeconomic importance.![]()
Collapse
Affiliation(s)
- Yair D J Prawer
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Andreas J Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Shilpa Kapoor
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ross S Hall
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Razi Ghazali
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Phillip Batterham
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Trent Perry
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Clare A Anstead
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
17
|
Ayan GB, Park HJ, Gallie J. The birth of a bacterial tRNA gene by large-scale, tandem duplication events. eLife 2020; 9:57947. [PMID: 33124983 PMCID: PMC7661048 DOI: 10.7554/elife.57947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Organisms differ in the types and numbers of tRNA genes that they carry. While the evolutionary mechanisms behind tRNA gene set evolution have been investigated theoretically and computationally, direct observations of tRNA gene set evolution remain rare. Here, we report the evolution of a tRNA gene set in laboratory populations of the bacterium Pseudomonas fluorescens SBW25. The growth defect caused by deleting the single-copy tRNA gene, serCGA, is rapidly compensated by large-scale (45–290 kb) duplications in the chromosome. Each duplication encompasses a second, compensatory tRNA gene (serTGA) and is associated with a rise in tRNA-Ser(UGA) in the mature tRNA pool. We postulate that tRNA-Ser(CGA) elimination increases the translational demand for tRNA-Ser(UGA), a pressure relieved by increasing serTGA copy number. This work demonstrates that tRNA gene sets can evolve through duplication of existing tRNA genes, a phenomenon that may contribute to the presence of multiple, identical tRNA gene copies within genomes.
Collapse
Affiliation(s)
- Gökçe B Ayan
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Hye Jin Park
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Asia Pacific Center for Theoretical Physics, Pohang, Republic of Korea
| | - Jenna Gallie
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
18
|
Szilágyi A, Kovács VP, Szathmáry E, Santos M. Evolution of linkage and genome expansion in protocells: The origin of chromosomes. PLoS Genet 2020; 16:e1009155. [PMID: 33119583 PMCID: PMC7665907 DOI: 10.1371/journal.pgen.1009155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/13/2020] [Accepted: 09/24/2020] [Indexed: 11/18/2022] Open
Abstract
Chromosomes are likely to have assembled from unlinked genes in early evolution. Genetic linkage reduces the assortment load and intragenomic conflict in reproducing protocell models to the extent that chromosomes can go to fixation even if chromosomes suffer from a replicative disadvantage, relative to unlinked genes, proportional to their length. Here we numerically show that chromosomes spread within protocells even if recurrent deleterious mutations affecting replicating genes (as ribozymes) are considered. Dosage effect selects for optimal genomic composition within protocells that carries over to the genic composition of emerging chromosomes. Lacking an accurate segregation mechanism, protocells continue to benefit from the stochastic corrector principle (group selection of early replicators), but now at the chromosome level. A remarkable feature of this process is the appearance of multigene families (in optimal genic proportions) on chromosomes. An added benefit of chromosome formation is an increase in the selectively maintainable genome size (number of different genes), primarily due to the marked reduction of the assortment load. The establishment of chromosomes is under strong positive selection in protocells harboring unlinked genes. The error threshold of replication is raised to higher genome size by linkage due to the fact that deleterious mutations affecting protocells metabolism (hence fitness) show antagonistic (diminishing return) epistasis. This result strengthens the established benefit conferred by chromosomes on protocells allowing for the fixation of highly specific and efficient enzymes. The emergence of chromosomes harboring several genes is a crucial ingredient of the major evolutionary transition from naked replicators to cells. Linkage of replicating genes reduces conflict between them and alleviates the problem of chance loss of genes upon stochastic protocell fission. The emerging organization of protocells maintaining several segregating chromosomes with balanced gene composition also allows for an increase in the number of gene types despite recurrent deleterious mutations. We suggest that this interim genomic organization enabled protocells to evolve specific and efficient enzymes and paved the way toward an accurate mechanism for chromosome segregation later in evolution.
Collapse
Affiliation(s)
- András Szilágyi
- Institute of Evolution, Centre for Ecological Research, Tihany, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Pullach/Munich, Germany
| | | | - Eörs Szathmáry
- Institute of Evolution, Centre for Ecological Research, Tihany, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Pullach/Munich, Germany
- * E-mail:
| | - Mauro Santos
- Institute of Evolution, Centre for Ecological Research, Tihany, Hungary
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autonòma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
19
|
Abstract
The genomes of bacteria contain fewer genes and substantially less noncoding DNA than those of eukaryotes, and as a result, they have much less raw material to invent new traits. Yet, bacteria are vastly more taxonomically diverse, numerically abundant, and globally successful in colonizing new habitats compared to eukaryotes. Although bacterial genomes are generally considered to be optimized for efficient growth and rapid adaptation, nonadaptive processes have played a major role in shaping the size, contents, and compact organization of bacterial genomes and have allowed the establishment of deleterious traits that serve as the raw materials for genetic innovation.
Collapse
Affiliation(s)
- Paul C Kirchberger
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| | - Marian L Schmidt
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| |
Collapse
|
20
|
Todd RT, Selmecki A. Expandable and reversible copy number amplification drives rapid adaptation to antifungal drugs. eLife 2020; 9:e58349. [PMID: 32687060 PMCID: PMC7371428 DOI: 10.7554/elife.58349] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Previously, we identified long repeat sequences that are frequently associated with genome rearrangements, including copy number variation (CNV), in many diverse isolates of the human fungal pathogen Candida albicans (Todd et al., 2019). Here, we describe the rapid acquisition of novel, high copy number CNVs during adaptation to azole antifungal drugs. Single-cell karyotype analysis indicates that these CNVs appear to arise via a dicentric chromosome intermediate and breakage-fusion-bridge cycles that are repaired using multiple distinct long inverted repeat sequences. Subsequent removal of the antifungal drug can lead to a dramatic loss of the CNV and reversion to the progenitor genotype and drug susceptibility phenotype. These findings support a novel mechanism for the rapid acquisition of antifungal drug resistance and provide genomic evidence for the heterogeneity frequently observed in clinical settings.
