1
|
Sheahan KP, O'Mahony AT, Morrissy D, Ibrahim H, Crowley C, Waldron MG, Sokol-Randell D, McMahon A, Maher MM, O'Connor OJ, Plant BJ. Replacing Plain Radiograph with ultra-low dose CT thorax in cystic fibrosis (CF) in the era of CFTR modulation and its impact on cumulative effective dose. J Cyst Fibros 2023; 22:715-721. [PMID: 37400300 DOI: 10.1016/j.jcf.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Medical radiation exposure is of increasing concern in patients with cystic fibrosis (PWCF) due to improving life expectancy. We aimed to assess and quantify the cumulative effective dose (CED) in PWCF in the context of CFTR-modulator therapy and the advancement of dose reduction techniques. METHODS We performed a retrospective observational study in a single University CF centre over a 11-year period. We included PWCF, aged over 18 years who exclusively attended our institution. Relevant clinical data (demographics, transplantation history and modulator status) and radiological data (modality, quantity, and radiation exposure measured as CED) were collected. For those on modulator therapy the quantified imaging and radiation data was dichotomised into pre-and-post therapy periods. RESULTS The study included 181 patients: 139 on CFTR modulator therapy, 15 transplant recipients and 27 with neither exposure. 82% of patients received <25 mSv over the study period. Mean study duration was 6.9 ± 2.6 years pre-modulation and 4.2 ± 2.6 years post-modulation. Pre-modulation CT contributed 9.6% of total chest imaging (n = 139/1453) and 70.9% of the total CED. Post-modulation CT use increased contributing 42.7% of chest imaging (n = 444/1039) and comprised 75.8% of CED. Annual CED was 1.55 mSv pre and 1.36 mSv post modulation (p = 0.41). Transplant recipients had an annual CED of 64 ± 36.1mSv. CONCLUSION Chest CT utilisation for PWCF is rising in our institution, replacing chest radiography amidst CFTR-modulation. Despite the increasing use of CT, no significant radiation dose penalty was observed with a reduction in mean annual CED, primarily due to the influence of CT dose reduction strategies.
Collapse
Affiliation(s)
- Kevin P Sheahan
- Department of Radiology, Cork University Hospital, Cork, Ireland
| | | | - David Morrissy
- Cork Centre for Cystic Fibrosis (3CF), Cork University Hospital, Cork Ireland
| | - Hisham Ibrahim
- Cork Centre for Cystic Fibrosis (3CF), Cork University Hospital, Cork Ireland
| | - Claire Crowley
- Department of Radiology, Cork University Hospital, Cork, Ireland
| | | | | | - Aisling McMahon
- Department of Radiology, Cork University Hospital, Cork, Ireland
| | - Michael M Maher
- Department of Radiology, Cork University Hospital, Cork, Ireland
| | - Owen J O'Connor
- Department of Radiology, Cork University Hospital, Cork, Ireland
| | - Barry J Plant
- Cork Centre for Cystic Fibrosis (3CF), Cork University Hospital, Cork Ireland
| |
Collapse
|
2
|
Pilot study to determine whether reduced-dose photon-counting detector chest computed tomography can reliably display Brody II score imaging findings for children with cystic fibrosis at radiation doses that approximate radiographs. Pediatr Radiol 2023; 53:1049-1056. [PMID: 36596868 DOI: 10.1007/s00247-022-05574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND The Brody II score uses chest CT to guide therapeutic changes in children with cystic fibrosis; however, patients and providers are often reticent to undergo chest CT given concerns about radiation. OBJECTIVE We sought to determine the ability of a reduced-dose photon-counting detector (PCD) chest CT protocol to reproducibly display pulmonary disease severity using the Brody II score for children with cystic fibrosis (CF) scanned at radiation doses similar to those of a chest radiograph. MATERIALS AND METHODS Pediatric patients with CF underwent non-contrast reduced-dose chest PCD-CT. Volumetric inspiratory and expiratory scans were obtained without sedation or anesthesia. Three pediatric radiologists with Certificates of Added Qualification scored each scan on an ordinal scale and assigned a Brody II score to grade bronchiectasis, peribronchial thickening, parenchymal opacity, air trapping and mucus plugging. We report image-quality metrics using descriptive statistics. To calculate inter-rater agreement for Brody II scoring, we used the Krippendorff alpha and intraclass correlation coefficient (ICC). RESULTS Fifteen children with CF underwent reduced-dose PCD chest CT in both inspiration and expiration (mean age 8.9 years, range, 2.5-17.5 years; 4 girls). Mean volumetric CT dose index (CTDIvol) was 0.07 ± 0.03 mGy per scan. Mean effective dose was 0.12 ± 0.04 mSv for the total examination. All three readers graded spatial resolution and noise as interpretable on lung windows. The average Brody II score was 12.5 (range 4-19), with moderate inter-reader reliability (ICC of 0.61 [95% CI=0.27, 0.84]). Inter-rater reliability was moderate to substantial for bronchiectasis (0.52), peribronchial thickening (0.55), presence of opacity (0.62) and air trapping (0.70) and poor for mucus plugging (0.09). CONCLUSION Reduced-dose PCD-CT permits diagnostic image quality and reproducible identification of Brody II scoring imaging findings at radiation doses similar to those for chest radiography.
Collapse
|
3
|
Ciet P, Bertolo S, Ros M, Casciaro R, Cipolli M, Colagrande S, Costa S, Galici V, Gramegna A, Lanza C, Lucca F, Macconi L, Majo F, Paciaroni A, Parisi GF, Rizzo F, Salamone I, Santangelo T, Scudeller L, Saba L, Tomà P, Morana G. State-of-the-art review of lung imaging in cystic fibrosis with recommendations for pulmonologists and radiologists from the "iMAging managEment of cySTic fibROsis" (MAESTRO) consortium. Eur Respir Rev 2022; 31:31/163/210173. [PMID: 35321929 DOI: 10.1183/16000617.0173-2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Imaging represents an important noninvasive means to assess cystic fibrosis (CF) lung disease, which remains the main cause of morbidity and mortality in CF patients. While the development of new imaging techniques has revolutionised clinical practice, advances have posed diagnostic and monitoring challenges. The authors aim to summarise these challenges and make evidence-based recommendations regarding imaging assessment for both clinicians and radiologists. STUDY DESIGN A committee of 21 experts in CF from the 10 largest specialist centres in Italy was convened, including a radiologist and a pulmonologist from each centre, with the overall aim of developing clear and actionable recommendations for lung imaging in CF. An a priori threshold of at least 80% of the votes was required for acceptance of each statement of recommendation. RESULTS After a systematic review of the relevant literature, the committee convened to evaluate 167 articles. Following five RAND conferences, consensus statements were developed by an executive subcommittee. The entire consensus committee voted and approved 28 main statements. CONCLUSIONS There is a need for international guidelines regarding the appropriate timing and selection of imaging modality for patients with CF lung disease; timing and selection depends upon the clinical scenario, the patient's age, lung function and type of treatment. Despite its ubiquity, the use of the chest radiograph remains controversial. Both computed tomography and magnetic resonance imaging should be routinely used to monitor CF lung disease. Future studies should focus on imaging protocol harmonisation both for computed tomography and for magnetic resonance imaging. The introduction of artificial intelligence imaging analysis may further revolutionise clinical practice by providing fast and reliable quantitative outcomes to assess disease status. To date, there is no evidence supporting the use of lung ultrasound to monitor CF lung disease.
