1
|
Dehnel J, Harchol A, Barak Y, Meir I, Horani F, Shapiro A, Strassberg R, de Mello Donegá C, Demir HV, Gamelin DR, Sharma K, Lifshitz E. Optically detected magnetic resonance spectroscopic analyses on the role of magnetic ions in colloidal nanocrystals. J Chem Phys 2023; 159:071001. [PMID: 37581419 DOI: 10.1063/5.0160787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
Incorporating magnetic ions into semiconductor nanocrystals has emerged as a prominent research field for manipulating spin-related properties. The magnetic ions within the host semiconductor experience spin-exchange interactions with photogenerated carriers and are often involved in the recombination routes, stimulating special magneto-optical effects. The current account presents a comparative study, emphasizing the impact of engineering nanostructures and selecting magnetic ions in shaping carrier-magnetic ion interactions. Various host materials, including the II-VI group, halide perovskites, and I-III-VI2 in diverse structural configurations such as core/shell quantum dots, seeded nanorods, and nanoplatelets, incorporated with magnetic ions such as Mn2+, Ni2+, and Cu1+/2+ are highlighted. These materials have recently been investigated by us using state-of-the-art steady-state and transient optically detected magnetic resonance (ODMR) spectroscopy to explore individual spin-dynamics between the photogenerated carriers and magnetic ions and their dependence on morphology, location, crystal composition, and type of the magnetic ion. The information extracted from the analyses of the ODMR spectra in those studies exposes fundamental physical parameters, such as g-factors, exchange coupling constants, and hyperfine interactions, together providing insights into the nature of the carrier (electron, hole, dopant), its local surroundings (isotropic/anisotropic), and spin dynamics. The findings illuminate the importance of ODMR spectroscopy in advancing our understanding of the role of magnetic ions in semiconductor nanocrystals and offer valuable knowledge for designing magnetic materials intended for various spin-related technologies.
Collapse
Affiliation(s)
- Joanna Dehnel
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Adi Harchol
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yahel Barak
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Itay Meir
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Faris Horani
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Arthur Shapiro
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Rotem Strassberg
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Celso de Mello Donegá
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Hilmi Volkan Demir
- Luminous Center of Excellence for Semiconductor Lighting and Displays, TPI, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University-NTU Singapore, 639798, Singapore
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Türkiye
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Kusha Sharma
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Efrat Lifshitz
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
2
|
Harchol A, Barak Y, Hughes KE, Hartstein KH, Jöbsis HJ, Prins PT, de Mello Donegá C, Gamelin DR, Lifshitz E. Optically Detected Magnetic Resonance Spectroscopy of Cu-Doped CdSe/CdS and CuInS 2 Colloidal Quantum Dots. ACS NANO 2022; 16:12866-12877. [PMID: 35913892 DOI: 10.1021/acsnano.2c05130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Copper-doped II-VI and copper-based I-III-VI2 colloidal quantum dots (CQDs) have been at the forefront of interest in nanocrystals over the past decade, attributable to their optically activated copper states. However, the related recombination mechanisms are still unclear. The current work elaborates on recombination processes in such materials by following the spin properties of copper-doped CdSe/CdS (Cu@CdSe/CdS) and of CuInS2 and CuInS2/(CdS, ZnS) core/shell CQDs using continuous-wave and time-resolved optically detected magnetic resonance (ODMR) spectroscopy. The Cu@CdSe/CdS ODMR showed two distinct resonances with different g factors and spin relaxation times. The best fit by a spin Hamiltonian simulation suggests that emission comes from recombination of a delocalized electron at the conduction band edge with a hole trapped in a Cu2+ site with a weak exchange coupling between the two spins. The ODMR spectra of CuInS2 CQDs (with and without shells) differ significantly from those of the copper-doped II-VI CQDs. They are comprised of a primary resonance accompanied by another resonance at half-field, with a strong correlation between the two, indicating the involvement of a triplet exciton and hence stronger electron-hole exchange coupling than in the doped core/shell CQDs. The spin Hamiltonian simulation shows that the hole is again associated with a photogenerated Cu2+ site. The electron resides near this Cu2+ site, and its ODMR spectrum shows contributions from superhyperfine coupling to neighboring indium atoms. These observations are consistent with the occurrence of a self-trapped exciton associated with the copper site. The results presented here support models under debate for over a decade and help define the magneto-optical properties of these important materials.