Collapse
Affiliation(s)
- Robert T Todd
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States
| |
Collapse
|
21
|
Gene amplification as a form of population-level gene expression regulation. Nat Ecol Evol 2020; 4:612-625. [DOI: 10.1038/s41559-020-1132-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/29/2020] [Indexed: 11/08/2022]
|
22
|
Brandis G, Hughes D. The SNAP hypothesis: Chromosomal rearrangements could emerge from positive Selection during Niche Adaptation. PLoS Genet 2020; 16:e1008615. [PMID: 32130223 PMCID: PMC7055797 DOI: 10.1371/journal.pgen.1008615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
The relative linear order of most genes on bacterial chromosomes is not conserved over evolutionary timescales. One explanation is that selection is weak, allowing recombination to randomize gene order by genetic drift. However, most chromosomal rearrangements are deleterious to fitness. In contrast, we propose the hypothesis that rearrangements in gene order are more likely the result of selection during niche adaptation (SNAP). Partial chromosomal duplications occur very frequently by recombination between direct repeat sequences. Duplicated regions may contain tens to hundreds of genes and segregate quickly unless maintained by selection. Bacteria exposed to non-lethal selections (for example, a requirement to grow on a poor nutrient) can adapt by maintaining a duplication that includes a gene that improves relative fitness. Further improvements in fitness result from the loss or inactivation of non-selected genes within each copy of the duplication. When genes that are essential in single copy are lost from different copies of the duplication, segregation is prevented even if the original selection is lifted. Functional gene loss continues until a new genetic equilibrium is reached. The outcome is a rearranged gene order. Mathematical modelling shows that this process of positive selection to adapt to a new niche can rapidly drive rearrangements in gene order to fixation. Signature features (duplication formation and divergence) of the SNAP model were identified in natural isolates from multiple species showing that the initial two steps in the SNAP process can occur with a remarkably high frequency. Further bioinformatic and experimental analyses are required to test if and to which extend the SNAP process acts on bacterial genomes. All life on earth has evolved from a universal common ancestor with a specific order of genes on the chromosome. This order is not maintained in modern species and the standard hypothesis is that changes reflect a lack of strong selection on gene order. Here, we propose an alternative hypothesis, SNAP. The occupation of a novel environment by bacteria is generally a trade-off situation. For example, while the bacteria may not be adapted to grow well under the new conditions, they may benefit by not having to share available resources with other microorganisms. Bacterial populations frequently acquire duplications of chromosomal segments containing genes that can help them adapt to a new environment. Other genes that are also duplicated are not required in two copies so that over time a superfluous copy can be lost. Eventually, the process of duplication and gene loss can lead to the rearrangement of the gene order in the chromosomal segment. The major benefit of this model over the standard hypothesis is that the process is driven by positive selection and can reach fixation rapidly.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
23
|
Dai X, Li R, Li X, Liang Y, Gao Y, Xu Y, Shi L, Zhou Y, Wang H. Gene duplication and subsequent functional diversification of sucrose hydrolase in Papilio xuthus. INSECT MOLECULAR BIOLOGY 2019; 28:862-872. [PMID: 31155808 DOI: 10.1111/imb.12603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/12/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Sucrose is the main product of photosynthesis in plants, providing a rich carbon and energy source for the physiological growth and development of insects. In a previous study, we identified a novel sucrose hydrolase (SUH) in the larval midgut of moths. Intriguingly, there are two copies of Suh, namely Suh1 and Suh2, in several species of butterflies. However, the biochemical characteristics of SUHs in butterflies remain unclear. In this study, we found that this duplication and subsequent diversification produced two Suh genes in Papilio xuthus. These two PxSuh genes were significantly divergent in terms of their expression pattern and enzyme properties. PxSuh messenger RNA expression was highest during the larval stage, reduced in the prepupal and pupal stages and, for PxSuh1, slightly increased again in the adult. The observed levels of PxSuh2 were overall below those of PxSuh1 amongst the development stages examined. Compared with PxSUH2, which has maintained the original gene function of maltose hydrolysis, PxSUH1 exhibits substrate specificity for sucrose with an optimum enzyme activity occurring at an alkaline pH. The data show that PxSuh1 is evolutionarily adapted for effective functioning in an alkaline digestive system. Furthermore, we find that functional diversification of Suh facilitates P. xuthus to digestive carbohydrate of host plants. Thus, our findings offer new insights into the ecological and evolutionary adaptation of digestive enzymes in butterflies.
Collapse
Affiliation(s)
- X Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - R Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - X Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Y Liang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Y Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Y Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - L Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Y Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - H Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Reuß DR, Faßhauer P, Mroch PJ, Ul-Haq I, Koo BM, Pöhlein A, Gross CA, Daniel R, Brantl S, Stülke J. Topoisomerase IV can functionally replace all type 1A topoisomerases in Bacillus subtilis. Nucleic Acids Res 2019; 47:5231-5242. [PMID: 30957856 PMCID: PMC6547408 DOI: 10.1093/nar/gkz260] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
DNA topoisomerases play essential roles in chromosome organization and replication. Most bacteria possess multiple topoisomerases which have specialized functions in the control of DNA supercoiling or in DNA catenation/decatenation during recombination and chromosome segregation. DNA topoisomerase I is required for the relaxation of negatively supercoiled DNA behind the transcribing RNA polymerase. Conflicting results have been reported on the essentiality of the topA gene encoding topoisomerase I in the model bacterium Bacillus subtilis. In this work, we have studied the requirement for topoisomerase I in B. subtilis. All stable topA mutants carried different chromosomal amplifications of the genomic region encompassing the parEC operon encoding topoisomerase IV. Using a fluorescent amplification reporter system we observed that each individual topA mutant had acquired such an amplification. Eventually, the amplifications were replaced by a point mutation in the parEC promoter region which resulted in a fivefold increase of parEC expression. In this strain both type I topoisomerases, encoded by topA and topB, were dispensable. Our results demonstrate that topoisomerase IV at increased expression is necessary and sufficient to take over the function of type 1A topoisomerases.
Collapse
Affiliation(s)
- Daniel R Reuß
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Patrick Faßhauer
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Philipp Joel Mroch
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Inam Ul-Haq
- Matthias-Schleiden-Institut, AG Bakteriengenetik, Friedrich-Schiller-University Jena, Jena, Germany
| | - Byoung-Mo Koo
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anja Pöhlein
- Department of Genomic and Applied Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Sabine Brantl
- Matthias-Schleiden-Institut, AG Bakteriengenetik, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
25
|
Lauer S, Gresham D. An evolving view of copy number variants. Curr Genet 2019; 65:1287-1295. [PMID: 31076843 DOI: 10.1007/s00294-019-00980-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 01/08/2023]
Abstract
Copy number variants (CNVs) are regions of the genome that vary in integer copy number. CNVs, which comprise both amplifications and deletions of DNA sequence, have been identified across all domains of life, from bacteria and archaea to plants and animals. CNVs are an important source of genetic diversity, and can drive rapid adaptive evolution and progression of heritable and somatic human diseases, such as cancer. However, despite their evolutionary importance and clinical relevance, CNVs remain understudied compared to single-nucleotide variants (SNVs). This is a consequence of the inherent difficulties in detecting CNVs at low-to-intermediate frequencies in heterogeneous populations of cells. Here, we discuss molecular methods used to detect CNVs, the limitations associated with using these techniques, and the application of new and emerging technologies that present solutions to these challenges. The goal of this short review and perspective is to highlight aspects of CNV biology that are understudied and define avenues for further research that address specific gaps in our knowledge of these complex alleles. We describe our recently developed method for CNV detection in which a fluorescent gene functions as a single-cell CNV reporter and present key findings from our evolution experiments in Saccharomyces cerevisiae. Using a CNV reporter, we found that CNVs are generated at a high rate and undergo selection with predictable dynamics across independently evolving replicate populations. Many CNVs appear to be generated through DNA replication-based processes that are mediated by the presence of short, interrupted, inverted-repeat sequences. Our results have important implications for the role of CNVs in evolutionary processes and the molecular mechanisms that underlie CNV formation. We discuss the possible extension of our method to other applications, including tracking the dynamics of CNVs in models of human tumors.
Collapse
Affiliation(s)
- Stephanie Lauer
- Institute for Systems Genetics, New York University Langone Health, New York, NY, USA
| | - David Gresham
- Center for Genomics and System Biology, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
26
|
Palacios-Flores K, Castillo A, Uribe C, García Sotelo J, Boege M, Dávila G, Flores M, Palacios R, Morales L. Prediction and identification of recurrent genomic rearrangements that generate chimeric chromosomes in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2019; 116:8445-8450. [PMID: 30962378 PMCID: PMC6486755 DOI: 10.1073/pnas.1819585116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genomes are dynamic structures. Different mechanisms participate in the generation of genomic rearrangements. One of them is nonallelic homologous recombination (NAHR). This rearrangement is generated by recombination between pairs of repeated sequences with high identity. We analyzed rearrangements mediated by repeated sequences located in different chromosomes. Such rearrangements generate chimeric chromosomes. Potential rearrangements were predicted by localizing interchromosomal identical repeated sequences along the nuclear genome of the Saccharomyces cerevisiae S288C strain. Rearrangements were identified by a PCR-based experimental strategy. PCR primers are located in the unique regions bordering each repeated region of interest. When the PCR is performed using forward primers from one chromosome and reverse primers from another chromosome, the break point of the chimeric chromosome structure is revealed. In all cases analyzed, the corresponding chimeric structures were found. Furthermore, the nucleotide sequence of chimeric structures was obtained, and the origin of the unique regions bordering the repeated sequence was located in the expected chromosomes, using the perfect-match genomic landscape strategy (PMGL). Several chimeric structures were searched in colonies derived from single cells. All of the structures were found in DNA isolated from each of the colonies. Our findings indicate that interchromosomal rearrangements that generate chimeric chromosomes are recurrent and occur, at a relatively high frequency, in cell populations of S. cerevisiae.