Collapse
Affiliation(s)
- Pierluigi Ciet
- Radiology and Nuclear Medicine Dept, Erasmus MC, Rotterdam, The Netherlands .,Pediatric Pulmonology and Allergology Dept, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands.,Depts of Radiology and Medical Science, University of Cagliari, Cagliari, Italy
| | - Silvia Bertolo
- Radiology Dept, Ca'Foncello S. Maria Hospital, Treviso, Italy
| | - Mirco Ros
- Dept of Pediatrics, Ca'Foncello S. Maria Hospital, Treviso, Italy
| | - Rosaria Casciaro
- Dept of Pediatrics, IRCCS Institute "Giannina Gaslini", Cystic Fibrosis Centre, Genoa, Italy
| | - Marco Cipolli
- Regional Reference Cystic Fibrosis center, University hospital of Verona, Verona, Italy
| | - Stefano Colagrande
- Dept of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence- Careggi Hospital, Florence, Italy
| | - Stefano Costa
- Dept of Pediatrics, Gaetano Martino Hospital, Messina, Italy
| | - Valeria Galici
- Cystic Fibrosis Centre, Dept of Paediatric Medicine, Anna Meyer Children's University Hospital, Florence, Italy
| | - Andrea Gramegna
- Respiratory Disease and Adult Cystic Fibrosis Centre, Internal Medicine Dept, IRCCS Ca' Granda, Milan, Italy.,Dept of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Cecilia Lanza
- Radiology Dept, University Hospital Ospedali Riuniti, Ancona, Italy
| | - Francesca Lucca
- Regional Reference Cystic Fibrosis center, University hospital of Verona, Verona, Italy
| | - Letizia Macconi
- Radiology Dept, Tuscany Reference Cystic Fibrosis Centre, Meyer Children's Hospital, Florence, Italy
| | - Fabio Majo
- Dept of Pediatrics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Giuseppe Fabio Parisi
- Pediatric Pulmonology Unit, Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesca Rizzo
- Radiology Dept, IRCCS Institute "Giannina Gaslini", Cystic Fibrosis Center, Genoa, Italy
| | | | - Teresa Santangelo
- Dept of Radiology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Luigia Scudeller
- Clinical Epidemiology, IRCCS Azienda Ospedaliera Universitaria di Bologna, Bologna, Italy
| | - Luca Saba
- Depts of Radiology and Medical Science, University of Cagliari, Cagliari, Italy
| | - Paolo Tomà
- Dept of Radiology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giovanni Morana
- Radiology Dept, Ca'Foncello S. Maria Hospital, Treviso, Italy
| |
Collapse
|
4
|
Hallouch O, Marinos J, Thibault F, Vu KN, Chalaoui J, Bourgouin P, Péloquin L, Freire V, Tremblay F, Chartrand-Lefebvre C. Cystic fibrosis in the 21st century: what every radiologist should know. Clin Imaging 2022; 84:118-129. [DOI: 10.1016/j.clinimag.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
|
5
|
Landini N, Colzani G, Ciet P, Tessarin G, Dorigo A, Bertana L, Felice C, Scaldaferri L, Orlandi M, Nardi C, Romagnoli M, Saba L, Rigoli R, Morana G. Chest radiography findings of COVID-19 pneumonia: a specific pattern for a confident differential diagnosis. Acta Radiol 2021; 63:1619-1626. [PMID: 34779269 DOI: 10.1177/02841851211055163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chest radiography (CR) patterns for the diagnosis of COVID-19 have been established. However, they were not ideated comparing CR features with those of other pulmonary diseases. PURPOSE To create the most accurate COVID-19 pneumonia pattern comparing CR findings of COVID-19 and non-COVID-19 pulmonary diseases and to test the model against the British Society of Thoracic Imaging (BSTI) criteria. MATERIAL AND METHODS CR of COVID-19 and non-COVID-19 pulmonary diseases, admitted to the emergency department, were evaluated. Assessed features were interstitial opacities, ground glass opacities, and/or consolidations and the predominant lung alteration. We also assessed uni-/bilaterality, location (upper/middle/lower), and distribution (peripheral/perihilar), as well as pleural effusion and perihilar vessels blurring. A binary logistic regression was adopted to obtain the most accurate CR COVID-19 pattern, and sensitivity and specificity were computed. The newly defined pattern was compared to BSTI criteria. RESULTS CR of 274 patients were evaluated (146 COVID-19, 128 non-COVID-19). The most accurate COVID-19 pneumonia pattern consisted of four features: bilateral alterations (Expß=2.8, P=0.002), peripheral distribution of the predominant (Expß=2.3, P=0.013), no pleural effusion (Expß=0.4, P=0.009), and perihilar vessels' contour not blurred (Expß=0.3, P=0.002). The pattern showed 49% sensitivity, 81% specificity, and 64% accuracy, while BSTI criteria showed 51%, 77%, and 63%, respectively. CONCLUSION Bilaterality, peripheral distribution of the predominant lung alteration, no pleural effusion, and perihilar vessels contour not blurred determine the most accurate COVID-19 pneumonia pattern. Lower field involvement, proposed by BSTI criteria, was not a distinctive finding. The BSTI criteria has lower specificity.
Collapse
Affiliation(s)
- Nicholas Landini
- Department of Radiology, Ca’ Foncello General Hospital, Treviso, Italy
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit no. 2, University of Florence – Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Giulia Colzani
- Department of Radiology, Ca’ Foncello General Hospital, Treviso, Italy
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Pierluigi Ciet
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Pediatric Pulmonology and Allergology, Erasmus MC – Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Radiology and Department of Medical Science, University of Cagliari, Cagliari, Italy
| | - Giovanni Tessarin
- Department of Radiology, Ca’ Foncello General Hospital, Treviso, Italy
- Department of Medicine-DIMED, Institute of Radiology, University of Padova, Padua, Italy
| | - Alberto Dorigo
- Department of Radiology, Ca’ Foncello General Hospital, Treviso, Italy
| | - Luca Bertana
- Department of Radiology, Ca’ Foncello General Hospital, Treviso, Italy
| | - Carla Felice
- Department of Medicine (DIMED), University of Padua, Medicine 1, Ca’ Foncello General Hospital, Treviso, Italy
| | - Luca Scaldaferri
- Acute and Emergency Department, Ca’ Foncello Hospital, Treviso, Italy
| | - Martina Orlandi
- Division of Rheumatology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cosimo Nardi
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit no. 2, University of Florence – Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | | | - Luca Saba
- Department of Radiology and Department of Medical Science, University of Cagliari, Cagliari, Italy
| | - Roberto Rigoli
- Department of Specialistic and Laboratory Medicine, Microbiology Unit, Ca’ Foncello Hospital, Treviso, Italy
| | - Giovanni Morana
- Department of Radiology, Ca’ Foncello General Hospital, Treviso, Italy
| |
Collapse
|
6
|
Sookpeng S, Martin CJ, Butdee C. The investigation of dose and image quality of chest computed tomography using different combinations of noise index and adaptive statistic iterative reconstruction level. Indian J Radiol Imaging 2021; 29:53-60. [PMID: 31000942 PMCID: PMC6467048 DOI: 10.4103/ijri.ijri_124_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Computed tomography (CT) automatic tube current modulation (ATCM) systems and iterative reconstruction (IR) play an important role in CT radiation dose optimization. How the two can best be used together is one of the challenges faced by radiology professionals. Aim To determine optimum settings of ATCM noise index (NI) together with adaptive statistic iterative reconstruction (ASIR) for a general electric (GE) scanner that aims to achieve similar image quality to the standard protocol used in the hospital (Smart mA technique with NI of 11.57 and 30% ASIR reconstruction) with a lower dose. Methods Different NI and ASIR levels were set for scans of a phantom. Objective image quality assessments in terms of noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), low-contrast detectability (LCD), and modulation transfer function (MTF) were carried out in an anthropomorphic chest and a Catphan 700 phantom. Subjective image quality assessment was also performed with five readers to confirm whether the image quality of the new protocols was adequate. Result and Conclusion SNR and CNR increased with the strength of ASIR, and decreased with higher NI settings. The MTF improved slightly for higher dose levels and from filtered back projection (FBP) to higher strength of ASIR. LCD improved with ASIR compared to FBP and with higher strengths of ASIR. Qualitative scoring ranged between 3.0 and 4.6. A moderate degree of reliability was found between scoring. Use of NI 15.04 with 70% ASIR can reduce dose by 41% compared to the standard protocol of NI 11.57 with 30% ASIR without degradation of image quality.
