1
|
Ng CS, Chandler AG, Chen Y, Wei W, Tannir NM, Hobbs BP. Effect of scan duration on CT perfusion values in metastases from renal cell carcinoma. RESEARCH IN DIAGNOSTIC AND INTERVENTIONAL IMAGING 2023; 6:100028. [PMID: 39077545 PMCID: PMC11265368 DOI: 10.1016/j.redii.2023.100028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/31/2023] [Indexed: 07/31/2024]
Abstract
Objective CT perfusion (CTp) values are affected by CT scan acquisition duration (tacq); their reproducibility is adversely affected by uncertainty in their measurement. The objectives were to assess the effects of tacq on CTp parameter values in metastases from renal cell carcinoma (mRCC) in thoracic and abdominal locations. Materials and Methods 131 CTp evaluations in 53 patients with mRCC were retrospectively analyzed by distributed parameter modeling to yield tissue blood flow (BF), blood volume (BV), mean transit time (MTT), permeability (PS), and also hepatic arterial perfusion (HAP) and hepatic arterial fraction (HAF) for liver metastases and normal liver, with tacq from 25 to 590 s. Penalized piecewise polynomial regression (SPLINE) characterized functional relationships between CTp parameters and acquisition duration, tacq. Evidence for time-invariance was evaluated for each parameter at multiple time points by conducting inference on the fitted derivative to assess its proximity to zero as a function of acquisition time. Equivalence testing was implemented with three levels of confidence (low (20%), moderate (70%), high (95%)). Results Systematic and non-systematic variability was observed for CTp parameter values with limited tacq. All parameters in all locations approached increasing stability with increasing tacq. PS, HAP and HAF required longer acquisition times than BF, BV and MTT to attain comparable levels of stability. Stabilization tended to require longer acquisition in liver than other tissues. tacq=380 s was required to obtain at least moderate level of confidence for all parameters and organs. Conclusion Increasing tacq yields increasingly more stable CT perfusion parameters, and thereby better reproducibility.
Collapse
Affiliation(s)
- Chaan S. Ng
- Department of Radiology, Unit 1473, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Adam G. Chandler
- Imaging Physics, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Yanwen Chen
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | - Wei Wei
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | - Nizar M. Tannir
- Department of Genitourinary Medicine, Unit 1374, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Brian P. Hobbs
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
| |
Collapse
|
2
|
Siebinga H, de Wit-van der Veen BJ, Beijnen JH, Dorlo TPC, Huitema ADR, Hendrikx JJMA. A physiologically based pharmacokinetic model for [ 68Ga]Ga-(HA-)DOTATATE to predict whole-body distribution and tumor sink effects in GEP-NET patients. EJNMMI Res 2023; 13:8. [PMID: 36735114 PMCID: PMC9898489 DOI: 10.1186/s13550-023-00958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Little is known about parameters that have a relevant impact on (dis)similarities in biodistribution between various 68Ga-labeled somatostatin analogues. Additionally, the effect of tumor burden on organ uptake remains unclear. Therefore, the aim of this study was to describe and compare organ and tumor distribution of [68Ga]Ga-DOTATATE and [68Ga]Ga-HA-DOTATATE using a physiologically based pharmacokinetic (PBPK) model and to identify factors that might cause biodistribution and tumor uptake differences between both peptides. In addition, the effect of tumor burden on peptide biodistribution in gastroenteropancreatic (GEP) neuroendocrine tumor (NET) patients was assessed. METHODS A PBPK model was developed for [68Ga]Ga-(HA-)DOTATATE in GEP-NET patients. Three tumor compartments were added, representing primary tumor, liver metastases and other metastases. Furthermore, reactions describing receptor binding, internalization and recycling, renal clearance and intracellular degradation were added to the model. Scan data from GEP-NET patients were used for evaluation of model predictions. Simulations with increasing tumor volumes were performed to assess the tumor sink effect. RESULTS Data of 39 and 59 patients receiving [68Ga]Ga-DOTATATE and [68Ga]Ga-HA-DOTATATE, respectively, were included. Evaluations showed that the model adequately described image-based patient data and that different receptor affinities caused organ uptake dissimilarities between both peptides. Sensitivity analysis indicated that tumor blood flow and blood volume impacted tumor distribution most. Tumor sink predictions showed a decrease in spleen uptake with increasing tumor volume, which seemed clinically relevant for patients with total tumor volumes higher than ~ 550 mL. CONCLUSION The developed PBPK model adequately predicted tumor and organ uptake for this GEP-NET population. Relevant organ uptake differences between [68Ga]Ga-DOTATATE and [68Ga]Ga-HA-DOTATATE were caused by different affinity profiles, while tumor uptake was mainly affected by tumor blood flow and blood volume. Furthermore, tumor sink predictions showed that for the majority of patients a tumor sink effect is not expected to be clinically relevant.
Collapse
Affiliation(s)
- Hinke Siebinga
- grid.430814.a0000 0001 0674 1393Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands ,grid.430814.a0000 0001 0674 1393Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Berlinda J. de Wit-van der Veen
- grid.430814.a0000 0001 0674 1393Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H. Beijnen
- grid.430814.a0000 0001 0674 1393Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thomas P. C. Dorlo
- grid.430814.a0000 0001 0674 1393Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands ,grid.8993.b0000 0004 1936 9457Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Alwin D. R. Huitema
- grid.430814.a0000 0001 0674 1393Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands ,grid.5477.10000000120346234Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands ,grid.487647.eDepartment of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jeroen J. M. A. Hendrikx
- grid.430814.a0000 0001 0674 1393Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands ,grid.430814.a0000 0001 0674 1393Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Hänscheid H, Lassmann M, Verburg FA. Determinants of target absorbed dose in radionuclide therapy. Z Med Phys 2023; 33:82-90. [PMID: 36376202 PMCID: PMC10068538 DOI: 10.1016/j.zemedi.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022]
Abstract
In radionuclide therapy, activity kinetics in tissues determine the absorbed doses administered and thus efficacy and side effects of treatment. The objective of this work was to derive expressions for the parameters affecting the absorbed dose to a target tissue for first-order activity kinetics. The activity uptake results from contributions from the first-pass activity flow through the target tissue preceding systemic equilibration and uptake after distribution of the administered compound in the body. The absorbed dose from uptake after equilibration is the product of the mean energy deposited per decay in the target tissue, the time integral of the plasma activity concentration, the plasma volume flow per unit target tissue mass, the probability of activity removal during passage, and the mean lifetime of activity in the target tissue. Quantitative analysis of the determinants of absorbed dose exemplarily for radioiodine therapy indicates that the high uptake often observed in Graves' disease must be associated with high tissue perfusion and removal probability and that administration of stable iodine increases mean lifetime. For therapies with long residence times of the active compound in the blood, such as radioiodine therapy, the contribution of the first-pass is small compared with uptake after equilibration. The relative first-pass contribution is higher for agents that are rapidly eliminated from the blood pool, such as radiolabelled somatostatin analogues, and may dominate after arterial application. Understanding the determining parameters in radionuclide therapy reveals dose-limiting factors and opens up opportunities to optimise and individualize therapy, potentially improving treatment success rates.