Collapse
Affiliation(s)
- Adi Harchol
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yahel Barak
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Kira E Hughes
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Kimberly H Hartstein
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Huygen J Jöbsis
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - P Tim Prins
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Celso de Mello Donegá
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Efrat Lifshitz
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
3
|
Dehnel J, Barak Y, Meir I, Budniak AK, Nagvenkar AP, Gamelin DR, Lifshitz E. Insight into the Spin Properties in Undoped and Mn-Doped CdSe/CdS-Seeded Nanorods by Optically Detected Magnetic Resonance. ACS NANO 2020; 14:13478-13490. [PMID: 32935976 DOI: 10.1021/acsnano.0c05454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling the spin degrees of freedom of photogenerated species in semiconductor nanostructures via magnetic doping is an emerging scientific field that may play an important role in the development of new spin-based technologies. The current work explores spin properties in colloidal CdSe/CdS:Mn seeded-nanorod structures doped with a dilute concentration of Mn2+ ions across the rods. The spin properties were determined using continuous-wave optically detected magnetic resonance (ODMR) spectroscopy recorded under variable microwave chopping frequencies. These experiments enabled the deconvolution of a few different radiative recombination processes: band-to-band, trap-to-band, and trap-to-trap emission. The results uncovered the major role of carrier trapping on the spin properties of elongated structures. The magnetic parameters, determined through spin-Hamiltonian simulation of the steady-state ODMR spectra, reflect anisotropy associated with carrier trapping at the seed/rod interface. These observations unveiled changes in the carriers' g-factors and spin-exchange coupling constants as well as extension of radiative and spin-lattice relaxation times due to magnetic coupling between interface carriers and neighboring Mn2+ ions. Overall, this work highlights that the spin degrees of freedom in seeded nanorods are governed by interfacial trapping and can be further manipulated by magnetic doping. These results provide insights into anisotropic nanostructure spin properties relevant to future spin-based technologies.
Collapse
Affiliation(s)
- Joanna Dehnel
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yahel Barak
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Itay Meir
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Adam K Budniak
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Anjani P Nagvenkar
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Daniel R Gamelin
- Department of Chemistry and the Molecular Engineering Materials Center, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Efrat Lifshitz
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
4
|
Segawa TF, Shames AI. How to Identify, Attribute, and Quantify Triplet Defects in Ensembles of Small Nanoparticles. J Phys Chem Lett 2020; 11:7438-7442. [PMID: 32787299 DOI: 10.1021/acs.jpclett.0c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanodiamonds containing negatively charged triplet (having an electron spin S = 1) nitrogen-vacancy (NV-) centers are an extraordinary room-temperature quantum system, whose electron spins may be polarized and read out optically even in a single nanocrystal. In this Viewpoint we promote a simple but reliable method to identify, attribute, and quantify these triplet defects in a polycrystalline sample using electron paramagnetic resonance (EPR) spectroscopy. The characterization relies on a specific "forbidden" transition ("ΔMS = 2"), which appears at about half the central magnetic field and shows a remarkably small anisotropy. In particular, we emphasize that this method is by far not limited to NV- centers in diamond but could become an important characterization tool for novel triplet defects in various types of nanoparticles.
Collapse
Affiliation(s)
- Takuya F Segawa
- Laboratory for Solid State Physics, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zürich, Switzerland
| | - Alexander I Shames
- Department of Physics, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| |
Collapse
|
5
|
Yin C, Lv Y, Zhang X, Zhang Y, Yu WW, Zhang C, Yu ZG, Wang X, Xiao M. Transition from Doublet to Triplet Excitons in Single Perovskite Nanocrystals. J Phys Chem Lett 2020; 11:5750-5755. [PMID: 32589423 DOI: 10.1021/acs.jpclett.0c01939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Lead halide perovskite nanocrystals (NCs) have emerged as novel semiconductor nanostructures possessing great potential for optoelectronic, photovoltaic, and quantum information processing applications. Success in these applications requires a comprehensive understanding of the perovskite NCs' electronic structures, which mysteriously exhibit either doublet or triplet peaks of exciton luminescence at the single-particle level. Here we show that the transition from doublet- to triplet-exciton peaks can be triggered in single CsPbI3 NCs from the same batch of samples when they are stored in the ambient environment. We propose theoretically that the doublet-exciton peaks originate from two in-plane dipole moments, while the optical transition arising from the out-of-plane dipole moment becomes prominent only after the crystal-field splitting is strongly reduced by the structural transformation in the deterioration process. Furthermore, the quantum-confinement effect is strongly reinforced in the single CsPbI3 NCs with a triplet-exciton configuration, leading to enhanced Auger recombination and allowing us to extract the emission-energy dependence of the exciton-energy-level fine structure.