Collapse
Affiliation(s)
- Supawitoo Sookpeng
- Department of Radiological Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Colin J Martin
- Department of Clinical Physics, University of Glasgow, Glasgow, UK
| | - Chitsanupong Butdee
- Department of Radiological Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
7
|
Best Practices: Imaging Strategies for Reduced-Dose Chest CT in the Management of Cystic Fibrosis-Related Lung Disease. AJR Am J Roentgenol 2021; 217:304-313. [PMID: 34076456 DOI: 10.2214/ajr.19.22694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE. Cystic fibrosis (CF) is a multisystemic life-limiting disorder. The leading cause of morbidity in CF is chronic pulmonary disease. Chest CT is the reference standard for detection of bronchiectasis. Cumulative ionizing radiation limits the use of CT, particularly as treatments improve and life expectancy increases. The purpose of this article is to summarize the evidence on low-dose chest CT and its effect on image quality to determine best practices for imaging in CF. CONCLUSION. Low-dose chest CT is technically feasible, reduces dose, and renders satisfactory image quality. There are few comparison studies of low-dose chest CT and standard chest CT in CF; however, evidence suggests equivalent diagnostic capability. Low-dose chest CT with iterative reconstructive algorithms appears superior to chest radiography and equivalent to standard CT and has potential for early detection of bronchiectasis and infective exacerbations, because clinically significant abnormalities can develop in patients who do not have symptoms. Infection and inflammation remain the primary causes of morbidity requiring early intervention. Research gaps include the benefits of replacing chest radiography with low-dose chest CT in terms of improved diagnostic yield, clinical decision making, and patient outcomes. Longitudinal clinical studies comparing CT with MRI for the monitoring of CF lung disease may better establish the complementary strengths of these imaging modalities.
Collapse
|
8
|
Mondéjar-López P, Horsley A, Ratjen F, Bertolo S, de Vicente H, Asensio de la Cruz Ò. A multimodal approach to detect and monitor early lung disease in cystic fibrosis. Expert Rev Respir Med 2021; 15:761-772. [PMID: 33843417 DOI: 10.1080/17476348.2021.1908131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: In the early stages, lung involvement in cystic fibrosis (CF) can be silent, with disease progression occurring in the absence of clinical symptoms. Irreversible airway damage is present in the early stages of disease; however, reliable biomarkers of early damage due to inflammation and infection that are universally applicable in day-to-day patient management have yet to be identified.Areas covered: At present, the main methods of detecting and monitoring early lung disease in CF are the lung clearance index (LCI), computed tomography (CT), and magnetic resonance imaging (MRI). LCI can be used to detect patients who may require more intense monitoring, identify exacerbations, and monitor responses to new interventions. High-resolution CT detects structural alterations in the lungs of CF patients with the best resolution of current imaging techniques. MRI is a radiation-free imaging alternative that provides both morphological and functional information. The role of MRI for short-term follow-up and pulmonary exacerbations is currently being investigated.Expert opinion: The roles of LCI and MRI are expected to expand considerably over the next few years. Meanwhile, closer collaboration between pulmonology and radiology specialties is an important goal toward improving care and optimizing outcomes in young patients with CF.
Collapse
Affiliation(s)
- Pedro Mondéjar-López
- Pediatric Pulmonologist, Pediatric Pulmonology and Cystic Fibrosis Unit, University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Alexander Horsley
- Honorary Consultant, Respiratory Research Group, Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, UK
| | - Felix Ratjen
- Head, Division of Respiratory Medicine, Department of Pediatrics, Translational Medicine, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Silvia Bertolo
- Radiologist, Department of Radiology, Ca'Foncello Regional Hospital, Treviso, Italy
| | | | - Òscar Asensio de la Cruz
- Pediatric Pulmonologist, Pediatric Unit, University Hospital Parc Taulí de Sabadell, Sabadell, Spain
| |
Collapse
|
9
|
Goralski JL, Stewart NJ, Woods JC. Novel imaging techniques for cystic fibrosis lung disease. Pediatr Pulmonol 2021; 56 Suppl 1:S40-S54. [PMID: 32592531 PMCID: PMC7808406 DOI: 10.1002/ppul.24931] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
With an increasing number of patients with cystic fibrosis (CF) receiving highly effective CFTR (cystic fibrosis transmembrane regulator protein) modulator therapy, particularly at a young age, there is an increasing need to identify imaging tools that can detect and regionally visualize mild CF lung disease and subtle changes in disease state. In this review, we discuss the latest developments in imaging modalities for both structural and functional imaging of the lung available to CF clinicians and researchers, from the widely available, clinically utilized imaging methods for assessing CF lung disease-chest radiography and computed tomography-to newer techniques poised to become the next phase of clinical tools-structural/functional proton and hyperpolarized gas magnetic resonance imaging (MRI). Finally, we provide a brief discussion of several newer lung imaging techniques that are currently available only in selected research settings, including chest tomosynthesis, and fluorinated gas MRI. We provide an update on the clinical and/or research status of each technique, with a focus on sensitivity, early disease detection, and possibilities for monitoring treatment efficacy.