Collapse
Affiliation(s)
- Kim Palacios-Flores
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Alejandra Castillo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Carina Uribe
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Jair García Sotelo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Margareta Boege
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Guillermo Dávila
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Margarita Flores
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Rafael Palacios
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - Lucia Morales
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| |
Collapse
|
27
|
Brandis G, Cao S, Hughes D. Measuring Homologous Recombination Rates between Chromosomal Locations in Salmonella. Bio Protoc 2019; 9:e3159. [PMID: 33654967 DOI: 10.21769/bioprotoc.3159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 11/02/2022] Open
Abstract
Homologous recombination between two similar DNA molecules, plays an important role in the repair of double-stranded DNA breaks. Recombination can occur between two sister chromosomes, or between two locations of similar sequence identity within the same chromosome. The assay described here is designed to measure the rate of homologous recombination between two locations with sequence similarity within the same bacterial chromosome. For this purpose, a selectable/counter-selectable genetic cassette is inserted into one of the locations and homologous recombination repair rates are measured as a function of recombinational removal of the inserted cassette. This recombinational repair process is called gene conversion, non-reciprocal recombination. We used this method to measure the recombination rates between genes within gene families and to study the stability of mobile genetic elements inserted into members of gene families.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Sha Cao
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Lauer S, Avecilla G, Spealman P, Sethia G, Brandt N, Levy SF, Gresham D. Single-cell copy number variant detection reveals the dynamics and diversity of adaptation. PLoS Biol 2018; 16:e3000069. [PMID: 30562346 PMCID: PMC6298651 DOI: 10.1371/journal.pbio.3000069] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
Copy number variants (CNVs) are a pervasive source of genetic variation and evolutionary potential, but the dynamics and diversity of CNVs within evolving populations remain unclear. Long-term evolution experiments in chemostats provide an ideal system for studying the molecular processes underlying CNV formation and the temporal dynamics with which they are generated, selected, and maintained. Here, we developed a fluorescent CNV reporter to detect de novo gene amplifications and deletions in individual cells. We used the CNV reporter in Saccharomyces cerevisiae to study CNV formation at the GAP1 locus, which encodes the general amino acid permease, in different nutrient-limited chemostat conditions. We find that under strong selection, GAP1 CNVs are repeatedly generated and selected during the early stages of adaptive evolution, resulting in predictable dynamics. Molecular characterization of CNV-containing lineages shows that the CNV reporter detects different classes of CNVs, including aneuploidies, nonreciprocal translocations, tandem duplications, and complex CNVs. Despite GAP1's proximity to repeat sequences that facilitate intrachromosomal recombination, breakpoint analysis revealed that short inverted repeat sequences mediate formation of at least 50% of GAP1 CNVs. Inverted repeat sequences are also found at breakpoints at the DUR3 locus, where CNVs are selected in urea-limited chemostats. Analysis of 28 CNV breakpoints indicates that inverted repeats are typically 8 nucleotides in length and separated by 40 bases. The features of these CNVs are consistent with origin-dependent inverted-repeat amplification (ODIRA), suggesting that replication-based mechanisms of CNV formation may be a common source of gene amplification. We combined the CNV reporter with barcode lineage tracking and found that 102-104 independent CNV-containing lineages initially compete within populations, resulting in extreme clonal interference. However, only a small number (18-21) of CNV lineages ever constitute more than 1% of the CNV subpopulation, and as selection progresses, the diversity of CNV lineages declines. Our study introduces a novel means of studying CNVs in heterogeneous cell populations and provides insight into their dynamics, diversity, and formation mechanisms in the context of adaptive evolution.
Collapse
Affiliation(s)
- Stephanie Lauer
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Grace Avecilla
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Pieter Spealman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Gunjan Sethia
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Nathan Brandt
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Sasha F. Levy
- Joint Initiative for Metrology in Biology, National Institute of Standards and Technology, Stanford University, Stanford, California, United States of America
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| |
Collapse
|
29
|
Genome-wide identification of the entire 90 glutathione S-transferase (GST) subfamily genes in four rotifer Brachionus species and transcriptional modulation in response to endocrine disrupting chemicals. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:183-195. [PMID: 30290366 DOI: 10.1016/j.cbd.2018.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 02/08/2023]
Abstract
Genome-wide identification of glutathione S-transferase (GST), a major phase II detoxification enzyme, was investigated in four different aquatic model rotifer species Brachionus koreanus, B. plicatilis, B. rotundiformis, and B. calyciflorus. GSTs are ubiquitous antioxidant enzymes that play versatile function including cellular detoxification, stress alleviation, and production of the radical conjugates. Among the four rotifers, B. rotundiformis was found with the least number of GST genes (total 19 GST genes), whereas the other three species shared 23 to 24 GST genes. Among the identified GST genes, belonging to the cytosolic GST superfamily, the expansion of GST sigma classes mainly occurs through tandem duplication, resulting in tandem-arrayed gene clusters on the chromosomes. Overall, the number of genes discovered in this study was highest in the sigma class, zeta, alpha, and omega in descending order. With integration of phylogenetic analysis and xenobiotic-mediated GST mRNA expression patterns along with previous enzymatic activities, the functional divergence among species-specific GST genes was clearly observed. This study covers full identification of GST classes in three marine rotifer and one fresh-water rotifer species and their important role in marine environmental ecotoxicology.
Collapse
|
30
|
Zhou N, Bottagisi S, Katz M, Schacherer J, Friedrich A, Gojkovic Z, Swamy KBS, Knecht W, Compagno C, Piškur J. Yeast-bacteria competition induced new metabolic traits through large-scale genomic rearrangements in Lachancea kluyveri. FEMS Yeast Res 2018; 17:4064365. [PMID: 28910985 DOI: 10.1093/femsyr/fox060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/03/2017] [Indexed: 12/28/2022] Open
Abstract
Large-scale chromosomal rearrangements are an important source of evolutionary novelty that may have reshaped the genomes of existing yeast species. They dramatically alter genome organization and gene expression fueling a phenotypic leap in response to environmental constraints. Although the emergence of such signatures of genetic diversity is thought to be associated with human exploitation of yeasts, less is known about the driving forces operating in natural habitats. Here we hypothesize that an ecological battlefield characteristic of every autumn when fruits ripen accounts for the genomic innovations in natural populations. We described a long-term cross-kingdom competition experiment between Lachancea kluyveri and five species of bacteria. Now, we report how we further subjected the same yeast to a sixth species of bacteria, Pseudomonas fluorescens, resulting in the appearance of a fixed and stably inherited large-scale genomic rearrangement in two out of three parallel evolution lines. The 'extra-banded' karyotype, characterized by a higher fitness and an elevated fermentative capacity, conferred the emergence of new metabolic traits in most carbon sources and osmolytes. We tracked down the event to a duplication and translocation event involving a 261-kb segment. Such an experimental setup described here is an attractive method for developing industrial strains without genetic engineering strategies.