Collapse
Affiliation(s)
- Heribert Hänscheid
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany.
| | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Frederik A Verburg
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Mahmoudi R, Esmaeili A, Nematollahzadeh A. Preparation of Fe3O4/Ag3VO4/Au nanocomposite coated with Caerophyllum macropodum extract modified with oleic acid for theranostics agent in medical imaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
CT liver perfusion in patients with hepatocellular carcinoma: can we modify acquisition protocol to reduce patient exposure? Eur Radiol 2020; 31:1410-1419. [PMID: 32876834 DOI: 10.1007/s00330-020-07206-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/17/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To investigate the potential of decreasing the number of scans and associated radiation exposure involved in CT liver perfusion (CTLP) dynamic studies for hepatocellular carcinoma (HCC) assessment. METHODS Twenty-four CTLP image datasets of patients with HCC were retrospectively analyzed. All examinations were performed on a modern CT system using a standard acquisition protocol involving 35 scans with 1.7 s interval. A deconvolution-based or a standard algorithm was employed to compute ten perfusion parametric maps. 3D ROIs were positioned on 33 confirmed HCCs and non-malignant parenchyma. Analysis was repeated for two subsampled datasets generated from the original dataset by including only the (a) 18 odd-numbered scans with 3.4 s interval and (b) 18 first scans with 1.7 s interval. Standard and modified datasets were compared regarding the (a) accuracy of calculated perfusion parameters, (b) power of parametric maps to discriminate HCCs from liver parenchyma, and (c) associated radiation exposure. RESULTS When the time interval between successive scans was doubled, perfusion parameters of HCCs were found unaffected (p > 0.05) and the discriminating efficiency of parametric maps was preserved (p < 0.05). In contrast, significant differences were found for all perfusion parameters of HCCs when acquisition duration was reduced to half (p < 0.05), while the discriminating efficiency of four parametric maps was significantly deteriorated (p < 0.05). Modified CTLP acquisition protocols were found to involve 48.5% less patient exposure. CONCLUSIONS Doubling the interscan time interval may considerably reduce radiation exposure from CTLP studies performed for HCC evaluation without affecting the diagnostic efficiency of perfusion maps generated with either standard or deconvolution-based mathematical model. KEY POINTS • CT liver perfusion for HCC diagnosis/assessment is not routinely used in clinical practice mainly due to the associated high radiation exposure. • Two alternative acquisition protocols involving 18 scans of the liver were compared with the standard 35-scan protocol. • Increasing the time interval between successive scans to 3.4 s was found to preserve the accuracy of computed perfusion parameters derived with a standard or a deconvolution-based model and to reduce radiation exposure by 48.5%.
Collapse
|
6
|
The effects of baseline length in Computed Tomography perfusion of liver. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Bevilacqua A, Malavasi S, Vilgrain V. Liver CT perfusion: which is the relevant delay that reduces radiation dose and maintains diagnostic accuracy? Eur Radiol 2019; 29:6550-6558. [PMID: 31115620 DOI: 10.1007/s00330-019-06259-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES High radiation dose during CT perfusion (CTp) studies contributes to prevent CTp application in daily clinical practice. This work evaluates the consequences of scan delay on perfusion parameters and provides guidelines to help reducing the radiation dose by choosing the most appropriate delay. METHODS Fifty-nine patients (34 men, 25 women; mean age 68 ± 12) with colorectal cancer, without underlying liver disease, underwent liver CTp, with the acquisition starting simultaneously with iodinated contrast agent injection. Blood flow (BF) and hepatic perfusion index (HPI) were computed on the acquired examinations and compared with those of the same examinations when a variable scan delay (τ) is introduced. Dose length product, CT dose index, and effective dose were also computed on original and delayed examinations. RESULTS Altogether, three groups of delays (τ ≤ 4 s, 5 s ≤ τ ≤ 9 s, τ ≥ 10 s) were identified, yielding increasing radiation dose saving (RDS) (RDS ≤ 9.5%, 11.9% ≤ RDS ≤ 21.4%, RDS ≥ 23.8%) and decreasing perfusion accuracy (high (τ ≤ 4 s), medium (5 s ≤ τ ≤ 9 s), low (τ ≥ 10 s)). In particular, single-input and arterial BF and HPI were more insensitive to delay as regards the absolute variations (only 1 ml/min/100 g and 1%, respectively, for τ ≤ 9 s), than portal and total BF. CONCLUSION Using delays lower than 4 s does not change perfusion accuracy and conveys unnecessary dose to patients. Conversely, starting the acquisition 9 s after contrast agent injection yields a RDS of about 21%, with no significant losses in perfusion accuracy. KEY POINTS • Scan delays lower than 4 s do not alter perfusion accuracy and deliver an unnecessary radiation dose to patients. • Radiation dose delivered to patients can be reduced by 21.4% by introducing a 9-s scan delay, while keeping accurate perfusion values. • Using scan delays higher than 10 s, some perfusion parameters (portal and total BF) were inaccurate.