Collapse
Affiliation(s)
- Jennifer L Goralski
- UNC Cystic Fibrosis Center, Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Division of Pulmonary and Critical Care Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Division of Pediatric Pulmonology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Neil J Stewart
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital, Cincinnati, Ohio.,Department of Infection, Immunity & Cardiovascular Disease, POLARIS Group, Imaging Sciences, University of Sheffield, Sheffield, UK
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio.,Department of Radiology, Cincinnati Children's Hospital, Cincinnati, Ohio
| |
Collapse
|
10
|
Image quality of ultralow-dose chest CT using deep learning techniques: potential superiority of vendor-agnostic post-processing over vendor-specific techniques. Eur Radiol 2021; 31:5139-5147. [PMID: 33415436 DOI: 10.1007/s00330-020-07537-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To compare the image quality between the vendor-agnostic and vendor-specific algorithms on ultralow-dose chest CT. METHODS Vendor-agnostic deep learning post-processing model (DLM), vendor-specific deep learning image reconstruction (DLIR, high level), and adaptive statistical iterative reconstruction (ASiR, 70%) algorithms were employed. One hundred consecutive ultralow-dose noncontrast CT scans (CTDIvol; mean, 0.33 ± 0.056 mGy) were reconstructed with five algorithms: DLM-stnd (standard kernel), DLM-shrp (sharp kernel), DLIR, ASiR-stnd, and ASiR-shrp. Three thoracic radiologists blinded to the reconstruction algorithms reviewed five sets of 100 images and assessed subjective noise, spatial resolution, distortion artifact, and overall image quality. They selected the most preferred algorithm among five image sets for each case. Image noise and signal-to-noise ratio were measured. Edge-rise-distance was measured at a pulmonary vessel, i.e., the distance between two points where attenuation was 10% and 90% of maximal intravascular intensity. The skewness of attenuation was calculated in homogeneous areas. RESULTS DLM-stnd, followed by DLIR, showed the best subjective noise on both lung and mediastinal windows, while DLIR yielded the least measured noise (ps < .0001). Compared to DLM-stnd, DLIR showed inferior subjective spatial resolution on lung window and higher edge-rise-distance (ps < .0001). Additionally, DLIR showed the most frequent distortion artifacts and deviated skewness (ps < .0001). DLM-stnd scored the best overall image quality, followed by DLM-shrp and DLIR (mean score 3.89 ± 0.19, 3.68 ± 0.24, and 3.53 ± 0.33; ps < .001). Two among three readers preferred DLM-stnd on both windows. CONCLUSION Although DLIR provided the best quantitative noise profile, DLM-stnd showed the best overall image quality with fewer artifacts and was preferred by two among three readers. KEY POINTS • A vendor-agnostic deep learning post-processing algorithm applied to ultralow-dose chest CT exhibited the best image quality compared to vendor-specific deep learning algorithm and ASiR techniques. • Two out of three readers preferred a vendor-agnostic deep learning post-processing algorithm in comparison to vendor-specific deep learning algorithm and ASiR techniques. • A vendor-specific deep learning reconstruction algorithm yielded the least image noise, but showed significantly more frequent specific distortion artifacts and increased skewness of attenuation compared to a vendor-agnostic algorithm.
Collapse
|
11
|
Tagliati C, Lanza C, Pieroni G, Amici L, Carotti M, Giuseppetti GM, Giovagnoni A. Ultra-low-dose chest CT in adult patients with cystic fibrosis using a third-generation dual-source CT scanner. Radiol Med 2020; 126:544-552. [PMID: 33200307 DOI: 10.1007/s11547-020-01304-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/29/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Chest computed tomography (CT) examinations are performed routinely in some cystic fibrosis (CF) centers in order to evaluate lung disease progression in CF patients. Continuous CT technological advancement in theory could allows a lower radiation exposure of CF patients during chest CT examinations without an image quality reduction, and this could become increasingly important over time in order to reduce the cumulative radiation dose effects given the continuous increase of CF patients predicted median survival. OBJECTIVE The aim of this study was to compare objective and subjective image quality and radiation dose between low-dose chest CT examinations performed in adult CF patients using a third-generation DSCT scanner and a 64-slices single-source CT (SSCT) scanner. MATERIALS AND METHODS Between January 2016 and August 2019, 81 CF patients underwent low-dose chest CT examinations using both a 64-slices SSCT scanner (2016-2017) and a third-generation DSCT scanner (2018-2019). Objective image noise standard deviation (INSD), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), overall subjective image quality (OSIQ), subjective image noise (SIN), subjective evaluation of streaking artifacts (SA), movement artifacts (MA) and edge resolution (ER), dose-length product (DLP), volume computed tomography dose index (CTDIvol) and effective radiation dose (ERD) were compared between DSCT and SSCT examinations. DSCT examinations consisted in spiral inspiratory end expiratory acquisitions. SSCT examinations consisted in spiral inspiratory acquisitions and five axial expiratory ones. RESULTS DSCT protocol showed statistically significant lower spiral inspiratory phase mean DLP, CTDIvol and ERD than SSCT protocol, with a 25% DLP, CTDIvol and ERD reduction. DSCT protocol showed statistically significant higher overall (inspiratory and expiratory phases) mean DLP, CTDIvol and ERD than SSCT protocol, with a 40% DLP, CTDIvol and ERD increase. Objective image quality (INSD, SNR and CNR) and SIN differences were not statistically significant, but subjective evaluation of DSCT images showed statistically significant better OSIQ and ER, as well as statistically significant lower SA and MA with respect to SSCT images. CONCLUSIONS To our knowledge, this is the first study evaluating chest CT image quality and radiation dose in adult CF patients using a third-generation DSCT scanner, and it showed that technological advancements could be used in order to reduce radiation exposure of volumetric examinations. The spiral inspiratory dose reduction can be obtained with concomitant improvements in subjective image quality with comparable objective quality. This will probably allow a wider use of this imaging modality in order to assess bronchiectasis and will probably foster spiral expiratory acquisition for small airways disease evaluation.
Collapse
Affiliation(s)
- Corrado Tagliati
- School of Radiology, Università Politecnica Delle Marche, Ancona, Italy.
| | - Cecilia Lanza
- Department of Radiological Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica Delle Marche, Ancona, Italy
| | - Giovanni Pieroni
- Department of Radiological Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica Delle Marche, Ancona, Italy
| | - Lucia Amici
- Department of Radiological Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica Delle Marche, Ancona, Italy
| | - Marina Carotti
- Department of Radiological Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica Delle Marche, Ancona, Italy
| | - Gian Marco Giuseppetti
- Department of Radiological Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica Delle Marche, Ancona, Italy
| | - Andrea Giovagnoni
- Department of Radiological Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica Delle Marche, Ancona, Italy
| |
Collapse
|
12
|
Renz DM, Dohna M, Böttcher J, Kaireit TF, Pfeil A, Streitparth F, Vogel-Claussen J. Magnetresonanztomographie der Lunge bei zystischer Fibrose. Monatsschr Kinderheilkd 2020. [DOI: 10.1007/s00112-020-00890-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Guidance for computed tomography (CT) imaging of the lungs for patients with cystic fibrosis (CF) in research studies. J Cyst Fibros 2020; 19:176-183. [DOI: 10.1016/j.jcf.2019.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/21/2019] [Accepted: 09/01/2019] [Indexed: 12/11/2022]
|
14
|
|
15
|
Acute Recurrent and Chronic Pancreatitis as Initial Manifestations of Cystic Fibrosis and Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders. Pancreas 2019; 48:888-893. [PMID: 31268981 PMCID: PMC6768061 DOI: 10.1097/mpa.0000000000001350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Recurrent pancreatitis is considered a rare manifestation of cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction; this case series highlights that pancreatitis can be a presenting symptoms of cystic fibrosis (CF) or a CFTR-related disorder (CFTR-RD). METHODS Retrospective review of patients younger than 30 years diagnosed as having acute recurrent pancreatitis (ARP) or chronic pancreatitis (CP) and subsequently diagnosed as having CF or CFTR-RD. RESULTS Among 18 patients, median time from diagnosis of ARP/CP to diagnosis of CF was 0.4 years (range, 0-33 years). Eight were classified as having CF by elevated sweat chloride testing (SCT). Five had intermediate SCT (30-59 mmol/L) with 2 pathogenic mutations. Five had CFTR-RD with intermediate SCT and 0 to 1 pathogenic mutations. Eight patients (44%) had exocrine pancreatic insufficiency, and pancreatic fluid collections were more common in this group. Based on the CFTR mutation, 6 patients were eligible for CFTR potentiator therapy, although none received it during the study period. Nine of the 18 had ≥1 other likely CF manifestations, including sinusitis (33%), nasal polyps (11%), pneumonia (22%), and gallbladder disease (22%). CONCLUSIONS Cystic fibrosis or CFTR-RD can present as ARP/CP. Complete diagnostic testing for CFTR-RD in patients with ARP/CP will broaden treatment options and help to identify comorbid illness.