Collapse
Affiliation(s)
- Chunyang Yin
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yan Lv
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiangtong Zhang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - William W Yu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhi-Gang Yu
- ISP/Applied Sciences Laboratory, Washington State University, Spokane, Washington 99210, United States
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
6
|
Strassberg R, Delikanli S, Barak Y, Dehnel J, Kostadinov A, Maikov G, Hernandez-Martinez PL, Sharma M, Demir HV, Lifshitz E. Persuasive Evidence for Electron-Nuclear Coupling in Diluted Magnetic Colloidal Nanoplatelets Using Optically Detected Magnetic Resonance Spectroscopy. J Phys Chem Lett 2019; 10:4437-4447. [PMID: 31314537 DOI: 10.1021/acs.jpclett.9b01999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The incorporation of magnetic impurities into semiconductor nanocrystals with size confinement promotes enhanced spin exchange interaction between photogenerated carriers and the guest spins. This interaction stimulates new magneto-optical properties with significant advantages for emerging spin-based technologies. Here we observe and elaborate on carrier-guest interactions in magnetically doped colloidal nanoplatelets with the chemical formula CdSe/Cd1-xMnxS, explored by optically detected magnetic resonance and magneto-photoluminescence spectroscopy. The host matrix, with a quasi-type II electronic configuration, introduces a dominant interaction between a photogenerated electron and a magnetic dopant. Furthermore, the data convincingly presents the interaction between an electron and nuclear spins of the doped ions located at neighboring surroundings, with consequent influence on the carrier's spin relaxation time. The nuclear spin contribution by the magnetic dopants in colloidal nanoplatelets is considered here for the first time.
Collapse
Affiliation(s)
- Rotem Strassberg
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| | - Savas Delikanli
- Luminous Center of Excellence for Semiconductor Lighting and Displays, TPI, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering , Nanyang Technological University-NTU Singapore , 639798 Singapore
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology , Bilkent University , Ankara 06800 , Turkey
| | - Yahel Barak
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| | - Joanna Dehnel
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| | - Alyssa Kostadinov
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| | - Georgy Maikov
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| | - Pedro Ludwig Hernandez-Martinez
- Luminous Center of Excellence for Semiconductor Lighting and Displays, TPI, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering , Nanyang Technological University-NTU Singapore , 639798 Singapore
| | - Manoj Sharma
- Luminous Center of Excellence for Semiconductor Lighting and Displays, TPI, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering , Nanyang Technological University-NTU Singapore , 639798 Singapore
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology , Bilkent University , Ankara 06800 , Turkey
| | - Hilmi Volkan Demir
- Luminous Center of Excellence for Semiconductor Lighting and Displays, TPI, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering , Nanyang Technological University-NTU Singapore , 639798 Singapore
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM-Institute of Materials Science and Nanotechnology , Bilkent University , Ankara 06800 , Turkey
| | - Efrat Lifshitz
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| |
Collapse
|
7
|
Barak Y, Meir I, Shapiro A, Jang Y, Lifshitz E. Fundamental Properties in Colloidal Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801442. [PMID: 29923230 DOI: 10.1002/adma.201801442] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/22/2018] [Indexed: 06/08/2023]
Abstract
A multidisciplinary approach for the production and characterization of colloidal quantum dots, which show great promise for implementation in modern optoelectronic applications, is described. The approach includes the design and formation of unique core/shell structures with alloy-composed layers between the core and the shell. Such structures eliminate interfacial defects and suppress the Auger process, thus reducing the known fluorescence blinking and endowing the quantum dots with robust chemical and spectral stability. The unique design enables the generation and sustained existence of single and multiple excitons with a defined spin-polarized emission recombination. The studies described herein implement the use of single-dot magneto-optical measurements and optically detected magnetic resonance spectroscopy, for direct identification of interfacial defects and for resolving exciton fine structure. The results are of paramount importance for a fundamental understanding of optical transitions in colloidal quantum dots, with an impact on appropriate materials design for practical applications.