Collapse
Affiliation(s)
- Alessandro Bevilacqua
- DISI (Department of Computer Science and Engineering), University of Bologna, Viale Risorgimento, 2, I-40136, Bologna, Italy.,ARCES (Advanced Research Center on Electronic Systems), University of Bologna, Via Toffano 2/2, I-40125, Bologna, Italy
| | - Silvia Malavasi
- ARCES (Advanced Research Center on Electronic Systems), University of Bologna, Via Toffano 2/2, I-40125, Bologna, Italy.,CIG (Interdepartmental Centre "L. Galvani" for integrated studies of Bioinformatics, Biophysics and Biocomplexity), University of Bologna, Via Petroni 26, I-40126, Bologna, Italy
| | - Valérie Vilgrain
- Department of Radiology, Assistance-Publique Hôpitaux de Paris, APHP, HUPNVS, Hôpital Beaujon, 100 bd du Général Leclerc, 92110, Clichy, France. .,Sorbonne Paris Cité, INSERM CRI, Université Paris Diderot, 75018, Paris, France.
| |
Collapse
|
8
|
Wang Y, Hu J, Do KA, Hobbs BP. An Efficient Nonparametric Estimate for Spatially Correlated Functional Data. STATISTICS IN BIOSCIENCES 2019. [DOI: 10.1007/s12561-019-09233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Wang Y, Hu J, Ng CS, Hobbs BP. A functional model for classifying metastatic lesions integrating scans and biomarkers. Stat Methods Med Res 2019; 29:137-150. [PMID: 30672395 DOI: 10.1177/0962280218823795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Perfusion computed tomography is an emerging functional imaging modality that uses physiological models to quantify characteristics pertaining to the passage of fluid through blood vessels. Perfusion characteristics provide physiological correlates for neovascularization induced by tumor angiogenesis and thus a quantitative basis for cancer detection, prognostication, and treatment monitoring. We consider a liver cancer study where patients underwent a dynamic computed tomography protocol to enable evaluation of multiple perfusion characteristics derived from interrogating the time-attenuation of the concentration of the intravenously administered contrast medium. The objective is to determine the effectiveness of using perfusion characteristics to identify and discriminate between regions of liver that contain malignant tissues from normal tissue. Each patient contributes multiple regions of interest which are spatially correlated due to the shared vasculature. We propose a multivariate functional data model to disclose the correlation over time and space as well as the correlation among multiple perfusion characteristics. We further propose a simultaneous classification approach that utilizes all the correlation information to predict class assignments for collections of regions. The proposed method outperforms conventional classification approaches in the presence of strong spatial correlation. The method offers maximal relative improvement in the presence of temporal sparsity wherein measurements are obtainable at only a few time points.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Mathematics and Statistics, Washington State University, Pullman, WA, USA
| | - Jianhua Hu
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Chaan S Ng
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brian P Hobbs
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
10
|
Nigri G, Petrucciani N, Debs T, Mangogna LM, Crovetto A, Moschetta G, Persechino R, Aurello P, Ramacciato G. Treatment options for PNET liver metastases: a systematic review. World J Surg Oncol 2018; 16:142. [PMID: 30007406 PMCID: PMC6046097 DOI: 10.1186/s12957-018-1446-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic neuroendocrine tumors (PNETs) are rare pancreatic neoplasms. About 40-80% of patients with PNET are metastatic at presentation, usually involving the liver (40-93%). Liver metastasis represents the most significant prognostic factor. The aim of this study is to present an up-to-date review of treatment options for patients with liver metastases from PNETs. METHODS A systematic literature search was performed using the PubMed database to identify all pertinent studies published up to May 2018. RESULTS The literature search evaluated all the therapeutic options for patients with liver metastases of PNETs, including surgical treatment, loco-regional therapies, and pharmacological treatment. All the different treatment options showed particular indications in different presentations of liver metastases of PNET. Surgery remains the only potentially curative therapeutic option in patients with PNETs and resectable liver metastases, even if relapse rates are high. Efficacy of medical treatment has increased with advances in targeted therapies, such as everolimus and sunitinib, and the introduction of radiolabeled somatostatin analogs. Several techniques for loco-regional control of metastases are available, including chemo- or radioembolization. CONCLUSIONS Treatment of patients with PNET metastases should be multidisciplinary and must be personalized according to the features of individual patients and tumors.
Collapse
Affiliation(s)
- Giuseppe Nigri
- Department of Medical and Surgical Science and Translational Medicine, St. Andrea Hospital Rome, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Niccolò Petrucciani
- Digestive Surgery, Hepatobiliopancreatic Surgery and Liver Transplantation, UPEC University, Henri Mondor Hospital, Creteil, France
| | - Tarek Debs
- Department of Digestive Surgery and Liver Transplantation, Nice University Hospital, Nice, France
| | - Livia Maria Mangogna
- Department of Medical and Surgical Science and Translational Medicine, St. Andrea Hospital Rome, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Anna Crovetto
- Department of Medical and Surgical Science and Translational Medicine, St. Andrea Hospital Rome, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Giovanni Moschetta
- Department of Medical and Surgical Science and Translational Medicine, St. Andrea Hospital Rome, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Raffaello Persechino
- Department of Medical and Surgical Science and Translational Medicine, St. Andrea Hospital Rome, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Paolo Aurello
- Department of Medical and Surgical Science and Translational Medicine, St. Andrea Hospital Rome, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Giovanni Ramacciato
- Department of Medical and Surgical Science and Translational Medicine, St. Andrea Hospital Rome, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| |
Collapse
|
11
|
Ng CS, Wei W, Duran C, Ghosh P, Anderson EF, Chandler AG, Yao JC. CT perfusion in normal liver and liver metastases from neuroendocrine tumors treated with targeted antivascular agents. Abdom Radiol (NY) 2018; 43:1661-1669. [PMID: 29075824 DOI: 10.1007/s00261-017-1367-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To assess the effects of bevacizumab and everolimus, individually and combined, on CT perfusion (CTp) parameters in liver metastases from neuroendocrine tumors (mNET) and normal liver. METHODS This retrospective study comprised 27 evaluable patients with mNETs who had participated in a two-arm randomized clinical trial of mono-therapy with bevacizumab (Arm B) or everolimus (Arm E) for 3 weeks, followed by combination of both targeted agents. CTp was undertaken at baseline, 3 and 9 weeks, to evaluate blood flow (BF), blood volume (BV), mean transit time (MTT), permeability surface area product (PS), and hepatic arterial fraction (HAF) of mNET and normal liver, using a dual-input distributed parameter physiological model. Linear mixed models were used to estimate and compare CTp parameter values between time-points. RESULTS In tumor, mono-therapy with bevacizumab significantly reduced BV (p = 0.05); everolimus had no effects on CTp parameters. Following dual-therapy, BV and BF were significantly lower than baseline in both arms (p ≤ 0.04), and PS was significantly lower in Arm E (p < 0.0001). In normal liver, mono-therapy with either agent had no significant effects on CTp parameters: dual-therapy significantly reduced BV, MTT, and PS, and increased HAF, relative to baseline in Arm E (p ≤ 0.04); in Arm B, only PS reduced (p = 0.04). CONCLUSIONS Bevacizumab and everolimus, individually and when combined, have significant and differential effects on CTp parameters in mNETs and normal liver, which is evident soon after starting therapy. CTp may offer an early non-invasive means to investigate the effects of drugs in tumor and normal tissue.
