1
|
Aringhieri G, Zampa V, Tosetti M. Musculoskeletal MRI at 7 T: do we need more or is it more than enough? Eur Radiol Exp 2020; 4:48. [PMID: 32761480 PMCID: PMC7410909 DOI: 10.1186/s41747-020-00174-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Ultra-high field magnetic resonance imaging (UHF-MRI) provides important diagnostic improvements in musculoskeletal imaging. The higher signal-to-noise ratio leads to higher spatial and temporal resolution which results in improved anatomic detail and higher diagnostic confidence. Several methods, such as T2, T2*, T1rho mapping, delayed gadolinium-enhanced, diffusion, chemical exchange saturation transfer, and magnetisation transfer techniques, permit a better tissue characterisation. Furthermore, UHF-MRI enables in vivo measurements by low-γ nuclei (23Na, 31P, 13C, and 39K) and the evaluation of different tissue metabolic pathways. European Union and Food and Drug Administration approvals for clinical imaging at UHF have been the first step towards a more routinely use of this technology, but some drawbacks are still present limiting its widespread clinical application. This review aims to provide a clinically oriented overview about the application of UHF-MRI in the different anatomical districts and tissues of musculoskeletal system and its pros and cons. Further studies are needed to consolidate the added value of the use of UHF-MRI in the routine clinical practice and promising efforts in technology development are already in progress.
Collapse
Affiliation(s)
- Giacomo Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Risorgimento, 36, Pisa, Italy.
| | - Virna Zampa
- Diagnostic and Interventional Radiology, University Hospital of Pisa, Via paradisa, 2, Pisa, Italy
| | | |
Collapse
|
2
|
Watkins LE, Rubin EB, Mazzoli V, Uhlrich SD, Desai AD, Black M, Ho GK, Delp SL, Levenston ME, Beaupré GS, Gold GE, Kogan F. Rapid volumetric gagCEST imaging of knee articular cartilage at 3 T: evaluation of improved dynamic range and an osteoarthritic population. NMR IN BIOMEDICINE 2020; 33:e4310. [PMID: 32445515 PMCID: PMC7347437 DOI: 10.1002/nbm.4310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 05/22/2023]
Abstract
Chemical exchange saturation transfer of glycosaminoglycans, gagCEST, is a quantitative MR technique that has potential for assessing cartilage proteoglycan content at field strengths of 7 T and higher. However, its utility at 3 T remains unclear. The objective of this work was to implement a rapid volumetric gagCEST sequence with higher gagCEST asymmetry at 3 T to evaluate its sensitivity to osteoarthritic changes in knee articular cartilage and in comparison with T2 and T1ρ measures. We hypothesize that gagCEST asymmetry at 3 T decreases with increasing severity of osteoarthritis (OA). Forty-two human volunteers, including 10 healthy subjects and 32 subjects with medial OA, were included in the study. Knee Injury and Osteoarthritis Outcome Scores (KOOS) were assessed for all subjects, and Kellgren-Lawrence grading was performed for OA volunteers. Healthy subjects were scanned consecutively at 3 T to assess the repeatability of the volumetric gagCEST sequence at 3 T. For healthy and OA subjects, gagCEST asymmetry and T2 and T1ρ relaxation times were calculated for the femoral articular cartilage to assess sensitivity to OA severity. Volumetric gagCEST imaging had higher gagCEST asymmetry than single-slice acquisitions (p = 0.015). The average scan-rescan coefficient of variation was 6.8%. There were no significant differences in average gagCEST asymmetry between younger and older healthy controls (p = 0.655) or between healthy controls and OA subjects (p = 0.310). T2 and T1ρ relaxation times were elevated in OA subjects (p < 0.001 for both) compared with healthy controls and both were moderately correlated with total KOOS scores (rho = -0.181 and rho = -0.332 respectively). The gagCEST technique developed here, with volumetric scan times under 10 min and high gagCEST asymmetry at 3 T, did not vary significantly between healthy subjects and those with mild-moderate OA. This further supports a limited utility for gagCEST imaging at 3 T for assessment of early changes in cartilage composition in OA.
Collapse
Affiliation(s)
| | - Elka B Rubin
- Radiology, Stanford University, Stanford, California, USA
| | | | - Scott D Uhlrich
- Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Arjun D Desai
- Electrical Engineering, Stanford University, Stanford, California, USA
| | - Marianne Black
- Radiology, Stanford University, Stanford, California, USA
- Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Gabe K Ho
- Bioengineering, Stanford University, Stanford, California, USA
| | - Scott L Delp
- Bioengineering, Stanford University, Stanford, California, USA
- Mechanical Engineering, Stanford University, Stanford, California, USA
- Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Marc E Levenston
- Bioengineering, Stanford University, Stanford, California, USA
- Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Gary S Beaupré
- Bioengineering, Stanford University, Stanford, California, USA
- Veteran Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Garry E Gold
- Bioengineering, Stanford University, Stanford, California, USA
- Radiology, Stanford University, Stanford, California, USA
- Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Feliks Kogan
- Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
3
|
Brinkhof S, Ali Haghnejad A, Ito K, Markenroth Bloch K, Klomp D. Uncompromised MRI of knee cartilage while incorporating sensitive sodium MRI. NMR IN BIOMEDICINE 2019; 32:e4173. [PMID: 31502337 PMCID: PMC6900061 DOI: 10.1002/nbm.4173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Sodium imaging is able to assess changes in ion content, linked to glycosaminoglycan content, which is important to guide orthopeadic procedures such as articular cartilage repair. Sodium imaging is ideally performed using double tuned RF coils, to combine high resolution morphological imaging with biochemical information from sodium imaging to assess ion content. The proton image quality of such coils is often harshly degraded, with up to 50% of SNR or severe acceleration loss as compared to single tuned coils. Reasons are that the number of proton receive channels often severely reduced and double tuning will degrade the intrinsic sensitivity of the RF coil on at least one of the nuclei. However, the aim of this work was to implement a double-tuned sodium/proton knee coil setup without deterioration of the proton signal whilst being able to achieve acquisition of high SNR sodium images. A double-tuned knee coil was constructed as a shielded birdcage optimized for sodium and compromised for proton. To exclude any compromise, the proton part of the birdcage is used for transmit only and interfaced to RF amplifiers that can fully mitigate the reduced efficiency. In addition, a 15 channel single tuned proton receiver coil was embedded within the double-resonant birdcage to maintain optimal SNR and acceleration for proton imaging. To validate the efficiency of our coil, the designed coil was compared with the state-of-the-art single-tuned alternative at 7 T. B1+ corrected SNR maps were used to compare both coils on proton performance and g-factor maps were used to compare both coils on acceleration possibilities. The newly constructed double-tuned coil was shown to have comparable proton quality and acceleration possibilities to the single-tuned alternative while also being able to acquire high SNR sodium images.
Collapse
Affiliation(s)
- S. Brinkhof
- Department of RadiologyUniversity Medical Center UtrechtUtrechtNetherlands
| | | | - K. Ito
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenNetherlands
| | | | - D.W.J. Klomp
- Department of RadiologyUniversity Medical Center UtrechtUtrechtNetherlands
| |
Collapse
|