Collapse
Affiliation(s)
- Yahel Barak
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Grand Technion Energy Program, Technion, Haifa, 3200003, Israel
| | - Itay Meir
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Grand Technion Energy Program, Technion, Haifa, 3200003, Israel
| | - Arthur Shapiro
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Grand Technion Energy Program, Technion, Haifa, 3200003, Israel
| | - Youngjin Jang
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Grand Technion Energy Program, Technion, Haifa, 3200003, Israel
| | - Efrat Lifshitz
- Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Grand Technion Energy Program, Technion, Haifa, 3200003, Israel
| |
Collapse
|
8
|
Lifshitz E. Evidence in Support of Exciton to Ligand Vibrational Coupling in Colloidal Quantum Dots. J Phys Chem Lett 2015; 6:4336-4347. [PMID: 26538048 DOI: 10.1021/acs.jpclett.5b01567] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The Perspective focuses on the investigation of an unresolved conflict in semiconductor colloidal quantum dots (CQDs) research, concerning the influence of the immediate surrounding on the optical properties of the materials. Today's advanced synthetic colloidal procedures offer formation of a high-quality inorganic crystallite, capped with various organic/inorganic molecular ligands. The Perspective aims to clarify whether exciton recombination processes in CQDs are influenced by the type of crystallite-ligand bonding and, moreover, whether these excitonic processes experience direct coupling to the ligands' vibrational modes. Most ligands used have redox characteristics whose functional groups are added on to the CQDs' surface via coordination, covalent or ionic bonding. The surface-ligand bonding introduces electronic states either above or below the intraband/interband energy gap, resulting in electronic passivation or in creation of trapping states that affect intraband and interband relaxation processes. Furthermore, crystalline electronic states may have a direct coupling to molecular vibrational states via direct overlap of electronic wave functions or through a long-range energy-transfer process. Also, photoejected carriers resulting from an Auger process or ionization processes may diffuse temporarily onto a ligand site. These scenarios are discussed in the current publication with supporting theoretical and experimental observations.
Collapse
Affiliation(s)
- Efrat Lifshitz
- Schulich Faculty of Chemistry, Russell Berrie Nanotechnology Institute, Solid State Institute, Technion, Israel Institute of Technology , Haifa 32000, Israel
| |
Collapse
|
9
|
van Schooten KJ, Boehme C, Lupton JM. Coherent magnetic resonance of nanocrystal quantum-dot luminescence as a window to blinking mechanisms. Chemphyschem 2014; 15:1737-46. [PMID: 24756986 DOI: 10.1002/cphc.201400081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/04/2014] [Indexed: 11/08/2022]
Abstract
Blinking of colloidal nanocrystal quantum dots, random intermittency in the stream of photons emitted by single particles, has long commanded the curiosity of researchers. Why does the particle suddenly shut off, and what are the pathways to quench emission? Single-particle microscopy is not the only way to approach these fundamental questions on the interaction of light and matter: time-domain sub-ensemble spectroscopies can also yield relevant information on microscopic electronic processes. We illustrate recent advances in pulsed optically detected magnetic resonance and highlight the conceptual relevance to unravelling mechanisms controlling intermittency on the single-particle level. Magnetic resonance reveals two distinct luminescence quenching channels, which appear to be related to those previously surmised from single-particle studies: a trapped charge-separated state in which the exciton is quenched by dissociation and the particle remains neutral; and a charged state of the particle in which spin-dependent Auger recombination quenches luminescence.
Collapse
Affiliation(s)
- Kipp J van Schooten
- Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Salt Lake City, UT 84112-0830 (USA)
| | | | | |
Collapse
|
10
|
Abstract
Colloidal heteronanocrystals (HNCs) can be regarded as solution-grown inorganic-organic hybrid nanomaterials, since they consist of inorganic nanoparticles that are coated with a layer of organic ligand molecules. The hybrid nature of these nanostructures provides great flexibility in engineering their physical and chemical properties. The inorganic particles are heterostructured, i.e. they comprise two (or more) different materials joined together, what gives them remarkable and unique properties that can be controlled by the composition, size and shape of each component of the HNC. The interaction between the inorganic component and the organic ligand molecules allows the size and shape of the HNCs to be controlled and gives rise to novel properties. Moreover, the organic surfactant layer opens up the possibility of surface chemistry manipulation, making it possible to tailor a number of properties. These features have turned colloidal HNCs into promising materials for a number of applications, spurring a growing interest on the investigation of their preparation and properties. This critical review provides an overview of recent developments in this rapidly expanding field, with emphasis on semiconductor HNCs (e.g., quantum dots and quantum rods). In addition to defining the state of the art and highlighting the key issues in the field, this review addresses the fundamental physical and chemical principles needed to understand the properties and preparation of colloidal HNCs (283 references).