Collapse
|
12
|
Hemalatha T, Prabu P, Gunadharini DN, Gowthaman MK. Fabrication and characterization of dual acting oleyl chitosan functionalised iron oxide/gold hybrid nanoparticles for MRI and CT imaging. Int J Biol Macromol 2018; 112:250-257. [PMID: 29378272 DOI: 10.1016/j.ijbiomac.2018.01.159] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/10/2018] [Accepted: 01/23/2018] [Indexed: 12/20/2022]
Abstract
Bionanocomposites fabricated using metal nanoparticles serve a wide range of biomedical applications viz., site targeted drug delivery, imaging etc. Theranostics emerge as an important field of science, which focuses on the use of single entity for both disease diagnosis and treatment. The present work aimed at designing a multifunctional nanocomposite comprising of iron/gold hybrid nanoparticles, coated with oleyl chitosan and conjugated with methotrexate. The HR-TEM images revealed the spherical nature of the composite, while it's nontoxic and biocompatible property was proved by the MTT assay in NIH 3T3 cells and hemolysis assay. Though the VSM results exhibited the magnetic property, the MRI phantom images and X-ray contrast images demonstrated the potential of the composite to be used as contrast agent. Thus the prepared nanocomposite possess good cytocompatibility, magnetic property and also high X-ray attenuation, wherein it could serve as a novel platform for both MRI and CT diagnosis, as well as drug conjugation could aid in targeted drug delivery.
Collapse
Affiliation(s)
- Thiagarajan Hemalatha
- Department of Biological Materials, CSIR - Central Leather Research Institute, Adyar, Chennai 600020, India
| | | | | | | |
Collapse
|
13
|
Mulé S, Pigneur F, Quelever R, Tenenhaus A, Baranes L, Richard P, Tacher V, Herin E, Pasquier H, Ronot M, Rahmouni A, Vilgrain V, Luciani A. Can dual-energy CT replace perfusion CT for the functional evaluation of advanced hepatocellular carcinoma? Eur Radiol 2017; 28:1977-1985. [PMID: 29168007 DOI: 10.1007/s00330-017-5151-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/14/2017] [Accepted: 10/19/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To determine the degree of relationship between iodine concentrations derived from dual-energy CT (DECT) and perfusion CT parameters in patients with advanced HCC under treatment. METHODS In this single-centre IRB approved study, 16 patients with advanced HCC treated with sorafenib or radioembolization who underwent concurrent dynamic perfusion CT and multiphase DECT using a single source, fast kV switching DECT scanner were included. Written informed consent was obtained for all patients. HCC late-arterial and portal iodine concentrations, blood flow (BF)-related and blood volume (BV)-related perfusion parameters maps were calculated. Mixed-effects models of the relationship between iodine concentrations and perfusion parameters were computed. An adjusted p value (Bonferroni method) < 0.05 was considered significant. RESULTS Mean HCC late-arterial and portal iodine concentrations were 22.7±12.7 mg/mL and 18.7±8.3 mg/mL, respectively. Late-arterial iodine concentration was significantly related to BV (mixed-effects model F statistic (F)=28.52, p<0.0001), arterial BF (aBF, F=17.62, p<0.0001), hepatic perfusion index (F=28.24, p<0.0001), positive enhancement integral (PEI, F=66.75, p<0.0001) and mean slope of increase (F=32.96, p<0.0001), while portal-venous iodine concentration was mainly related to BV (F=29.68, p<0.0001) and PEI (F=66.75, p<0.0001). CONCLUSIONS In advanced HCC lesions, DECT-derived late-arterial iodine concentration is strongly related to both aBF and BV, while portal iodine concentration mainly reflects BV, offering DECT the ability to evaluate both morphological and perfusion changes. KEY POINTS • Late-arterial iodine concentration is highly related to arterial BF and BV. • Portal iodine concentration mainly reflects tumour blood volume. • Dual-energy CT offers significantly decreased radiation dose compared with perfusion CT.
Collapse
Affiliation(s)
- Sébastien Mulé
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France.
| | - Frédéric Pigneur
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France
| | - Ronan Quelever
- GE Healthcare, 283 rue de la Minière, 78530, Buc, France
| | - Arthur Tenenhaus
- Laboratoire des Signaux et Systèmes, Université Paris-Saclay, Orsay, France.,Biostatistics and bioinformatics core facility, Brain and Spine Institute, Paris, France
| | - Laurence Baranes
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France
| | | | - Vania Tacher
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France.,Faculté de Médecine, Université Paris Est Creteil, Creteil, France.,, INSERM IMRB, U 955, Equipe 18, Creteil, France
| | - Edouard Herin
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France
| | - Hugo Pasquier
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France.,Faculté de Médecine, Université Paris Est Creteil, Creteil, France
| | - Maxime Ronot
- Service de Radiologie, AP-HP, Hôpitaux Universitaires Paris Nord Val de Seine, Beaujon, 100 boulevard General Leclerc, 92118, Clichy, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,INSERM U1149, centre de recherche biomédicale Bichat-Beaujon, CRB3, Paris, France
| | - Alain Rahmouni
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France.,Faculté de Médecine, Université Paris Est Creteil, Creteil, France
| | - Valérie Vilgrain
- Service de Radiologie, AP-HP, Hôpitaux Universitaires Paris Nord Val de Seine, Beaujon, 100 boulevard General Leclerc, 92118, Clichy, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,INSERM U1149, centre de recherche biomédicale Bichat-Beaujon, CRB3, Paris, France
| | - Alain Luciani
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France.,Faculté de Médecine, Université Paris Est Creteil, Creteil, France.,, INSERM IMRB, U 955, Equipe 18, Creteil, France
| |
Collapse
|
14
|
Bretas EAS, Torres US, Torres LR, Bekhor D, Saito Filho CF, Racy DJ, Faggioni L, D'Ippolito G. Is liver perfusion CT reproducible? A study on intra- and interobserver agreement of normal hepatic haemodynamic parameters obtained with two different software packages. Br J Radiol 2017; 90:20170214. [PMID: 28830195 DOI: 10.1259/bjr.20170214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To evaluate the agreement between the measurements of perfusion CT parameters in normal livers by using two different software packages. METHODS This retrospective study was based on 78 liver perfusion CT examinations acquired for detecting suspected liver metastasis. Patients with any morphological or functional hepatic abnormalities were excluded. The final analysis included 37 patients (59.7 ± 14.9 y). Two readers (1 and 2) independently measured perfusion parameters using different software packages from two major manufacturers (A and B). Arterial perfusion (AP) and portal perfusion (PP) were determined using the dual-input vascular one-compartmental model. Inter-reader agreement for each package and intrareader agreement between both packages were assessed with intraclass correlation coefficients (ICC) and Bland-Altman statistics. RESULTS Inter-reader agreement was substantial for AP using software A (ICC = 0.82) and B (ICC = 0.85-0.86), fair for PP using software A (ICC = 0.44) and fair to moderate for PP using software B (ICC = 0.56-0.77). Intrareader agreement between software A and B ranged from slight to moderate (ICC = 0.32-0.62) for readers 1 and 2 considering the AP parameters, and from fair to moderate (ICC = 0.40-0.69) for readers 1 and 2 considering the PP parameters. CONCLUSION At best there was only moderate agreement between both software packages, resulting in some uncertainty and suboptimal reproducibility. Advances in knowledge: Software-dependent factors may contribute to variance in perfusion measurements, demanding further technical improvements. AP measurements seem to be the most reproducible parameter to be adopted when evaluating liver perfusion CT.