Collapse
|
16
|
Refait J, Macey J, Bui S, Fayon M, Berger P, Delhaes L, Laurent F, Dournes G. CT evaluation of hyperattenuating mucus to diagnose allergic bronchopulmonary aspergillosis in the special condition of cystic fibrosis. J Cyst Fibros 2019; 18:e31-e36. [PMID: 30765182 DOI: 10.1016/j.jcf.2019.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/27/2019] [Accepted: 02/05/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mucus plugging (MP), central bronchiectasis (CB), and consolidation/atelectasia (CA) are conventional CT signs to diagnose allergic bronchopulmonary aspergillosis (ABPA) in cystic fibrosis (CF). Hyperattenuating mucus (HAM) has recently been described and may improve diagnostic accuracy. The goal of our study was to compare HAM versus conventional CT signs to diagnose ABPA in CF. Secondary objectives were to determine the optimal threshold of HAM quantitatively and to assess the diagnostic value of HAM using chest radiograph (CXR). METHODS The study was retrospective and included 137 patients with CF, aged >6-year-old. The presence of HAM, CB, MP and CA were determined by two radiologists in consensus. HAM was quantified using an absolute mean density value (AMD) and a ratio between mucus and paraspinal muscle (DRM). Sensitivity (Se), Specificity (Sp) and Youden's J-index were calculated. The Cystic Fibrosis Conference Consensus criteria were chosen as Gold Standard. RESULTS 23 out of 137 CF patients had ABPA. Using CT, the most sensitive structural alteration was MP (Se = 91%), followed by CB (Se = 87%) and CA (Se = 70%) whereas specificities were 28%, 19% and 58%, respectively. Conversely, HAM had the highest specificity (Sp = 100%) whereas Se was 69%. HAM had the highest Youden's J-index (p < 0.001) Quantitative optimal thresholds were AMD > 78 HU (Se/Sp = 71%/98%) and DRM > 1.3 (Se/Sp = 82%/97%). HAM was unseen using CXR (Se = 0%). CONCLUSION HAM is the most specific CT biomarker of ABPA in CF, with good sensitivity. Our study suggests that characterization of mucus density may improve the accuracy of imaging criteria to diagnose ABPA early.
Collapse
Affiliation(s)
- John Refait
- CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie pédiatrique, Service de Parasitologie-Mycologie, CIC 1401, F-33600 Pessac, France
| | - Julie Macey
- CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie pédiatrique, Service de Parasitologie-Mycologie, CIC 1401, F-33600 Pessac, France; Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Stephanie Bui
- CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie pédiatrique, Service de Parasitologie-Mycologie, CIC 1401, F-33600 Pessac, France
| | - Michaël Fayon
- CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie pédiatrique, Service de Parasitologie-Mycologie, CIC 1401, F-33600 Pessac, France; Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Patrick Berger
- CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie pédiatrique, Service de Parasitologie-Mycologie, CIC 1401, F-33600 Pessac, France; Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Laurence Delhaes
- CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie pédiatrique, Service de Parasitologie-Mycologie, CIC 1401, F-33600 Pessac, France; Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - François Laurent
- CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie pédiatrique, Service de Parasitologie-Mycologie, CIC 1401, F-33600 Pessac, France; Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Gaël Dournes
- CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie pédiatrique, Service de Parasitologie-Mycologie, CIC 1401, F-33600 Pessac, France; Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France.
| |
Collapse
|
17
|
Chassagnon G, Martin C, Burgel PR, Hubert D, Fajac I, Paragios N, Zacharaki EI, Legmann P, Coste J, Revel MP. An automated computed tomography score for the cystic fibrosis lung. Eur Radiol 2018; 28:5111-5120. [PMID: 29869171 DOI: 10.1007/s00330-018-5516-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/16/2018] [Accepted: 04/26/2018] [Indexed: 01/25/2023]
Abstract
OBJECTIVES To develop an automated density-based computed tomography (CT) score evaluating high-attenuating lung structural abnormalities in patients with cystic fibrosis (CF). METHODS Seventy adult CF patients were evaluated. The development cohort comprised 17 patients treated with ivacaftor, with 45 pre-therapeutic and follow-up chest CT scans. Another cohort of 53 patients not treated with ivacaftor was used for validation. CT-density scores were calculated using fixed and adapted thresholds based on histogram characteristics, such as the mode and standard deviation. Visual CF-CT score was also calculated. Correlations between the CT scores and forced expiratory volume in 1 s (FEV1% pred), and between their changes over time were assessed. RESULTS On cross-sectional evaluation, the correlation coefficients between FEV1%pred and the automated scores were slightly lower to that of the visual score in the development and validation cohorts (R = up to -0.68 and -0.61, versus R = -0.72 and R = -0.64, respectively). Conversely, the correlation to FEV1%pred tended to be higher for automated scores (R = up to -0.61) than for visual score (R = -0.49) on longitudinal follow-up. Automated scores based on Mode + 3 SD and Mode +300 HU showed the highest cross-sectional (R = -0.59 to -0.68) and longitudinal (R = -0.51 to -0.61) correlation coefficients to FEV1%pred. CONCLUSIONS The developed CT-density score reliably quantifies high-attenuating lung structural abnormalities in CF. KEY POINTS • Automated CT score shows moderate to good cross-sectional correlations with FEV 1 %pred . • CT score has potential to be integrated into the standard reporting workflow.
Collapse
Affiliation(s)
- Guillaume Chassagnon
- Radiology Department, Groupe Hospitalier Cochin-Hotel Dieu, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France.