Collapse
Affiliation(s)
- Nerve Zhou
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden.,Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P Bag 16, 00267 Palapye, Botswana
| | - Samuele Bottagisi
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden.,Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Michael Katz
- Carlsberg Laboratories, Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark
| | - Joseph Schacherer
- Department of Genetics, Genomics and Microbiology, University of Strasbourg, CNRS UMR7156, 67083 Strasbourg, France
| | - Anne Friedrich
- Department of Genetics, Genomics and Microbiology, University of Strasbourg, CNRS UMR7156, 67083 Strasbourg, France
| | - Zoran Gojkovic
- Carlsberg Laboratories, Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark
| | - Krishna B S Swamy
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wolfgang Knecht
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden.,Lund Protein Production Platform, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Concetta Compagno
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Giovanni Celoria 2, 20133 Milan, Italy
| | - Jure Piškur
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| |
Collapse
|
31
|
De Meur Q, Deutschbauer A, Koch M, Wattiez R, Leroy B. Genetic Plasticity and Ethylmalonyl Coenzyme A Pathway during Acetate Assimilation in Rhodospirillum rubrum S1H under Photoheterotrophic Conditions. Appl Environ Microbiol 2018; 84:e02038-17. [PMID: 29180364 PMCID: PMC5772224 DOI: 10.1128/aem.02038-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023] Open
Abstract
Purple nonsulfur bacteria represent a promising resource for biotechnology because of their great metabolic versatility. Rhodospirillum rubrum has been widely studied regarding its metabolism of volatile fatty acid, mainly acetate. As the glyoxylate shunt is unavailable in Rs. rubrum, the citramalate cycle pathway and the ethylmalonyl-coenzyme A (CoA) pathway are proposed as alternative anaplerotic pathways for acetate assimilation. However, despite years of debate, neither has been confirmed to be essential. Here, using functional genomics, we demonstrate that the ethylmalonyl-CoA pathway is required for acetate photoassimilation. Moreover, an unexpected reversible long-term adaptation is observed, leading to a drastic decrease in the lag phase characterizing the growth of Rs. rubrum in the presence of acetate. Using proteomic and genomic analyses, we present evidence that the adaptation phenomenon is associated with reversible amplification and overexpression of a 60-kb genome fragment containing key enzymes of the ethylmalonyl-CoA pathway. Our observations suggest that a genome duplication and amplification phenomenon is not only involved in adaptation to acute stress but can also be important for basic carbon metabolism and the redox balance.IMPORTANCE Purple nonsulfur bacteria represent a major group of anoxygenic photosynthetic bacteria that emerged as a promising resource for biotechnology because of their great metabolic versatility and ability to grow under various conditions. Rhodospirillum rubrum S1H has notably been selected by the European Space Agency to colonize its life support system, called MELiSSA, due to its capacity to perform photoheterotrophic assimilation of volatile fatty acids (VFAs), mainly acetate. VFAs are valuable carbon sources for many applications, combining bioremediation of contaminated environments with the generation of added-value products. Acetate is one of the major volatile fatty acids generated as a by-product of fermentation processes. In Rs. rubrum, purple nonsulfur bacteria, the assimilation of acetate is still under debate since two different pathways have been proposed. Here, we clearly demonstrate that the ethylmalonyl-CoA pathway is the major anaplerotic pathway for acetate assimilation in this strain. Interestingly, we further observed that gene duplication and amplification, which represent a well-known phenomenon in antibiotic resistance, also play a regulatory function in carbon metabolism and redox homeostasis.
Collapse
Affiliation(s)
- Quentin De Meur
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Adam Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Matthias Koch
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
32
|
Gene Duplication in Pseudomonas aeruginosa Improves Growth on Adenosine. J Bacteriol 2017; 199:JB.00261-17. [PMID: 28808129 DOI: 10.1128/jb.00261-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/05/2017] [Indexed: 11/20/2022] Open
Abstract
The laboratory strain of Pseudomonas aeruginosa, PAO1, activates genes for catabolism of adenosine using quorum sensing (QS). However, this strain is not well-adapted for growth on adenosine, with doubling times greater than 40 h. We previously showed that when PAO1 is grown on adenosine and casein, variants emerge that grow rapidly on adenosine. To understand the mechanism by which this adaptation occurs, we performed whole-genome sequencing of five isolates evolved for rapid growth on adenosine. All five genomes had a gene duplication-amplification (GDA) event covering several genes, including the quorum-regulated nucleoside hydrolase gene, nuh, and PA0148, encoding an adenine deaminase. In addition, two of the growth variants also exhibited a nuh promoter mutation. We recapitulated the rapid growth phenotype with a plasmid containing six genes common to all the GDA events. We also showed that nuh and PA0148, the two genes at either end of the common GDA, were sufficient to confer rapid growth on adenosine. Additionally, we demonstrated that the variant nuh promoter increased basal expression of nuh but maintained its QS regulation. Therefore, GDA in P. aeruginosa confers the ability to grow efficiently on adenosine while maintaining QS regulation of nucleoside catabolism.IMPORTANCEPseudomonas aeruginosa thrives in many habitats and is an opportunistic pathogen of humans. In these diverse environments, P. aeruginosa must adapt to use myriad potential carbon sources. P. aeruginosa PAO1 cannot grow efficiently on nucleosides, including adenosine; however, it can acquire this ability through genetic adaptation. We show that the mechanism of adaptation is by amplification of a specific region of the genome and that the amplification preserves the regulation of the adenosine catabolic pathway by quorum sensing. These results demonstrate an underexplored mechanism of adaptation by P. aeruginosa, with implications for phenotypes such as development of antibiotic resistance.
Collapse
|
33
|
How a Genetically Stable Extremophile Evolves: Modes of Genome Diversification in the Archaeon Sulfolobus acidocaldarius. J Bacteriol 2017. [PMID: 28630130 DOI: 10.1128/jb.00177-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In order to analyze in molecular terms how Sulfolobus genomes diverge, damage-induced mutations and natural polymorphisms (PMs) were identified in laboratory constructs and wild-type isolates, respectively, of Sulfolobus acidocaldarius Among wild-type isolates drawn from one local population, pairwise nucleotide divergence averaged 4 × 10-6, which is about 0.15% of the corresponding divergence reported for Sulfolobus islandicus The most variable features of wild-type S. acidocaldarius genomes were homopolymer (mononucleotide) tracts and longer tandem repeats, consistent with the spontaneous mutations that occur under laboratory conditions. Natural isolates, however, also revealed large insertions/deletions and inversions, which did not occur in any of the laboratory-manipulated strains. Several of the large insertions/deletions could be attributed to the integration or excision of mobile genetic elements (MGEs), and each MGE represented a distinct system of site-specific recombination. The mode of recombination associated with one MGE, a provirus related to Sulfolobus turreted icosahedral virus, was also seen in certain chromosomal inversions. Artificially induced mutations, non-MGE insertions/deletions, and small PMs exhibited different distributions over the genome, suggesting that large-scale patterning of Sulfolobus genomes begins early in the divergence process. Unlike induced mutations, natural base pair substitutions occurred in clusters, and one cluster exhibited properties expected of nonreciprocal recombination (gene conversion) between dispersed imperfect repeats. Taken together, the results identify simple replication errors, slipped-strand events promoted by tandem repeats, homologous recombination, and rearrangements promoted by MGEs as the primary sources of genetic variation for this extremely acidophilic archaeon in its geothermal environment.IMPORTANCE The optimal growth temperatures of hyperthermophilic archaea accelerate DNA decomposition, which is expected to make DNA repair especially important for their genetic stability, yet these archaea lack certain broadly conserved types of DNA repair proteins. In this study, the genome of the extreme thermoacidophile Sulfolobus acidocaldarius was found to be remarkably stable, accumulating few mutations in many (though not all) laboratory manipulations and in natural populations. Furthermore, all the genetic processes that were inferred to diversify these genomes also operate in mesophilic bacteria and eukaryotes. This suggests that a common set of mechanisms produces most of the genetic variation in all microorganisms, despite the fundamental differences in physiology, DNA repair systems, and genome structure represented in the three domains of life.
Collapse
|
34
|
Gratia JP. Genetic recombinational events in prokaryotes and their viruses: insight into the study of evolution and biodiversity. Antonie van Leeuwenhoek 2017; 110:1493-1514. [DOI: 10.1007/s10482-017-0916-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023]
|
35
|
Dormeyer M, Lübke AL, Müller P, Lentes S, Reuß DR, Thürmer A, Stülke J, Daniel R, Brantl S, Commichau FM. Hierarchical mutational events compensate for glutamate auxotrophy of a Bacillus subtilis gltC mutant. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:279-289. [PMID: 28294562 DOI: 10.1111/1758-2229.12531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 06/06/2023]
Abstract
Glutamate is the major donor of nitrogen for anabolic reactions. The Gram-positive soil bacterium Bacillus subtilis either utilizes exogenously provided glutamate or synthesizes it using the gltAB-encoded glutamate synthase (GOGAT). In the absence of glutamate, the transcription factor GltC activates expression of the GOGAT genes for glutamate production. Consequently, a gltC mutant strain is auxotrophic for glutamate. Using a genetic selection and screening system, we could isolate and differentiate between gltC suppressor mutants in one step. All mutants had acquired the ability to synthesize glutamate, independent of GltC. We identified (i) gain-of-function mutations in the gltR gene, encoding the transcription factor GltR, (ii) mutations in the promoter of the gltAB operon and (iii) massive amplification of the genomic locus containing the gltAB operon. The mutants belonging to the first two classes constitutively expressed the gltAB genes and produced sufficient glutamate for growth. By contrast, mutants that belong to the third class appeared most frequently and solved glutamate limitation by increasing the copy number of the poorly expressed gltAB genes. Thus, glutamate auxotrophy of a B. subtilis gltC mutant can be relieved in multiple ways. Moreover, recombination-dependent amplification of the gltAB genes is the predominant mutational event indicating a hierarchy of mutations.
