1
|
Tang J, Yang Y, Yin HY, Ma B, Zhu M, Yang ZS, Peng XX, Jia F, Zhao Y, Wang F, Chen T, Zhang JL. A Platinum-Aluminum Bimetallic Salen Complex for Pro-senescence Cancer Therapy. Chembiochem 2024; 25:e202400105. [PMID: 38639074 DOI: 10.1002/cbic.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
Cell senescence is defined as irreversible cell cycle arrest, which can be triggered by telomere shortening or by various types of genotoxic stress. Induction of senescence is emerging as a new strategy for the treatment of cancer, especially when sequentially combined with a second senolytic drug capable of killing the resulting senescent cells, however severely suffering from the undesired off-target side effects from the senolytic drugs. Here, we prepare a bimetalic platinum-aluminum salen complex (Alumiplatin) for cancer therapy-a combination of pro-senesence chemotherapy with in situ senotherapy to avoid the side effects. The aluminum salen moiety, as a G-quadruplex stabilizer, enhances the salen's ability to induce cancer cell senescence and this phenotype is in turn sensitive to the cytotoxic activity of the monofunctional platinum moiety. It exhibits an excellent capability for inducing senescence, a potent cytotoxic activity against cancer cells both in vitro and in vivo, and an improved safety profile compared to cisplatin. Therefore, Alumiplatin may be a good candidate to be further developed into safe and effective anticancer agents. This novel combination of cell senescence inducers with genotoxic drugs revolutionizes the therapy options of designing multi-targeting anticancer agents to improve the efficacy of anticancer therapies.
Collapse
Affiliation(s)
- Juan Tang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Medicinal Molecule Science and pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Yahui Yang
- Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Hao-Yan Yin
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Bin Ma
- Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Mengliang Zhu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zi-Shu Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xin-Xin Peng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Feifei Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
2
|
Zhang Y, Chen J, Yang C, Dai Y, Zeng M. Preoperative prediction of microvascular invasion in hepatocellular carcinoma using diffusion-weighted imaging-based habitat imaging. Eur Radiol 2024; 34:3215-3225. [PMID: 37853175 DOI: 10.1007/s00330-023-10339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 07/27/2023] [Accepted: 08/20/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES Habitat imaging allows for the quantification and visualization of various subregions within the tumor. We aim to develop an approach using diffusion-weighted imaging (DWI)-based habitat imaging for preoperatively predicting the microvascular invasion (MVI) of hepatocellular carcinoma (HCC). METHODS Sixty-five patients were prospectively included and underwent multi-b DWI examinations. Based on the true diffusion coefficient (Dt), perfusion fraction (f), and mean kurtosis coefficient (MK), which respectively characterize cellular density, perfusion, and heterogeneity, the HCCs were divided into four habitats. The volume fraction of each habitat was quantified. The logistic regression was used to explore the risk factors from habitat fraction and clinical variables. Clinical, habitat, and nomogram models were constructed using the identified risk factors from clinical characteristics, habitat fraction, and their combination, respectively. The diagnostic accuracy was evaluated using the area under the receiver operating characteristic curves (AUCs). RESULTS MVI-positive HCC exhibited a significantly higher fraction of habitat 4 (f4) and a significantly lower fraction of habitat 2 (f2) (p < 0.001), which were selected as risk factors. Additionally, tumor size and elevated alpha-fetoprotein (AFP) were also included as risk factors for MVI. The nomogram model demonstrated the highest diagnostic performance (AUC = 0.807), followed by the habitat model (AUC = 0.777) and the clinical model (AUC = 0.708). Decision curve analysis indicated that the nomogram model offered more net benefit in identifying MVI compared to the clinical model. CONCLUSIONS DWI-based habitat imaging shows clinical potential for noninvasively and preoperatively determining the MVI of HCC with high accuracy. CLINICAL RELEVANCE STATEMENT The proposed strategy, diffusion-weighted imaging-based habitat imaging, can be applied for preoperatively and noninvasively identifying microvascular invasion in hepatocellular carcinoma, which offers potential benefits in terms of prognostic prediction and clinical management. KEY POINTS • This study proposed a strategy of DWI-based habitat imaging for hepatocellular carcinoma. • The habitat imaging-derived metrics can serve as diagnostic markers for identifying the microvascular invasion. • Integrating the habitat-based metric and clinical variable, a predictive nomogram was constructed and displayed high accuracy for predicting microvascular invasion.