- Centre for Visual Computing, Ecole Centrale Paris, Grande Voie des Vignes, 92290, Chatenay Malabry, France.
| | - Clémence Martin
- Pulmonary Department and Adult CF Centre, Groupe Hospitalier Cochin-Hotel Dieu, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Pierre-Régis Burgel
- Pulmonary Department and Adult CF Centre, Groupe Hospitalier Cochin-Hotel Dieu, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Dominique Hubert
- Pulmonary Department and Adult CF Centre, Groupe Hospitalier Cochin-Hotel Dieu, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Isabelle Fajac
- Physiology Department, Groupe Hospitalier Cochin-Hotel Dieu, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Nikos Paragios
- Centre for Visual Computing, Ecole Centrale Paris, Grande Voie des Vignes, 92290, Chatenay Malabry, France
| | - Evangelia I Zacharaki
- Centre for Visual Computing, Ecole Centrale Paris, Grande Voie des Vignes, 92290, Chatenay Malabry, France
| | - Paul Legmann
- Radiology Department, Groupe Hospitalier Cochin-Hotel Dieu, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Joel Coste
- Biostatistics and Epidemiology Department, Groupe Hospitalier Cochin-Hotel Dieu, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Marie-Pierre Revel
- Radiology Department, Groupe Hospitalier Cochin-Hotel Dieu, Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| |
Collapse
|
18
|
Weis M, Henzler T, Nance JW, Haubenreisser H, Meyer M, Sudarski S, Schoenberg SO, Neff KW, Hagelstein C. Radiation Dose Comparison Between 70 kVp and 100 kVp With Spectral Beam Shaping for Non-Contrast-Enhanced Pediatric Chest Computed Tomography: A Prospective Randomized Controlled Study. Invest Radiol 2017; 52:155-162. [PMID: 27662576 DOI: 10.1097/rli.0000000000000325] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this prospective randomized controlled study was to compare 2 techniques for radiation dose reduction in non-contrast-enhanced pediatric chest computed tomography (CT): low peak kilovoltage imaging at 70 kVp and spectral beam shaping at 100 kVp using a dedicated tin filter (100-kVp Sn). MATERIALS AND METHODS All chest CT examinations were performed on a third-generation dual-source CT system (SOMATOM Force; Siemens Healthineers, Germany). Fifty children (mean age, 6.8 ± 5.1 years) were examined using the 100-kVp Sn protocol, whereas 25 children received the 70-kVp protocol (mean age, 5.7 ± 5.2 years; 2:1 randomization scheme). Radiation metrics and organ doses were compared between acquisition techniques using commercially available radiation dose analysis software (Radimetrics Inc, Bayer AG, Toronto, Ontario, Canada). Objective image quality, expressed by signal-to-noise ratio and subjective image quality based on a 4-point scale (1, best; 4, worst image quality), were compared. RESULTS Volume CT dose index and size-specific dose estimate were significantly lower in the 100-kVp Sn group compared with the 70-kVp group (0.19 ± 0.12 mGy vs 0.81 ± 0.70 mGy and 0.34 ± 0.13 mGy vs 1.48 ± 1.11 mGy; P < 0.0001 for both). Accordingly, mean effective dose was significantly lower for the 100-kVp Sn examinations (0.21 ± 0.10 mSv) compared with the 70-kVp examinations (0.83 ± 0.49 mSv; P < 0.0001). Calculated organ doses were also significantly lower using the 100-kVp Sn protocol when compared with the 70-kVp protocol; for example, breast dose was reduced by a factor of 4.3. Signal-to-noise ratio was slightly superior for 70-kVp images while lung image quality of the 100-kVp Sn protocol was preferred in subjective analysis (P = 0.0004). CONCLUSIONS Pediatric chest CT performed at 100 kVp with an additional tin filter for spectral shaping significantly reduces radiation dose when compared with low peak kilovoltage imaging at 70 kVp and therefore should be preferred in non-contrast-enhanced pediatric chest CT examinations, particularly (given the improved subjective image quality) when the main focus is evaluation of the lung parenchyma.
Collapse
Affiliation(s)
- Meike Weis
- From the *Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; and †Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Athanazio RA, Silva Filho LVRFD, Vergara AA, Ribeiro AF, Riedi CA, Procianoy EDFA, Adde FV, Reis FJC, Ribeiro JD, Torres LA, Fuccio MBD, Epifanio M, Firmida MDC, Damaceno N, Ludwig-Neto N, Maróstica PJC, Rached SZ, Melo SFDO. Brazilian guidelines for the diagnosis and treatment of cystic fibrosis. ACTA ACUST UNITED AC 2017; 43:219-245. [PMID: 28746534 PMCID: PMC5687954 DOI: 10.1590/s1806-37562017000000065] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder characterized by dysfunction of the CFTR gene. It is a multisystem disease that most often affects White individuals. In recent decades, various advances in the diagnosis and treatment of CF have drastically changed the scenario, resulting in a significant increase in survival and quality of life. In Brazil, the current neonatal screening program for CF has broad coverage, and most of the Brazilian states have referral centers for the follow-up of individuals with the disease. Previously, CF was limited to the pediatric age group. However, an increase in the number of adult CF patients has been observed, because of the greater number of individuals being diagnosed with atypical forms (with milder phenotypic expression) and because of the increase in life expectancy provided by the new treatments. However, there is still great heterogeneity among the different regions of Brazil in terms of the access of CF patients to diagnostic and therapeutic methods. The objective of these guidelines was to aggregate the main scientific evidence to guide the management of these patients. A group of 18 CF specialists devised 82 relevant clinical questions, divided into five categories: characteristics of a referral center; diagnosis; treatment of respiratory disease; gastrointestinal and nutritional treatment; and other aspects. Various professionals working in the area of CF in Brazil were invited to answer the questions devised by the coordinators. We used the PubMed database to search the available literature based on keywords, in order to find the best answers to these questions.
Collapse
Affiliation(s)
- Rodrigo Abensur Athanazio
- . Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | | | - Alberto Andrade Vergara
- . Hospital Infantil João Paulo II, Rede Fundação Hospitalar do Estado de Minas Gerais - FHEMIG - Belo Horizonte (MG) Brasil
| | | | | | | | - Fabíola Villac Adde
- . Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Francisco José Caldeira Reis
- . Hospital Infantil João Paulo II, Rede Fundação Hospitalar do Estado de Minas Gerais - FHEMIG - Belo Horizonte (MG) Brasil
| | - José Dirceu Ribeiro
- . Hospital de Clínicas, Universidade Estadual de Campinas, Campinas (SP) Brasil
| | - Lídia Alice Torres
- . Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto (SP) Brasil
| | - Marcelo Bicalho de Fuccio
- . Hospital Júlia Kubitschek, Fundação Hospitalar do Estado de Minas Gerais - FHEMIG - Belo Horizonte (MG) Brasil
| | - Matias Epifanio
- . Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre (RS) Brasil
| | | | - Neiva Damaceno
- . Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo (SP) Brasil
| | - Norberto Ludwig-Neto
- . Hospital Infantil Joana de Gusmão, Florianópolis (SC) Brasil.,. Serviço de Fibrose Cística e Triagem Neonatal para Fibrose Cística, Secretaria Estadual de Saúde de Santa Catarina, Florianópolis (SC) Brasil
| | - Paulo José Cauduro Maróstica
- . Hospital de Clínicas de Porto Alegre, Porto Alegre (RS) Brasil.,. Universidade Federal do Rio Grande do Sul Porto Alegre (RS) Brasil
| | - Samia Zahi Rached
- . Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | | | | |
Collapse
|
20
|
Scholz O, Denecke T, Böttcher J, Schwarz C, Mentzel HJ, Streitparth F, Maurer MH, Pfeil A, Huppertz A, Mehl A, Staab D, Hamm B, Renz DM. MRI of cystic fibrosis lung manifestations: sequence evaluation and clinical outcome analysis. Clin Radiol 2017; 72:754-763. [PMID: 28545684 DOI: 10.1016/j.crad.2017.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/19/2017] [Accepted: 03/20/2017] [Indexed: 11/17/2022]
Abstract
AIM To evaluate different magnetic resonance imaging (MRI) sequences for diagnosis of pulmonary manifestations of cystic fibrosis (CF) in comparison to chest computed tomography (CT), including an extended outcome analysis. MATERIALS AND METHODS Twenty-eight patients with CF (15 male, 13 female, mean age 30.5±9.4 years) underwent CT and MRI of the lung. MRI (1.5 T) included different T2- and T1-weighted sequences: breath-hold HASTE (half Fourier acquisition single shot turbo spin echo) and VIBE (volumetric interpolated breath-hold examination, before and after contrast medium administration) sequences and respiratory-triggered PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) sequences with and without fat signal suppression, and perfusion imaging. CT and MRI images were evaluated by the modified Helbich and the Eichinger scoring systems. The clinical follow-up analysis assessed pulmonary exacerbations within 24 months. RESULTS The highest concordance to CT was achieved for the PROPELLER sequences without fat signal suppression (concordance correlation coefficient CCC of the overall modified Helbich score 0.93 and of the overall Eichinger score 0.93). The other sequences had the following concordance: PROPELLER with fat signal suppression (CCCs 0.91 and 0.92), HASTE (CCCs 0.87 and 0.89), VIBE (CCCs 0.84 and 0.85) sequences. In the outcome analysis, the combined MRI analysis of all five sequences and a specific MRI protocol (PROPELLER without fast signal suppression, VIBE sequences, perfusion imaging) reached similar correlations to the number of pulmonary exacerbations as the CT examinations. CONCLUSION An optimum lung MRI protocol in patients with CF consists of PROPELLER sequences without fat signal suppression, VIBE sequences, and lung perfusion analysis to enable high diagnostic efficacy and outcome prediction.