Collapse
Affiliation(s)
- Miriam Dormeyer
- Department of General Microbiology, Georg August University Göttingen, Grisebachstr. 8, Göttingen, 37077, Germany
| | - Anastasia L Lübke
- Department of General Microbiology, Georg August University Göttingen, Grisebachstr. 8, Göttingen, 37077, Germany
| | - Peter Müller
- Department of Genetics, Bacterial Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, 07743, Germany
| | - Sabine Lentes
- Department of General Microbiology, Georg August University Göttingen, Grisebachstr. 8, Göttingen, 37077, Germany
| | - Daniel R Reuß
- Department of General Microbiology, Georg August University Göttingen, Grisebachstr. 8, Göttingen, 37077, Germany
| | - Andrea Thürmer
- Department of Genomic and Applied Microbiology, Georg August University Göttingen, Grisebachstr. 8, Göttingen, 37077, Germany
| | - Jörg Stülke
- Department of General Microbiology, Georg August University Göttingen, Grisebachstr. 8, Göttingen, 37077, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Georg August University Göttingen, Grisebachstr. 8, Göttingen, 37077, Germany
| | - Sabine Brantl
- Department of Genetics, Bacterial Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, 07743, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Georg August University Göttingen, Grisebachstr. 8, Göttingen, 37077, Germany
| |
Collapse
|
36
|
Duncan KE, Istock CA, Graham JB, Ferguson N. GENETIC EXCHANGE BETWEEN BACILLUS SUBTILIS AND BACILLUS LICHENIFORMIS: VARIABLE HYBRID STABILITY AND THE NATURE OF BACTERIAL SPECIES. Evolution 2017; 43:1585-1609. [PMID: 28564334 DOI: 10.1111/j.1558-5646.1989.tb02611.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/1988] [Accepted: 06/13/1989] [Indexed: 11/29/2022]
Abstract
Experiments employing both broth and soil cultures demonstrated the capacity for bidirectional genetic exchange between the eubacterial species Bacillus subtilis and Bacillus licheniformis. The process was studied using standard laboratory strains and wild isolates of these species. The genetic exchange in soil occurs spontaneously. The interspecific recombination involved markers for antibiotic resistance and for the use of specific carbon sources (API characters). Hybrids frequently had unstable phenotypes, i.e., lacked a consistent expression of foreign genes over repeated transfer and growth. This instability often involved a "correction" back toward the phenotype of one or the other of the parental species for many differentiating characters; the final phenotype was always that of the more probable or actually known recipient species. This "correction" process is reminiscent of phenomena associated with the instability of artificial fusion protoplasts or noncomplementing diploids of B. subtilis, as well as the merodiploids formed by intergeneric crosses with enteric bacteria. The hybrids observed here must also be diploid, in some manner, because they sequentially express traits of both parental species at rates well above the frequency of mutation. Among the unstable changes in hybrids of the wild strains there was a 3:1 bias in favor of "correction." The dynamics of the hybridization process in soil are described. It appears that the hybrids are formed most rapidly following outgrowth from spores and during the early growth of parental vegetative cell populations. Later on, the hybrids are much less frequent in the soil cultures, suggesting that they are competitively inferior to the parental species. It is argued that the capacity for recombination found between B. subtilis and B. licheniformis could locally erase their distinctness, even though they possess only about 15% DNA sequence homology. Yet they remain distinct in the wild. The methods and results of these experiments prepare the way for detailed studies of the nature of species and species boundaries throughout the genus Bacillus.
Collapse
Affiliation(s)
- Kathleen E Duncan
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721
| | - Conrad A Istock
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721
| | - Julia Bell Graham
- Department of Biology and Biomedical Sciences, Western Michigan University, Kalamazoo, MI, 49008
| | - Nancy Ferguson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721
| |
Collapse
|
37
|
Suppressors of dGTP Starvation in Escherichia coli. J Bacteriol 2017; 199:JB.00142-17. [PMID: 28373271 DOI: 10.1128/jb.00142-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/23/2017] [Indexed: 11/20/2022] Open
Abstract
dGTP starvation, a newly discovered phenomenon in which Escherichia coli cells are starved specifically for the DNA precursor dGTP, leads to impaired growth and, ultimately, cell death. Phenomenologically, it represents an example of nutritionally induced unbalanced growth: cell mass amplifies normally as dictated by the nutritional status of the medium, but DNA content growth is specifically impaired. The other known example of such a condition, thymineless death (TLD), involves starvation for the DNA precursor dTTP, which has been found to have important chemotherapeutic applications. Experimentally, dGTP starvation is induced by depriving an E. coligpt optA1 strain of its required purine source, hypoxanthine. In our studies of this phenomenon, we noted the emergence of a relatively high frequency of suppressor mutants that proved resistant to the treatment. To study such suppressors, we used next-generation sequencing on a collection of independently obtained mutants. A significant fraction was found to carry a defect in the PurR transcriptional repressor, controlling de novo purine biosynthesis, or in its downstream purEK operon. Thus, upregulation of de novo purine biosynthesis appears to be a major mode of overcoming the lethal effects of dGTP starvation. In addition, another large fraction of the suppressors contained a large tandem duplication of a 250- to 300-kb genomic region that included the purEK operon as well as the acrAB-encoded multidrug efflux system. Thus, the suppressive effects of the duplications could potentially involve beneficial effects of a number of genes/operons within the amplified regions.IMPORTANCE Concentrations of the four precursors for DNA synthesis (2'-deoxynucleoside-5'-triphosphates [dNTPs]) are critical for both the speed of DNA replication and its accuracy. Previously, we investigated consequences of dGTP starvation, where the DNA precursor dGTP was specifically reduced to a low level. Under this condition, E. coli cells continued cell growth but eventually developed a DNA replication defect, leading to cell death due to formation of unresolvable DNA structures. Nevertheless, dGTP-starved cultures eventually resumed growth due to the appearance of resistant mutants. Here, we used whole-genome DNA sequencing to identify the responsible suppressor mutations. We show that the majority of suppressors can circumvent death by upregulating purine de novo biosynthesis, leading to restoration of dGTP to acceptable levels.