Collapse
Affiliation(s)
- Celso de Mello Donegá
- Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands.
| |
Collapse
|
11
|
Lupton JM, McCamey DR, Boehme C. Coherent Spin Manipulation in Molecular Semiconductors: Getting a Handle on Organic Spintronics. Chemphyschem 2010; 11:3040-58. [DOI: 10.1002/cphc.201000186] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Yang CG, Ehrenfreund E, Vardeny ZV. Polaron spin-lattice relaxation time in pi-conjugated polymers from optically detected magnetic resonance. PHYSICAL REVIEW LETTERS 2007; 99:157401. [PMID: 17995211 DOI: 10.1103/physrevlett.99.157401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Indexed: 05/25/2023]
Abstract
We describe a method for obtaining the polaron spin-lattice relaxation time T{SL} in pi-conjugated polymers by measuring the optically detected magnetic resonance (ODMR) dynamics as a function of microwave power and laser intensity. The peculiar ODMR dynamics is well described by a spin dependent recombination model where both recombination and spin relaxation rates determine together the response dynamics. We apply this method to the spin 1/2 ODMR in films of pristine 2-methoxy-5-(2{'}-ethylhexyloxy) phenylene vinylene [MEH-PPV] polymer, as well as MEH-PPV doped with various concentrations of radical impurities. We obtained T{SL} approximately 30 micros in pristine MEH-PPV, but substantially shorter when the magnetic impurities are added.
Collapse
Affiliation(s)
- C G Yang
- Department of Physics, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
13
|
Margolin G, Barkai E. Aging correlation functions for blinking nanocrystals, and other on-off stochastic processes. J Chem Phys 2007; 121:1566-77. [PMID: 15260705 DOI: 10.1063/1.1763136] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Following recent experiments on power law blinking behavior of single nanocrystals, we calculate two-time intensity correlation functions I(t)I(t+t') for these systems. We use a simple two state (on and off) stochastic model to describe the dynamics. We classify possible behaviors of the correlation function and show that aging, e.g., dependence of the correlation function on age of process t, is obtained for classes of the on time and off time distributions relevant to experimental situation. Analytical asymptotic scaling behaviors of the intensity correlation in the double time t and t' domain are obtained. In the scaling limit I(t)I(t+t('))-->h(x), where four classes of behaviors are found: (i) finite averaged on and off times x=t' (standard behavior); (ii) on and off times with identical power law behaviors x=t/t' (case relevant for capped nanocrystals); (iii) exponential on times and power law off times x=tt' (case relevant for uncapped nanocrystals); (iv) for defected off time distribution we also find x=t+t'. Origin of aging behavior is explained based on simple diffusion model. We argue that the diffusion controlled reaction A+B <==>AB, when followed on a single particle level exhibits aging behavior.
Collapse
Affiliation(s)
- G Margolin
- Department of Chemistry and Biochemistry, Notre Dame University, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
14
|
Scholes GD. Selection rules for probing biexcitons and electron spin transitions in isotropic quantum dot ensembles. J Chem Phys 2006; 121:10104-10. [PMID: 15549885 DOI: 10.1063/1.1808414] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Three-dimensional rotational averages are evaluated for third-order nonlinear spectroscopic measurements of quantum dots. Photon echo, transient grating, and transient absorption are explicitly considered. It is shown that (a) biexciton formation can be suppressed relative to other contributions to nonlinear spectroscopies for isotropic nanocrystal ensembles by choice of polarizations for the excitation pulses; (b) circularly polarized excitation light can differentiate between exciton spin states in nonlinear optical experiments; and (c) electron spin state flip kinetics can be probed directly in an isotropic quantum dot system by using certain sequences of linear cross-polarized pulses.
Collapse
Affiliation(s)
- Gregory D Scholes
- Lash-Miller Chemical Laboratories, 80 St. George Street, University of Toronto, Toronto, Ontario, M5S 3H6 Canada
| |
Collapse
|
15
|
Pazy E. Spin-Based Optical Quantum Information Processing. Isr J Chem 2006. [DOI: 10.1560/ijc_46_4_357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Yang CG, Eherenfreund E, Vardeny ZV. Comment on "Yield of singlet excitons in organic light-emitting devices: a double modulation photoluminescence-detected magnetic resonance study". PHYSICAL REVIEW LETTERS 2006; 96:089701; author reply 089702. [PMID: 16606240 DOI: 10.1103/physrevlett.96.089701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Indexed: 05/08/2023]
|
17
|
Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev 2005; 105:1025-102. [PMID: 15826010 DOI: 10.1021/cr030063a] [Citation(s) in RCA: 3817] [Impact Index Per Article: 190.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Clemens Burda
- Center for Chemical Dynamics and Nanomaterials Research, Department of Chemistry, Case Western Reserve University-Millis 2258, Cleveland, Ohio 44106, USA.
| | | | | | | |
Collapse
|
18
|
|