Collapse
Affiliation(s)
- O Scholz
- Department of Radiology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
| | - T Denecke
- Department of Radiology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
| | - J Böttcher
- Institute of Diagnostic and Interventional Radiology, SRH Clinic Gera, Str. des Friedens 122, 07548 Gera, Germany
| | - C Schwarz
- Division of Pulmonology and Immunology, Department of Pediatrics, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
| | - H-J Mentzel
- Institute of Diagnostic and Interventional Radiology, Department of Pediatric Radiology, Friedrich-Schiller-University, Jena University Hospital, Am Klinikum 1, 07740 Jena, Germany
| | - F Streitparth
- Department of Radiology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
| | - M H Maurer
- Department of Radiology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
| | - A Pfeil
- Department of Internal Medicine III, Friedrich-Schiller-University, Jena University Hospital, Am Klinikum 1, 07740 Jena, Germany
| | - A Huppertz
- Department of Radiology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
| | - A Mehl
- Division of Pulmonology and Immunology, Department of Pediatrics, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
| | - D Staab
- Division of Pulmonology and Immunology, Department of Pediatrics, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
| | - B Hamm
- Department of Radiology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany
| | - D M Renz
- Department of Radiology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany; Institute of Diagnostic and Interventional Radiology, Department of Pediatric Radiology, Friedrich-Schiller-University, Jena University Hospital, Am Klinikum 1, 07740 Jena, Germany.
| |
Collapse
|
21
|
Yang SY, Lee KS, Cha MJ, Kim TJ, Kim TS, Yoon HJ. Chest CT Features of Cystic Fibrosis in Korea: Comparison with Non-Cystic Fibrosis Diseases. Korean J Radiol 2017; 18:260-267. [PMID: 28096734 PMCID: PMC5240480 DOI: 10.3348/kjr.2017.18.1.260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/18/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Cystic fibrosis (CF) is a rare congenital disease in Korea, and its clinical and imaging findings are unclear. The objective of our study was to describe the clinical and CT features of CF in Korea and compare its features with those of other diseases mimicking CF. MATERIALS AND METHODS From November 1994 to December 2014, a presumptive diagnosis of CF was made in 23 patients based on clinical or radiological examination. After the exclusion of 10 patients without diagnostic confirmation, 13 patients were included in the study. A diagnosis of CF was made with the CF gene study. CT findings were evaluated for the presence and distribution of parenchymal abnormalities including bronchiectasis, tree-in-bud (TIB) pattern, mucus plugging, consolidation, and mosaic attenuation. RESULTS Of the 13 patients, 7 (median age, 15 years) were confirmed as CF, 4 (median age, 19 years) had primary ciliary dyskinesia, 1 had bronchiectasis of unknown cause, and 1 had chronic asthma. CT of patients with CF showed bilateral bronchiectasis, TIB pattern, mosaic attenuation, and mucus plugging in all patients, with upper lung predominance (57%). In CT of the non-CF patients, bilateral bronchiectasis, TIB pattern, mosaic attenuation, and mucus plugging were also predominant features, with lower lung predominance (50%). CONCLUSION Korean patients with CF showed bilateral bronchiectasis, cellular bronchiolitis, mucus plugging, and mosaic attenuation, which overlapped with those of non-CF patients. CF gene study is recommended for the definitive diagnosis of CF in patients with these clinical and imaging features.
Collapse
Affiliation(s)
- So Yeon Yang
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Kyung Soo Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Min Jae Cha
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06973, Korea
| | - Tae Jung Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Tae Sung Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Hyun Jung Yoon
- Department of Radiology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul 04763, Korea
| |
Collapse
|
22
|
|
23
|
Kubo T, Ohno Y, Seo JB, Yamashiro T, Kalender WA, Lee CH, Lynch DA, Kauczor HU, Hatabu H. Securing safe and informative thoracic CT examinations—Progress of radiation dose reduction techniques. Eur J Radiol 2017; 86:313-319. [DOI: 10.1016/j.ejrad.2016.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/08/2016] [Accepted: 10/12/2016] [Indexed: 12/16/2022]
|
24
|
Andronikou S, Goussard P, Sorantin E. Computed tomography in children with community-acquired pneumonia. Pediatr Radiol 2017; 47:1431-1440. [PMID: 29043419 PMCID: PMC5608781 DOI: 10.1007/s00247-017-3891-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/27/2017] [Accepted: 05/04/2017] [Indexed: 11/27/2022]
Abstract
Diagnostic imaging plays a significant role in both the diagnosis and treatment of complications of pneumonia in children and chest radiography is the imaging modality of choice. Computed tomography (CT) on the other hand, is not currently a first-line imaging tool for children with suspected uncomplicated community-acquired pneumonia and is largely reserved for when complications of pneumonia are suspected or there is difficulty in differentiating pneumonia from other pathology. This review outlines the situations where CT needs to be considered in children with pneumonia, describes the imaging features of the parenchymal and pleural complications of pneumonia, discusses how CT may have a wider role in developing countries where human immunodeficiency virus (HIV) and tuberculosis are prevalent, makes note of the role of CT scanning for identifying missed foreign body aspiration and, lastly, addresses radiation concerns.
Collapse
Affiliation(s)
- Savvas Andronikou
- Department of Paediatric Radiology, Bristol Royal Hospital for Children and the University of Bristol, Upper Maudlin Street, Bristol, BS2 8BJ, UK.