Collapse
|
38
|
Dynamic Expansion and Contraction of cagA Copy Number in Helicobacter pylori Impact Development of Gastric Disease. mBio 2017; 8:mBio.01779-16. [PMID: 28223454 PMCID: PMC5358911 DOI: 10.1128/mbio.01779-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infection with Helicobacter pylori is a major risk factor for development of gastric disease, including gastric cancer. Patients infected with H. pylori strains that express CagA are at even greater risk of gastric carcinoma. Given the importance of CagA, this report describes a new molecular mechanism by which the cagA copy number dynamically expands and contracts in H. pylori. Analysis of strain PMSS1 revealed a heterogeneous population in terms of numbers of cagA copies; strains carried from zero to four copies of cagA that were arranged as direct repeats within the chromosome. Each of the multiple copies of cagA was expressed and encoded functional CagA; strains with more cagA repeats exhibited higher levels of CagA expression and increased levels of delivery and phosphorylation of CagA within host cells. This concomitantly resulted in more virulent phenotypes as measured by cell elongation and interleukin-8 (IL-8) induction. Sequence analysis of the repeat region revealed three cagA homologous areas (CHAs) within the cagA repeats. Of these, CHA-ud flanked each of the cagA copies and is likely important for the dynamic variation of cagA copy numbers. Analysis of a large panel of clinical isolates showed that 7.5% of H. pylori strains isolated in the United States harbored multiple cagA repeats, while none of the tested Korean isolates carried more than one copy of cagA. Finally, H. pylori strains carrying multiple cagA copies were differentially associated with gastric disease. Thus, the dynamic expansion and contraction of cagA copy numbers may serve as a novel mechanism by which H. pylori modulates gastric disease development. Severity of H. pylori-associated disease is directly associated with carriage of the CagA toxin. Though the sequences of the CagA protein can differ across strains, previous analyses showed that virtually all H. pylori strains carry one or no copies of cagA. This study showed that H. pylori can carry multiple tandem copies of cagA that can change dynamically. Isolates harboring more cagA copies produced more CagA, thus enhancing toxicity to host cells. Analysis of 314 H. pylori clinical strains isolated from patients in South Korea and the United States showed that 7.5% of clinical strains in the United States carried multiple cagA copies whereas none of the South Korean strains did. This study demonstrated a novel molecular mechanism by which H. pylori dynamically modulates cagA copy number, which affects CagA expression and activity and may impact downstream development of gastric disease.
Collapse
|
39
|
Zheng Z, Xu M, Bao M, Wu F, Chen J, Deng X. Unusual Five Copies and Dual Forms of nrdB in "Candidatus Liberibacter asiaticus": Biological Implications and PCR Detection Application. Sci Rep 2016; 6:39020. [PMID: 27958354 PMCID: PMC5154197 DOI: 10.1038/srep39020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/16/2016] [Indexed: 11/14/2022] Open
Abstract
"Candidatus Liberibacter asiaticus" (CLas), a non-culturable α-proteobacterium, is associated with citrus Huanglongbing (HLB, yellow shoot disease) currently threatening citrus production worldwide. Here, the whole genome sequence of CLas strain A4 from Guangdong of China was analyzed. Five copies of nrdB, encoding β-subunit of ribonucleotide reductase (RNR), a critical enzyme involving bacterial proliferation, were found. Three nrdB copies were in long form (nrdBL, 1,059 bp) and two were in short form (nrdBS, 378 bp). nrdBS shared >99% identity to 3' end of nrdBL and had no active site. Sequences of CLas nrdB genes formed a distinct monophyletic lineage among eubacteria. To make use of the high copy number feature, a nrdB-based primer set RNRf/RNRr was designed and evaluated using real-time PCR with 262 HLB samples collected from China and USA. Compared to the current standard primer set HLBas/HLBr derived from the 16S rRNA gene, RNRf/RNRr had Ct value reductions of 1.68 (SYBR Green PCR) and 1.77 (TaqMan PCR), thus increasing the detection sensitivity three-fold. Meanwhile, RNRf/RNRr was more than twice the stability of primer set LJ900f/LJ900r derived from multi-copy prophage. The nrdB-based PCR thereby provides a sensitive and reliable CLas detection with broad application, especially for the early diagnosis of HLB.
Collapse
Affiliation(s)
- Zheng Zheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Peoples' Republic of China
- San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture-Agricultural Research Service, Parlier, California, United States of America
| | - Meirong Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Peoples' Republic of China
| | - Minli Bao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Peoples' Republic of China
| | - Fengnian Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Peoples' Republic of China
- San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture-Agricultural Research Service, Parlier, California, United States of America
| | - Jianchi Chen
- San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture-Agricultural Research Service, Parlier, California, United States of America
| | - Xiaoling Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Peoples' Republic of China
| |
Collapse
|
40
|
Abstract
As the ratio of the copy number of the most replicated to the unreplicated regions in the same chromosome, the definition of chromosomal replication complexity (CRC) appears to leave little room for variation, being either two during S-phase or one otherwise. However, bacteria dividing faster than they replicate their chromosome spike CRC to four and even eight. A recent experimental inquiry about the limits of CRC in Escherichia coli revealed two major reasons to avoid elevating it further: (i) increased chromosomal fragmentation and (ii) complications with subsequent double-strand break repair. Remarkably, examples of stable elevated CRC in eukaryotic chromosomes are well known under various terms like "differential replication," "underreplication," "DNA puffs," "onion-skin replication," or "re-replication" and highlight the phenomenon of static replication fork (sRF). To accurately describe the resulting "amplification by overinitiation," I propose a new term: "replification" (subchromosomal overreplication). In both prokaryotes and eukaryotes, replification, via sRF processing, causes double-strand DNA breaks and, with their repair elevating chromosomal rearrangements, represents a novel genome instability factor. I suggest how static replication bubbles could be stabilized and speculate that some tandem duplications represent such persistent static bubbles. Moreover, I propose how static replication bubbles could be transformed into tandem duplications, double minutes, or inverted triplications. Possible experimental tests of these models are discussed.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
41
|
Brown NM, Mueller RS, Shepardson JW, Landry ZC, Morré JT, Maier CS, Hardy FJ, Dreher TW. Structural and functional analysis of the finished genome of the recently isolated toxic Anabaena sp. WA102. BMC Genomics 2016; 17:457. [PMID: 27296936 PMCID: PMC4907049 DOI: 10.1186/s12864-016-2738-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/12/2016] [Indexed: 11/29/2022] Open
Abstract
Background Very few closed genomes of the cyanobacteria that commonly produce toxic blooms in lakes and reservoirs are available, limiting our understanding of the properties of these organisms. A new anatoxin-a-producing member of the Nostocaceae, Anabaena sp. WA102, was isolated from a freshwater lake in Washington State, USA, in 2013 and maintained in non-axenic culture. Results The Anabaena sp. WA102 5.7 Mbp genome assembly has been closed with long-read, single-molecule sequencing and separately a draft genome assembly has been produced with short-read sequencing technology. The closed and draft genome assemblies are compared, showing a correlation between long repeats in the genome and the many gaps in the short-read assembly. Anabaena sp. WA102 encodes anatoxin-a biosynthetic genes, as does its close relative Anabaena sp. AL93 (also introduced in this study). These strains are distinguished by differences in the genes for light-harvesting phycobilins, with Anabaena sp. AL93 possessing a phycoerythrocyanin operon. Biologically relevant structural variants in the Anabaena sp. WA102 genome were detected only by long-read sequencing: a tandem triplication of the anaBCD promoter region in the anatoxin-a synthase gene cluster (not triplicated in Anabaena sp. AL93) and a 5-kbp deletion variant present in two-thirds of the population. The genome has a large number of mobile elements (160). Strikingly, there was no synteny with the genome of its nearest fully assembled relative, Anabaena sp. 90. Conclusion Structural and functional genome analyses indicate that Anabaena sp. WA102 has a flexible genome. Genome closure, which can be readily achieved with long-read sequencing, reveals large scale (e.g., gene order) and local structural features that should be considered in understanding genome evolution and function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2738-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nathan M Brown
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, 97331, OR, USA
| | - Ryan S Mueller
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, 97331, OR, USA
| | - Jonathan W Shepardson
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, 97331, OR, USA
| | - Zachary C Landry
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, 97331, OR, USA
| | - Jeffrey T Morré
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, 97331, OR, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, 97331, OR, USA
| | - F Joan Hardy
- Office of Environmental Public Health Sciences, Washington State Department of Health, Olympia, 98504, WA, USA
| | - Theo W Dreher
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, 97331, OR, USA. .,Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
42
|