Collapse
Affiliation(s)
- Elisa Almeida Sathler Bretas
- 1 Department of Imaging, Universidade Federal de São Paulo, São Paulo, Brazil.,2 Department of Radiology, Grupo Fleury, São Paulo, Brazil
| | | | - Lucas Rios Torres
- 2 Department of Radiology, Grupo Fleury, São Paulo, Brazil.,3 Department of Imaging, Hospital Beneficência Portuguesa, São Paulo, Brazil
| | - Daniel Bekhor
- 1 Department of Imaging, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Douglas Jorge Racy
- 3 Department of Imaging, Hospital Beneficência Portuguesa, São Paulo, Brazil
| | - Lorenzo Faggioni
- 4 Department of Diagnostic and Interventional Radiology, University Hospital of Pisa, Pisa, Italy
| | - Giuseppe D'Ippolito
- 1 Department of Imaging, Universidade Federal de São Paulo, São Paulo, Brazil.,2 Department of Radiology, Grupo Fleury, São Paulo, Brazil
| |
Collapse
|
15
|
Topcuoğlu OM, Karçaaltıncaba M, Akata D, Özmen MN. Reproducibility and variability of very low dose hepatic perfusion CT in metastatic liver disease. Diagn Interv Radiol 2017; 22:495-500. [PMID: 27759566 DOI: 10.5152/dir.2016.16612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE We aimed to determine the intra- and interobserver agreement on the software analysis of very low dose hepatic perfusion CT (pCT). METHODS A total of 53 pCT examinations were obtained from 21 patients (16 men, 5 women; mean age, 60.4 years) with proven liver metastasis from various primary cancers. The pCT examinations were analyzed by two readers independently and perfusion parameters were noted for whole liver, whole metastasis, metastasis wall, and normal-looking liver (liver tissue without metastasis) in regions of interest (ROIs). Readers repeated the analysis after an interval of one month. Intra- and interobserver agreements were assessed with intraclass correlation coefficients (ICC) and Bland-Altman statistics. RESULTS The mean ICCs of all ROIs between readers were 0.91, 0.93, 0.86, 0.45, 0.53, and 0.66 for blood flow (BF), blood volume (BV), permeability, arterial liver perfusion (ALP), portal venous perfusion (PVP) and hepatic perfusion index (HPI), respectively. The mean ICCs of all ROIs between readings were 0.86, 0.91, 0.81, 0.53, 0.56, and 0.71 for BF, BV, permeability, ALP, PVP, and HPI, respectively. There was greater agreement on the parameters measured for the whole metastasis than on the parameters measured for the metastasis wall. The effective dose of all perfusion CT studies was 2.9 mSv. CONCLUSION There is greater intra- and interobserver agreement for BF and BV than for permeability, ALP, PVP, and HPI at very low dose hepatic pCT. Permeability, ALP, PVP, and HPI parameters cannot be used in clinical practice for hepatic pCT with an effective dose of 2.9 mSv.
Collapse
|
16
|
Imaging approaches to assess the therapeutic response of gastroenteropancreatic neuroendocrine tumors (GEP-NETs): current perspectives and future trends of an exciting field in development. Cancer Metastasis Rev 2016; 34:823-42. [PMID: 26433592 PMCID: PMC4661203 DOI: 10.1007/s10555-015-9598-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are a family of neoplasms with a complex spectrum of clinical behavior. Although generally more indolent than carcinomas, once they progress beyond surgical resectability, they are essentially incurable. Systemic treatment options have substantially expanded in recent years for the management of advanced disease. Imaging plays a major role in new drug development, as it is the main tool used to objectively evaluate response to novel agents. However, current standard response criteria have proven suboptimal for the assessment of the antiproliferative effect of many targeted agents, particularly in the context of slow-growing tumors such as well-differentiated NETs. The aims of this article are to discuss the advantages and limitations of conventional radiological techniques and standard response assessment criteria and to review novel imaging modalities in development as well as alternative cancer- and therapy-specific criteria to assess drug efficacy in the field of GEP-NETs.