- Department of Radiology, University of Cape Town, Cape Town, South Africa.
| | - Pierre Goussard
- Department of Paediatrics and Child Health, Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa
| | - Erich Sorantin
- Department of Radiology, Medical University Graz, Graz, Austria
| |
Collapse
|
25
|
Sly PD, Wainwright CE. Diagnosis and early life risk factors for bronchiectasis in cystic fibrosis: a review. Expert Rev Respir Med 2016; 10:1003-10. [PMID: 27329819 DOI: 10.1080/17476348.2016.1204915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Lung disease in cystic fibrosis begins in early life with neutrophil-dominated inflammation and infection, is progressive and results in structural lung damage characterised by bronchial dilation and bronchiectasis. Preventative strategies must be employed in early life but require a better understanding of how bronchiectasis develops. AREAS COVERED In this review we have addressed the diagnosis and early life risk factors for bronchiectasis in young children with cystic fibrosis. A systematic review was not performed and the literature reviewed was known to the authors. Expert commentary: Bronchiectasis represents a process of progressive dilatation and damage of airway walls and is traditionally considered to be irreversible. Diagnosis is primarily by detecting a bronchial:arterial ratio of >1 on chest CT scan. Lung volume has a greater influence on airway diameter than on arterial making control of lung volume during scanning critical. Early life risk factors for the onset and progression bronchiectasis include: severe cystic fibrosis genotype; neutrophilic inflammation with free neutrophil elastase activity in the lung; and pulmonary infection. Bronchiectasis develops in the majority of children before they reach school age despite the best current therapy. To prevent bronchiectasis novel therapies are going to have to be given to infants.
Collapse
Affiliation(s)
- Peter D Sly
- a Department of Respiratory and Sleep Medicine , Children's Health Queensland , Brisbane , Australia.,b Child Health Research Centre , The University of Queensland , Brisbane , Australia
| | - Claire E Wainwright
- a Department of Respiratory and Sleep Medicine , Children's Health Queensland , Brisbane , Australia.,b Child Health Research Centre , The University of Queensland , Brisbane , Australia
| |
Collapse
|
26
|
Dournes G, Menut F, Macey J, Fayon M, Chateil JF, Salel M, Corneloup O, Montaudon M, Berger P, Laurent F. Lung morphology assessment of cystic fibrosis using MRI with ultra-short echo time at submillimeter spatial resolution. Eur Radiol 2016; 26:3811-3820. [PMID: 26843010 DOI: 10.1007/s00330-016-4218-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/29/2015] [Accepted: 01/13/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVES We hypothesized that non-contrast-enhanced PETRA (pointwise encoding time reduction with radial acquisition) MR (magnetic resonance) sequencing could be an alternative to unenhanced computed tomography (CT) in assessing cystic fibrosis (CF) lung structural alterations, as well as compared agreements and concordances with those of conventional T1-weighted and T2-weighted sequences. MATERIAL AND METHODS Thirty consecutive CF patients completed both CT and MRI the same day. No contrast injection was used. Agreement in identifying structural alterations was evaluated at the segmental level using a kappa test. Intraclass correlation coefficients (ICC) and Bland-Altman analysis were used to assess concordances and reproducibility in Helbich-Bhalla disease severity scoring. RESULTS Agreement between PETRA and CT was higher than that of T1- or T2-weighted sequences, notably in assessing the segmental presence of bronchiectasis (Kappa = 0.83; 0.51; 0.49, respectively). The concordance in Helbich-Bhalla scores was very good using PETRA (ICC = 0.97), independently from its magnitude (mean difference (MD) = -0.3 [-2.8; 2.2]), whereas scoring was underestimated using both conventional T1 and T2 sequences (MD = -3.6 [-7.4; 0.1]) and MD = -4.6 [-8.2; -1.0], respectively). Intra- and interobserver reproducibility were very good for all imaging modalities (ICC = 0.86-0.98). CONCLUSION PETRA showed higher agreement in describing CF lung morphological changes than that of conventional sequences, whereas the Helbich-Bhalla scoring matched closely with that of CT. KEY POINTS • Spatial resolution of lung MRI is limited using non-ultra-short TE MRI technique • Ultra-short echo time (UTE) technique enables submillimeter 3D-MRI of airways • 3D-UTE MRI shows very good concordance with CT in assessing cystic fibrosis • Radiation-free 3D-UTE MRI enables the Helbich-Bhalla scoring without a need for contrast injection.
Collapse
Affiliation(s)
- Gaël Dournes
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France. .,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France. .,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, F-33600, Pessac, France. .,Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, U1045, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, Cedex, France.
| | - Fanny Menut
- CHU de Bordeaux, Service d'Imagerie de la Femme et de l'Enfant, Unité de Pneumologie pédiatrique, F-33000, Bordeaux, France
| | - Julie Macey
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, F-33600, Pessac, France
| | - Michaël Fayon
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France.,CHU de Bordeaux, Service d'Imagerie de la Femme et de l'Enfant, Unité de Pneumologie pédiatrique, F-33000, Bordeaux, France
| | - Jean-François Chateil
- CHU de Bordeaux, Service d'Imagerie de la Femme et de l'Enfant, Unité de Pneumologie pédiatrique, F-33000, Bordeaux, France.,University of Bordeaux, Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, 33076, Bordeaux, France
| | - Marjorie Salel
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, F-33600, Pessac, France
| | - Olivier Corneloup
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, F-33600, Pessac, France
| | - Michel Montaudon
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, F-33600, Pessac, France
| | - Patrick Berger
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, F-33600, Pessac, France
| | - François Laurent
- University of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France.,INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000, Bordeaux, France.,CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, F-33600, Pessac, France
| |
Collapse
|
27
|
Savant AP, McColley SA. 2014 year in review: Cystic fibrosis. Pediatr Pulmonol 2015; 50:1147-56. [PMID: 26347000 DOI: 10.1002/ppul.23309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/26/2015] [Accepted: 08/22/2015] [Indexed: 12/23/2022]
Abstract
In this article, we highlight cystic fibrosis (CF) research published in Pediatric Pulmonology during 2014, as well as related articles published in other journals.
Collapse
Affiliation(s)
- Adrienne P Savant
- Division of Pulmonary Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Susanna A McColley
- Division of Pulmonary Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Stanley Manne Children's Research Institute, Illinois
| |
Collapse
|
28
|
Abstract
Lung diseases cause significant morbidity and mortality and lead to high healthcare utilization. However, few lung disease-specific biomarkers are available to accurately monitor disease activity for the purposes of clinical management or drug development. Advances in cross-modal imaging technologies, such as combined positron emission tomography (PET) and magnetic resonance (MR) imaging scanners and PET or single-photon emission computed tomography (SPECT) combined with computed tomography (CT), may aid in the development of noninvasive, molecular-based biomarkers for lung disease. However, the lungs pose particular challenges in obtaining accurate quantification of imaging data due to the low density of the organ and breathing motion. This review covers the basic physics underlying PET, SPECT, CT, and MR lung imaging and presents technical considerations for multimodal imaging with regard to PET and SPECT quantification. It also includes a brief review of the current and potential clinical applications for these hybrid imaging technologies.
Collapse
Affiliation(s)
- Delphine L Chen
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA. Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Campus Box 8225, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Paul E Kinahan
- Department of Radiology and Bioengineering and Physics, University of Washington Medical Center, Seattle, WA, USA
| |
Collapse
|