Yano K, Masuda K, Akanuma G, Wada T, Matsumoto T, Shiwa Y, Ishige T, Yoshikawa H, Niki H, Inaoka T, Kawamura F. Growth and sporulation defects in Bacillus subtilis mutants with a single rrn operon can be suppressed by amplification of the rrn operon. Microbiology (Reading) 2016; 162:35-45. [DOI: 10.1099/mic.0.000207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Koichi Yano
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Kenta Masuda
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Genki Akanuma
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Tetsuya Wada
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| | - Takashi Matsumoto
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Yuh Shiwa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Taichiro Ishige
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Sakuragaoka 1-1-1, Tokyo 156-8502, Japan
| | - Hironori Niki
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies, Sokendai, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Takashi Inaoka
- Microbial Function Laboratory, National Food Research Institute, National Agriculture Research Organization, Tsukuba-shi Kannondai 2-1-12, Ibaraki 305-8642, Japan
| | - Fujio Kawamura
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku Nishi-ikebukuro 3-34-1, Tokyo 171-8501, Japan
| |
Collapse
|
43
|
Experimental Evolution Identifies Vaccinia Virus Mutations in A24R and A35R That Antagonize the Protein Kinase R Pathway and Accompany Collapse of an Extragenic Gene Amplification. J Virol 2015. [PMID: 26202237 DOI: 10.1128/jvi.01233-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Most new human infectious diseases emerge from cross-species pathogen transmissions; however, it is not clear how viruses adapt to productively infect new hosts. Host restriction factors represent one species-specific barrier that viruses may initially have little ability to inhibit in new hosts. For example, viral antagonists of protein kinase R (PKR) vary in their ability to block PKR-mediated inhibition of viral replication, in part due to PKR allelic variation between species. We previously reported that amplification of a weak PKR antagonist encoded by rhesus cytomegalovirus, rhtrs1, improved replication of a recombinant poxvirus (VVΔEΔK+RhTRS1) in several resistant primate cells. To test whether amplification increases the opportunity for mutations that improve virus replication with only a single copy of rhtrs1 to evolve, we passaged rhtrs1-amplified viruses in semipermissive primate cells. After passage, we isolated two viruses that contained only a single copy of rhtrs1 yet replicated as well as the amplified virus. Surprisingly, rhtrs1 was not mutated in these viruses; instead, we identified mutations in two vaccinia virus (VACV) genes, A24R and A35R, either of which was sufficient to improve VVΔEΔK+RhTRS1 replication. Neither of these genes has previously been implicated in PKR antagonism. Furthermore, the mutation in A24R, but not A35R, increased resistance to the antipoxviral drug isatin-β-thiosemicarbazone, suggesting that these mutations employ different mechanisms to evade PKR. This study supports our hypothesis that gene amplification may provide a "molecular foothold," broadly improving replication to facilitate rapid adaptation, while subsequent mutations maintain this efficient replication in the new host without requiring gene amplification. IMPORTANCE Understanding how viruses adapt to a new host may help identify viruses poised to cross species barriers before an outbreak occurs. Amplification of rhtrs1, a weak viral antagonist of the host antiviral protein PKR, enabled a recombinant vaccinia virus to replicate in resistant cells from humans and other primates. After serial passage of rhtrs1-amplified viruses, there arose in two vaccinia virus genes mutations that improved viral replication without requiring rhtrs1 amplification. Neither of these genes has previously been associated with inhibition of the PKR pathway. These data suggest that gene amplification can improve viral replication in a resistant host species and facilitate the emergence of novel adaptations that maintain the foothold needed for continued replication and spread in the new host.
Collapse
|
44
|
Development of Spatial Distribution Patterns by Biofilm Cells. Appl Environ Microbiol 2015; 81:6120-8. [PMID: 26116674 DOI: 10.1128/aem.01614-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/19/2015] [Indexed: 01/14/2023] Open
Abstract
Confined spatial patterns of microbial distribution are prevalent in nature, such as in microbial mats, soil communities, and water stream biofilms. The symbiotic two-species consortium of Pseudomonas putida and Acinetobacter sp. strain C6, originally isolated from a creosote-polluted aquifer, has evolved a distinct spatial organization in the laboratory that is characterized by an increased fitness and productivity. In this consortium, P. putida is reliant on microcolonies formed by Acinetobacter sp. C6, to which it attaches. Here we describe the processes that lead to the microcolony pattern by Acinetobacter sp. C6. Ecological spatial pattern analyses revealed that the microcolonies were not entirely randomly distributed and instead were arranged in a uniform pattern. Detailed time-lapse confocal microscopy at the single-cell level demonstrated that the spatial pattern was the result of an intriguing self-organization: small multicellular clusters moved along the surface to fuse with one another to form microcolonies. This active distribution capability was dependent on environmental factors (carbon source and oxygen) and historical contingency (formation of phenotypic variants). The findings of this study are discussed in the context of species distribution patterns observed in macroecology, and we summarize observations about the processes involved in coadaptation between P. putida and Acinetobacter sp. C6. Our results contribute to an understanding of spatial species distribution patterns as they are observed in nature, as well as the ecology of engineered communities that have the potential for enhanced and sustainable bioprocessing capacity.
Collapse
|
45
|
Andersson DI, Jerlström-Hultqvist J, Näsvall J. Evolution of new functions de novo and from preexisting genes. Cold Spring Harb Perspect Biol 2015; 7:7/6/a017996. [PMID: 26032716 DOI: 10.1101/cshperspect.a017996] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
How the enormous structural and functional diversity of new genes and proteins was generated (estimated to be 10(10)-10(12) different proteins in all organisms on earth [Choi I-G, Kim S-H. 2006. Evolution of protein structural classes and protein sequence families. Proc Natl Acad Sci 103: 14056-14061] is a central biological question that has a long and rich history. Extensive work during the last 80 years have shown that new genes that play important roles in lineage-specific phenotypes and adaptation can originate through a multitude of different mechanisms, including duplication, lateral gene transfer, gene fusion/fission, and de novo origination. In this review, we focus on two main processes as generators of new functions: evolution of new genes by duplication and divergence of pre-existing genes and de novo gene origination in which a whole protein-coding gene evolves from a noncoding sequence.
Collapse
Affiliation(s)
- Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Jon Jerlström-Hultqvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Joakim Näsvall
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
| |
Collapse
|
46
|
Abstract
Despite evidence for the prevalence of horizontal gene transfer of respiratory genes, little is known about how pathways functionally integrate within new hosts. One example of a mobile respiratory metabolism is bacterial chlorate reduction, which is frequently encoded on composite transposons. This implies that the essential components of the metabolism are encoded on these mobile elements. To test this, we heterologously expressed genes for chlorate reduction from Shewanella algae ACDC in the non-chlorate-reducing Shewanella oneidensis MR-1. The construct that ultimately endowed robust growth on chlorate included cld, a cytochrome c gene, clrABDC, and two genes of unknown function. Although strain MR-1 was unable to grow on chlorate after initial insertion of these genes into the chromosome, 11 derived strains capable of chlorate respiration were obtained through adaptive evolution. Genome resequencing indicated that all of the evolved chlorate-reducing strains replicated a large genomic region containing chlorate reduction genes. Contraction in copy number and loss of the ability to reduce chlorate were also observed, indicating that this phenomenon was extremely dynamic. Although most strains contained more than six copies of the replicated region, a single strain with less duplication also grew rapidly. This strain contained three additional mutations that we hypothesized compensated for the low copy number. We remade the mutations combinatorially in the unevolved strain and determined that a single nucleotide polymorphism (SNP) upstream of cld enabled growth on chlorate and was epistatic to a second base pair change in the NarP binding sequence between narQP and nrfA that enhanced growth. The ability of chlorate reduction composite transposons to form functional metabolisms after transfer to a new host is an important part of their propagation. To study this phenomenon, we engineered Shewanella oneidensis MR-1 into a chlorate reducer. We defined a set of genes sufficient to endow growth on chlorate from a plasmid, but found that chromosomal insertion of these genes was nonfunctional. Evolution of this inoperative strain into a chlorate reducer showed that tandem duplication was a dominant mechanism of activation. While copy number changes are a relatively rapid way of increasing gene dosage, replicating almost 1 megabase of extra DNA is costly. Mutations that alleviate the need for high copy number are expected to arise and eventually predominate, and we identified a single nucleotide polymorphism (SNP) that relieved the copy number requirement. This study uses both rational and evolutionary approaches to gain insight into the evolution of a fascinating respiratory metabolism.