Collapse
|
17
|
Fronczyk KM, Guindani M, Hobbs BP, Ng CS, Vannucci M. A Bayesian Nonparametric Approach for Functional Data Classification with Application to Hepatic Tissue Characterization. Cancer Inform 2016; 14:151-62. [PMID: 27279730 PMCID: PMC4886897 DOI: 10.4137/cin.s31933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/20/2016] [Accepted: 03/20/2016] [Indexed: 11/05/2022] Open
Abstract
Computed tomography perfusion (CTp) is an emerging functional imaging technology that provides a quantitative assessment of the passage of fluid through blood vessels. Tissue perfusion plays a critical role in oncology due to the proliferation of networks of new blood vessels typical of cancer angiogenesis, which triggers modifications to the vasculature of the surrounding host tissue. In this article, we consider a Bayesian semiparametric model for the analysis of functional data. This method is applied to a study of four interdependent hepatic perfusion CT characteristics that were acquired under the administration of contrast using a sequence of repeated scans over a period of 590 seconds. More specifically, our modeling framework facilitates borrowing of information across patients and tissues. Additionally, the approach enables flexible estimation of temporal correlation structures exhibited by mappings of the correlated perfusion biomarkers and thus accounts for the heteroskedasticity typically observed in those measurements, by incorporating change-points in the covariance estimation. This method is applied to measurements obtained from regions of liver surrounding malignant and benign tissues, for each perfusion biomarker. We demonstrate how to cluster the liver regions on the basis of their CTp profiles, which can be used in a prediction context to classify regions of interest provided by future patients, and thereby assist in discriminating malignant from healthy tissue regions in diagnostic settings.
Collapse
Affiliation(s)
- Kassandra M. Fronczyk
- Research Staff Member, Operational Evaluation Division, Institute for Defense Analyses, Alexandria, VA, USA
| | - Michele Guindani
- Assistant Professor, Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brian P. Hobbs
- Assistant Professor, Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chaan S. Ng
- Professor, Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Vannucci
- Professor, Department of Statistics, Rice University, Houston, TX, USA
| |
Collapse
|
18
|
Piperno-Neumann S, Diallo A, Etienne-Grimaldi MC, Bidard FC, Rodrigues M, Plancher C, Mariani P, Cassoux N, Decaudin D, Asselain B, Servois V. Phase II Trial of Bevacizumab in Combination With Temozolomide as First-Line Treatment in Patients With Metastatic Uveal Melanoma. Oncologist 2016; 21:281-2. [PMID: 26911405 PMCID: PMC4786360 DOI: 10.1634/theoncologist.2015-0501] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In experimental models, bevacizumab suppressed in vitro growth and in vivo hepatic metastasis of ocular melanoma cells. Additional preclinical data suggested a potential benefit when combining bevacizumab with dacarbazine. METHODS This noncomparative phase II study evaluated a combination of bevacizumab (10 mg/kg on days 8 and 22) with temozolomide (150 mg/m(2) on days 1-7 and 15-21) in 36 patients with metastatic uveal melanoma (MUM). The primary endpoint was the progression-free rate (PFR) at 6 months. Using a modified 2-step Fleming plan, at least 10 of 35 patients were required to support a predefined PFR at 6 months of 40%. Secondary objectives were progression-free survival (PFS), overall survival (OS), and safety; liver perfusion computed tomography (CT) for response imaging; and impact of VEGF-A gene polymorphisms on bevacizumab pharmacodynamics. RESULTS First- and second-step analyses revealed nonprogression at 6 months in 3 of 17 and 8 of 35 patients, respectively. Finally, the 6-month PFR was 23% (95% confidence interval [CI]: 10-39), with long-lasting stable disease in 5 patients (14%). Median PFS and OS were 12 weeks and 10 months, respectively. No unexpected toxicity occurred. Liver perfusion CT imaging was not useful in assessing tumor response, and VEGF-A gene polymorphisms were not correlated with toxicity or survival. CONCLUSION In patients with MUM, a combination of bevacizumab plus temozolomide achieved a 6-month PFR of 23%.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pascale Mariani
- Department of Surgical Oncology, Institut Curie, Paris, France
| | | | - Didier Decaudin
- Preclinical Investigation Laboratory, Institut Curie, Paris, France
| | | | - Vincent Servois
- Department of Radiology and Nuclear Medicine, Institut Curie, Paris, France
| |
Collapse
|
19
|
Murray TA, Hobbs BP, Carlin BP. COMBINING NONEXCHANGEABLE FUNCTIONAL OR SURVIVAL DATA SOURCES IN ONCOLOGY USING GENERALIZED MIXTURE COMMENSURATE PRIORS. Ann Appl Stat 2015; 9:1549-1570. [PMID: 26557211 DOI: 10.1214/15-aoas840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Conventional approaches to statistical inference preclude structures that facilitate incorporation of supplemental information acquired from similar circumstances. For example, the analysis of data obtained using perfusion computed tomography to characterize functional imaging biomarkers in cancerous regions of the liver can benefit from partially informative data collected concurrently in non-cancerous regions. This paper presents a hierarchical model structure that leverages all available information about a curve, using penalized splines, while accommodating important between-source features. Our proposed methods flexibly borrow strength from the supplemental data to a degree that reflects the commensurability of the supplemental curve with the primary curve. We investigate our method's properties for nonparametric regression via simulation, and apply it to a set of liver cancer data. We also apply our method for a semiparametric hazard model to data from a clinical trial that compares time to disease progression for three colorectal cancer treatments, while supplementing inference with information from a previous trial that tested the current standard of care.
Collapse
|
20
|
CT Perfusion Characteristics Identify Metastatic Sites in Liver. BIOMED RESEARCH INTERNATIONAL 2015; 2015:120749. [PMID: 26509144 PMCID: PMC4609766 DOI: 10.1155/2015/120749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/29/2015] [Accepted: 06/07/2015] [Indexed: 12/31/2022]
Abstract
Tissue perfusion plays a critical role in oncology because growth and migration of cancerous cells require proliferation of new blood vessels through the process of tumor angiogenesis. Computed tomography (CT) perfusion is an emerging functional imaging modality that measures tissue perfusion through dynamic CT scanning following intravenous administration of contrast medium. This noninvasive technique provides a quantitative basis for assessing tumor angiogenesis. CT perfusion has been utilized on a variety of organs including lung, prostate, liver, and brain, with promising results in cancer diagnosis, disease prognostication, prediction, and treatment monitoring. In this paper, we focus on assessing the extent to which CT perfusion characteristics can be used to discriminate liver metastases from neuroendocrine tumors from normal liver tissues. The neuroendocrine liver metastases were analyzed by distributed parameter modeling to yield tissue blood flow (BF), blood volume (BV), mean transit time (MTT), permeability (PS), and hepatic arterial fraction (HAF), for tumor and normal liver. The result reveals the potential of CT perfusion as a tool for constructing biomarkers from features of the hepatic vasculature for guiding cancer detection, prognostication, and treatment selection.