Collapse
|
47
|
Abstract
The problem of not only how but also why cells divide can be tackled using recent ideas. One idea from the origins of life – Life as independent of its constituents – is that a living entity like a cell is a particular pattern of connectivity between its constituents. This means that if the growing cell were just to get bigger the average connectivity between its constituents per unit mass – its cellular connectivity – would decrease and the cell would lose its identity. The solution is division which restores connectivity. The corollary is that the cell senses decreasing cellular connectivity and uses this information to trigger division. A second idea from phenotypic diversity – Life on the Scales of Equilibria – is that a bacterium must find strategies that allow it to both survive and grow. This means that it has learnt to reconcile the opposing constraints that these strategies impose. The solution is that the cell cycle generates daughter cells with different phenotypes based on sufficiently complex equilibrium (E) and non-equilibrium (NE) cellular compounds and structures appropriate for survival and growth, respectively, alias ‘hyperstructures.’ The corollary is that the cell senses both the quantity of E material and the intensity of use of NE material and then uses this information to trigger the cell cycle. A third idea from artificial intelligence – Competitive Coherence – is that a cell selects the active subset of elements that actively determine its phenotype from a much larger set of available elements. This means that the selection of an active subset of a specific size and composition must be done so as to generate both a coherent cell state, in which the cell’s contents work together harmoniously, and a coherent sequence of cell states, each coherent with respect to itself and to an unpredictable environment. The solution is the use of a range of mechanisms ranging from hyperstructure dynamics to the cell cycle itself.
Collapse
Affiliation(s)
- Vic Norris
- Laboratory of Microbiology Signals and Microenvironment, Theoretical Biology Unit, University of Rouen, Mont Saint Aignan France
| |
Collapse
|
48
|
Abstract
Changes in gene copy number are among the most frequent mutational events in all genomes and were among the mutations for which a physical basis was first known. Yet mechanisms of gene duplication remain uncertain because formation rates are difficult to measure and mechanisms may vary with position in a genome. Duplications are compared here to deletions, which seem formally similar but can arise at very different rates by distinct mechanisms. Methods of assessing duplication rates and dependencies are described with several proposed formation mechanisms. Emphasis is placed on duplications formed in extensively studied experimental situations. Duplications studied in microbes are compared with those observed in metazoan cells, specifically those in genomes of cancer cells. Duplications, and especially their derived amplifications, are suggested to form by multistep processes often under positive selection for increased copy number.
Collapse
Affiliation(s)
- Andrew B Reams
- Department of Biological Sciences, California State University, Sacramento, California 95819-6077
| | - John R Roth
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| |
Collapse
|
49
|
Cao J, Li X, Lv Y, Ding L. Comparative analysis of the phytocyanin gene family in 10 plant species: a focus on Zea mays. FRONTIERS IN PLANT SCIENCE 2015; 6:515. [PMID: 26217366 PMCID: PMC4499708 DOI: 10.3389/fpls.2015.00515] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/26/2015] [Indexed: 05/18/2023]
Abstract
Phytocyanins (PCs) are plant-specific blue copper proteins, which play essential roles in electron transport. While the origin and expansion of this gene family is not well-investigated in plants. Here, we investigated their evolution by undertaking a genome-wide identification and comparison in 10 plants: Arabidopsis, rice, poplar, tomato, soybean, grape, maize, Selaginella moellendorffii, Physcomitrella patens, and Chlamydomonas reinhardtii. We found an expansion process of this gene family in evolution. Except PCs in Arabidopsis and rice, which have described in previous researches, a structural analysis of PCs in other eight plants indicated that 292 PCs contained N-terminal secretion signals and 217 PCs were expected to have glycosylphosphatidylinositol-anchor signals. Moreover, 281 PCs had putative arabinogalactan glycomodules and might be AGPs. Chromosomal distribution and duplication patterns indicated that tandem and segmental duplication played dominant roles for the expansion of PC genes. In addition, gene organization and motif compositions are highly conserved in each clade. Furthermore, expression profiles of maize PC genes revealed diversity in various stages of development. Moreover, all nine detected maize PC genes (ZmUC10, ZmUC16, ZmUC19, ZmSC2, ZmUC21, ZmENODL10, ZmUC22, ZmENODL13, and ZmENODL15) were down-regulated under salt treatment, and five PCs (ZmUC19, ZmSC2, ZmENODL10, ZmUC22, and ZmENODL13) were down-regulated under drought treatment. ZmUC16 was strongly expressed after drought treatment. This study will provide a basis for future understanding the characterization of this family.
Collapse
Affiliation(s)
- Jun Cao
- *Correspondence: Jun Cao, Institute of Life Sciences, Jiangsu University, Xuefu Road 301, Jiangsu, Zhenjiang 212013, China,
| | | | | | | |
Collapse
|
50
|
Otsuka Y, Muto A, Takeuchi R, Okada C, Ishikawa M, Nakamura K, Yamamoto N, Dose H, Nakahigashi K, Tanishima S, Suharnan S, Nomura W, Nakayashiki T, Aref WG, Bochner BR, Conway T, Gribskov M, Kihara D, Rudd KE, Tohsato Y, Wanner BL, Mori H. GenoBase: comprehensive resource database of Escherichia coli K-12. Nucleic Acids Res 2014; 43:D606-17. [PMID: 25399415 PMCID: PMC4383962 DOI: 10.1093/nar/gku1164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Comprehensive experimental resources, such as ORFeome clone libraries and deletion mutant collections, are fundamental tools for elucidation of gene function. Data sets by omics analysis using these resources provide key information for functional analysis, modeling and simulation both in individual and systematic approaches. With the long-term goal of complete understanding of a cell, we have over the past decade created a variety of clone and mutant sets for functional genomics studies of Escherichia coli K-12. We have made these experimental resources freely available to the academic community worldwide. Accordingly, these resources have now been used in numerous investigations of a multitude of cell processes. Quality control is extremely important for evaluating results generated by these resources. Because the annotation has been changed since 2005, which we originally used for the construction, we have updated these genomic resources accordingly. Here, we describe GenoBase (http://ecoli.naist.jp/GB/), which contains key information about comprehensive experimental resources of E. coli K-12, their quality control and several omics data sets generated using these resources.
Collapse
Affiliation(s)
- Yuta Otsuka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Ai Muto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Rikiya Takeuchi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Chihiro Okada
- Mitsubishi Space Software Co., LTD., 5-4-36 Tsukaguchihonnmachi, Amagasaki, Hyougo 661-0001, Japan
| | - Motokazu Ishikawa
- Mitsubishi Space Software Co., LTD., 5-4-36 Tsukaguchihonnmachi, Amagasaki, Hyougo 661-0001, Japan
| | - Koichiro Nakamura
- Mitsubishi Space Software Co., LTD., 5-4-36 Tsukaguchihonnmachi, Amagasaki, Hyougo 661-0001, Japan
| | - Natsuko Yamamoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Hitomi Dose
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Kenji Nakahigashi
- Institute of Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
| | - Shigeki Tanishima
- Mitsubishi Space Software Co., LTD., 5-4-36 Tsukaguchihonnmachi, Amagasaki, Hyougo 661-0001, Japan
| | - Sivasundaram Suharnan
- Axiohelix, Okinawa Sangyo Shien Center, 502,1831-1, Oroku, Naha-shi, Okinawa 901-0152, Japan
| | - Wataru Nomura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Toru Nakayashiki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Walid G Aref
- Department of Computer Science, Purdue University, 305 N. University Street, West Lafayette, IN 47907-2107, USA
| | | | - Tyrrell Conway
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019-0245, USA
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, 305 N. University Street, West Lafayette, IN 47907-2107, USA Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | - Kenneth E Rudd
- Department Biochemistry and Molecular Biology, University of Miami, P.O. Box 016129, Miami, FL 33101-6129, USA
| | - Yukako Tohsato
- Department of Bioinformatics, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Barry L Wanner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hirotada Mori
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| |
Collapse
|