Collapse
|
21
|
Ng CS, Hobbs BP, Wei W, Anderson EF, Herron DH, Yao JC, Chandler AG. Effect on perfusion values of sampling interval of computed tomographic perfusion acquisitions in neuroendocrine liver metastases and normal liver. J Comput Assist Tomogr 2015; 39:373-82. [PMID: 25626401 DOI: 10.1097/rct.0000000000000212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study aimed to assess the effects of sampling interval (SI) of computed tomographic (CT) perfusion acquisitions on CT perfusion values in normal liver and liver metastases from neuroendocrine tumors. METHODS Computed tomographic perfusion in 16 patients with neuroendocrine liver metastases was analyzed using distributed-parameter modeling to yield tissue blood flow, blood volume, mean transit time, permeability, and hepatic arterial fraction for tumor and normal liver. Computed tomographic perfusion values for the reference SI of 0.5 s (SI0.5) were compared with those of SI data sets of 1 second, 2 seconds, 3 seconds, and 4 seconds using mixed-effects model analyses. RESULTS Increases in SI beyond 1 second were associated with significant and increasing departures of CT perfusion parameters from the reference values at SI0.5 (P ≤ 0.0009). Computed tomographic perfusion values deviated from the reference with increasing uncertainty with increasing SIs. Findings for normal liver were concordant. CONCLUSIONS Increasing SIs beyond 1 second yield significantly different CT perfusion parameter values compared with the reference values at SI0.5.
Collapse
Affiliation(s)
- Chaan S Ng
- From the Departments of *Diagnostic Radiology, †Biostatistics, ‡Gastrointestinal Medical Oncology, and §Imaging Physics, The University of Texas, MD Anderson Cancer Center, Houston, TX; and ∥CT Research, GE Healthcare, Waukesha, WI
| | | | | | | | | | | | | |
Collapse
|
22
|
De Robertis R, Tinazzi Martini P, Demozzi E, Puntel G, Ortolani S, Cingarlini S, Ruzzenente A, Guglielmi A, Tortora G, Bassi C, Pederzoli P, D’Onofrio M. Prognostication and response assessment in liver and pancreatic tumors: The new imaging. World J Gastroenterol 2015; 21:6794-6808. [PMID: 26078555 PMCID: PMC4462719 DOI: 10.3748/wjg.v21.i22.6794] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/25/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023] Open
Abstract
Diffusion-weighted imaging (DWI), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and perfusion computed tomography (CT) are technical improvements of morphologic imaging that can evaluate functional properties of hepato-bilio-pancreatic tumors during conventional MRI or CT examinations. Nevertheless, the term “functional imaging” is commonly used to describe molecular imaging techniques, as positron emission tomography (PET) CT/MRI, which still represent the most widely used methods for the evaluation of functional properties of solid neoplasms; unlike PET or single photon emission computed tomography, functional imaging techniques applied to conventional MRI/CT examinations do not require the administration of radiolabeled drugs or specific equipments. Moreover, DWI and DCE-MRI can be performed during the same session, thus providing a comprehensive “one-step” morphological and functional evaluation of hepato-bilio-pancreatic tumors. Literature data reveal that functional imaging techniques could be proposed for the evaluation of these tumors before treatment, given that they may improve staging and predict prognosis or clinical outcome. Microscopic changes within neoplastic tissues induced by treatments can be detected and quantified with functional imaging, therefore these techniques could be used also for post-treatment assessment, even at an early stage. The aim of this editorial is to describe possible applications of new functional imaging techniques apart from molecular imaging to hepatic and pancreatic tumors through a review of up-to-date literature data, with a particular emphasis on pathological correlations, prognostic stratification and post-treatment monitoring.
Collapse
|
23
|
Hobbs BP, Ng CS. Inferring Stable Acquisition Durations for Applications of Perfusion Imaging in Oncology. Cancer Inform 2015; 14:193-9. [PMID: 26052222 PMCID: PMC4444141 DOI: 10.4137/cin.s17280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 02/07/2023] Open
Abstract
Tissue perfusion plays a critical role in oncology. Growth and migration of cancerous cells requires proliferation of networks of new blood vessels through the process of tumor angiogenesis. Many imaging technologies developed recently attempt to measure characteristics pertaining to the passage of fluid through blood vessels, thereby providing a noninvasive means for cancer detection, as well as treatment prognostication, prediction, and monitoring. However, because these techniques require a sequence of successive imaging scans under administration of intravenous imaging tracers, the quality of the resulting perfusion data depends on the acquisition protocol. In this paper, we explain how to infer stability for stochastic curve estimation. The topic is motivated by two recent attempts to determine stable acquisition durations for acquiring perfusion characteristics using dynamic computed tomography, wherein inference used inappropriate statistical methods. Notably, when appropriate statistical techniques are used, the resulting conclusions deviate substantially from those previously reported in the literature.
Collapse
Affiliation(s)
- Brian P Hobbs
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chaan S Ng
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Wang Y, Hobbs BP, Hu J, Ng CS, Do KA. Predictive classification of correlated targets with application to detection of metastatic cancer using functional CT imaging. Biometrics 2015; 71:792-802. [PMID: 25851056 DOI: 10.1111/biom.12304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 01/01/2015] [Accepted: 02/01/2015] [Indexed: 11/28/2022]
Abstract
Perfusion computed tomography (CTp) is an emerging functional imaging modality that uses physiological models to quantify characteristics pertaining to the passage of fluid through blood vessels. Perfusion characteristics provide physiological correlates for neovascularization induced by tumor angiogenesis. Thus CTp offers promise as a non-invasive quantitative functional imaging tool for cancer detection, prognostication, and treatment monitoring. In this article, we develop a Bayesian probabilistic framework for simultaneous supervised classification of multivariate correlated objects using separable covariance. The classification approach is applied to discriminate between regions of liver that contain pathologically verified metastases from normal liver tissue using five perfusion characteristics. The hepatic regions tend to be highly correlated due to common vasculature. We demonstrate that simultaneous Bayesian classification yields dramatic improvements in performance in the presence of strong correlation among intra-subject units, yet remains competitive with classical methods in the presence of weak or no correlation.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, Texas, U.S.A
| | - Brian P Hobbs
- Department of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, Texas, U.S.A
| | - Jianhua Hu
- Department of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, Texas, U.S.A
| | - Chaan S Ng
- Department of Diagnostic Radiology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, U.S.A
| | - Kim-Anh Do
- Department of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, Texas, U.S.A
| |
Collapse
|
25
|
Zhao HY, Liu S, He J, Pan CC, Li H, Zhou ZY, Ding Y, Huo D, Hu Y. Synthesis and application of strawberry-like Fe3O4-Au nanoparticles as CT-MR dual-modality contrast agents in accurate detection of the progressive liver disease. Biomaterials 2015; 51:194-207. [PMID: 25771010 DOI: 10.1016/j.biomaterials.2015.02.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/20/2022]
Abstract
Development of non-invasive assay for the accurate diagnosis of progressive liver diseases (e.g., fatty liver and hepatocellular carcinoma (HCC)) is of great clinical significance and remains to be a big challenge. Herein, we reported the synthesis of strawberry-like Fe3O4-Au hybrid nanoparticles at room temperature that simultaneously exhibited fluorescence, enhanced X-ray attenuation, and magnetic properties. The results of in vitro fluorescence assay showed that the nanoparticles had significant photo-stability and could avoid the endosome degradation in cells. The in vivo imaging of normal mice demonstrated that the Fe3O4-Au nanoparticles provided 34.61-fold contrast enhancement under magnetic resonance (MR) guidance 15 min post the administration. Computed tomography (CT) measurements showed that the highest Hounsfield Unit (HU) was 174 at 30 min post the injection of Fe3O4-Au nanoparticles. In vivo performance of the Fe3O4-Au nanoparticles was further evaluated in rat models bearing three different liver diseases. For the fatty liver model, nearly homogeneous contrast enhancement was observed under both MR (highest contrast ratio 47.33) and CT (from 19 HU to 72 HU) guidances without the occurrences of focal nodules or dysfunction. For the cirrhotic liver and HCC, pronounced enhancement under MR and CT guidance could be seen in liver parenchyma with highlighted lesions after Fe3O4-Au injection. Furthermore, pathological, hematological and biochemical analysis revealed the absence of acute and chronic toxicity, confirming the biocompatibility of our platform for in vivo applications. Collectively, These Fe3O4-Au nanoparticles showed great promise as a candidate for multi-modality bio-imaging.
Collapse
Affiliation(s)
- Hui Y Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, 210093, PR China; Institute of Materials Engineering, National Laboratory of Solid State Microstructure, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, PR China
| | - Sen Liu
- Institute of Materials Engineering, National Laboratory of Solid State Microstructure, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, PR China
| | - Jian He
- Department of Radiology, Drum Tower Hospital, School of Medicine, Nanjing University, Jiangsu, 210093, PR China
| | - Chao C Pan
- Institute of Materials Engineering, National Laboratory of Solid State Microstructure, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, PR China
| | - Hui Li
- Department of Radiology, Drum Tower Hospital, School of Medicine, Nanjing University, Jiangsu, 210093, PR China
| | - Zheng Y Zhou
- Department of Radiology, Drum Tower Hospital, School of Medicine, Nanjing University, Jiangsu, 210093, PR China
| | - Yin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, 210093, PR China.
| | - Da Huo
- Institute of Materials Engineering, National Laboratory of Solid State Microstructure, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, PR China.
| | - Yong Hu
- Institute of Materials Engineering, National Laboratory of Solid State Microstructure, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, PR China.
| |
Collapse
|
26
|
Bodei L, Sundin A, Kidd M, Prasad V, Modlin IM. The status of neuroendocrine tumor imaging: from darkness to light? Neuroendocrinology 2015; 101:1-17. [PMID: 25228173 DOI: 10.1159/000367850] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/23/2014] [Indexed: 11/19/2022]
Abstract
Diagnostic imaging plays a pivotal role in the diagnosis, staging, treatment selection and follow-up for neuroendocrine tumors. The available diagnostic strategies are morphologic imaging, including computed tomography, magnetic resonance imaging (MRI) and ultrasound techniques, and molecular imaging, including scintigraphy with (111)In-pentetreotide and positron emission tomography with (68)Ga-DOTA-peptides, (18)F-DOPA and (11)C-5-HTP. A combination of anatomic and functional techniques is routinely performed to optimize sensitivity and specificity. The introduction of diffusion-weighted MRI and dynamic contrast-enhanced techniques represents a promising advance in radiologic imaging, whereas new receptor-binding peptides, including somatostatin agonists and antagonists, represent the recent most favorable innovation in molecular imaging. Future development includes the short-term validation of these techniques, but in extension also a more comprehensive multilevel integration of biologic information pertaining to a specific tumor and patient, possibly encompassing genomic considerations, currently evolving as a new entity denoted 'precision medicine'. The ideal is a diagnostic sequence that captures the global status of an individual's tumor and encompasses a multidimensional characterization of tumor location, metabolic performance and target identification. To date, advances in imagery have focused on increasing resolution, discrimination and functional characterization. In the future, the fusion of imagery with the parallel analysis of biological and genomic information has the potential to considerably amplify diagnosis.
Collapse
Affiliation(s)
- Lisa Bodei
- Division of Nuclear Medicine, European Institute of Oncology, Milan, Italy
| | | | | | | | | |
Collapse
|
27
|
Effect of pre-enhancement set point on computed tomographic perfusion values in normal liver and metastases to the liver from neuroendocrine tumors. J Comput Assist Tomogr 2014; 38:526-34. [PMID: 24651739 DOI: 10.1097/rct.0000000000000053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective of this study was to assess the effects of pre-enhancement set point (T1) positioning on computed tomographic perfusion (CTp) parameter values. METHODS The CTp data from 16 patients with neuroendocrine liver metastases were analyzed with distributed parameter modeling to yield tissue blood flow (BF), blood volume, mean transit time, permeability, and hepatic arterial fraction for tumor and normal liver, with displacements in T1 of ±0.5, ±1.0, ±2.0 seconds, relative to the reference standard. A linear mixed-effects model was used to assess the displacement effects. RESULTS Effects on the CTp parameter values were variable: BF was not significantly affected, but T1 positions of ≥+1.0 second and -2.0 seconds or longer significantly affected the other CTp parameters (P ≤ 0.004). Mean differences in the CTp parameter values versus the reference standard for BF, blood volume, mean transit time, permeability, and hepatic arterial fraction ranged from -5.0% to 5.2%, -12.7% to 8.9%, -12.5% to 8.1%, -5.3% to 5.7%, and -12.9% to 26.0%, respectively. CONCLUSIONS CTp parameter values can be significantly affected by T1 positioning.
Collapse
|