Collapse
Affiliation(s)
- Yunfei Zhang
- Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jiejun Chen
- Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chun Yang
- Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yongming Dai
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 200032, China
| | - Mengsu Zeng
- Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
3
|
Tang J, Zhang X, Chang H, Wang D. Investigating the effect of ARHGEF10L gene on tumor growth in gastric cancer in a nude mouse model using quantitative MRI parameters. J Cancer Res Ther 2022; 18:1926-1930. [PMID: 36647951 DOI: 10.4103/jcrt.jcrt_816_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background The quantitative magnetic resonance imaging (MRI) parameters were initially used in the study of central nervous system diseases and has since been widely used in the diagnosis of breast, liver, rectum, and prostate diseases. In our study, we aimed to evaluate the effect of ARHGEF10L gene on tumor growth in gastric cancer in nude mice using quantitative MRI parameters. Subjects and Methods A nude mice model of gastric cancer was established, and the mice were divided into a control group and an shARHGEF10L group (N = 10). T2-fs and intravoxel incoherent motions (IVIM) imaging were performed in the mice coil with a 3.0 T MR system. The differences in quantitative parameters (apparent diffusion coefficient [ADC], D, D *, f values) were compared between both groups, and the effect of ARHGEF10L expression on tumor growth in tumor-bearing mice was investigated. The data were analyzed using Statistical Package for the Social Sciences (SPSS) 17.0 software package. Results The ADC and D values of tumor imaging in the shARHGEF10L group were higher than those in the control group, and the differences were statistically significant. There was no significant difference in the D* or F values between both groups. Conclusions The ADC and D values of the quantitative IVIM imaging parameters can be used to effectively assess the growth of gastric cancer in nude mice, suggesting that ARHGEF10L may promote the growth of tumor cells.
Collapse
Affiliation(s)
- Junyi Tang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key of Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Xuping Zhang
- Department of Medicine Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key of Laboratory of Abdominal Medical Imaging, Jinan, Shandong, China
| | - Huan Chang
- Department of Radiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Dawei Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key of Laboratory of Abdominal Medical Imaging, Shandong Lung Cancer Institute, Shandong institute of Neuroimmunology, Jinan, Shandong, P. R. China
| |
Collapse
|
4
|
Kooreman ES, van Pelt V, Nowee ME, Pos F, van der Heide UA, van Houdt PJ. Longitudinal Correlations Between Intravoxel Incoherent Motion (IVIM) and Dynamic Contrast-Enhanced (DCE) MRI During Radiotherapy in Prostate Cancer Patients. Front Oncol 2022; 12:897130. [PMID: 35747819 PMCID: PMC9210504 DOI: 10.3389/fonc.2022.897130] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Intravoxel incoherent motion (IVIM) is a promising technique that can acquire perfusion information without the use of contrast agent, contrary to the more established dynamic contrast-enhanced (DCE) technique. This is of interest for treatment response monitoring, where patients can be imaged on each treatment fraction. In this study, longitudinal correlations between IVIM- and DCE parameters were assessed in prostate cancer patients receiving radiation treatment. Materials and Methods 20 prostate cancer patients were treated on a 1.5 T MR-linac with 20 x 3 or 3.1 Gy. Weekly IVIM and DCE scans were acquired. Tumors, the peripheral zone (PZ), and the transition zone (TZ) were delineated on a T2-weighted scan acquired on the first fraction. IVIM and DCE scans were registered to this scan and the delineations were propagated. Median values from these delineations were used for further analysis. The IVIM parameters D, f, D* and the product fD* were calculated. The Tofts model was used to calculate the DCE parameters Ktrans, kep and ve. Pearson correlations were calculated for the IVIM and DCE parameters on values from the first fraction for each region of interest (ROI). For longitudinal analysis, the repeated measures correlation coefficient was used to determine correlations between IVIM and DCE parameters in each ROI. Results When averaging over patients, an increase during treatment in all IVIM and DCE parameters was observed in all ROIs, except for D in the PZ and TZ. No significant Pearson correlations were found between any pair of IVIM and DCE parameters measured on the first fraction. Significant but low longitudinal correlations were found for some combinations of IVIM and DCE parameters in the PZ and TZ, while no significant longitudinal correlations were found in the tumor. Notably in the TZ, for both f and fD*, significant longitudinal correlations with all DCE parameters were found. Conclusions The increase in IVIM- and DCE parameters when averaging over patients indicates a measurable response to radiation treatment with both techniques. Although low, significant longitudinal correlations were found which suggests that IVIM could potentially be used as an alternative to DCE for treatment response monitoring.
Collapse
|
5
|
Wang R, Quan Z, Zheng T, Wang K, Liu Y, Han Z, Wang X, Ma S, Liu L, Lau WY, Sun X. Pathophysiological mechanisms of ALPPS: experimental model. Br J Surg 2022; 109:510-519. [PMID: 35576390 DOI: 10.1093/bjs/znac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) is a two-stage strategy that may increase hepatic tumour resectability and reduce postoperative liver failure rate by inducing rapid hypertrophy of the future liver remnant (FLR). Pathophysiological mechanisms after the first stage of ALPPS are poorly understood. METHODS An ALPPS model was established in rabbits with liver VX2 tumour. The pathophysiological mechanisms after the first stage of ALPPS in the FLR and tumour were assessed by multiplexed positron emission tomography (PET) tracers, dynamic contrast-enhanced MRI (DCE-MRI) and histopathology. RESULTS Tumour volume in the ALPPS model differed from post-stage 1 ALPPS at day 14 compared to control animals. 18F-FDG uptake of tumour increased from day 7 onwards in the ALPPS model. Valid volumetric function measured by 18F-methylcholine PET showed good values in accurately monitoring dynamics and time window for functional liver regeneration (days 3 to 7). DCE-MRI revealed changes in the vascular hyperpermeability function, with a peak on day 7 for tumour and FLR. CONCLUSION Molecular and functional imaging are promising non-invasive methods to investigate the pathophysiological mechanisms of ALPPS with potential for clinical application.
Collapse
Affiliation(s)
- Ruifeng Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, China.,Department of Gastroenterology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Zhen Quan
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumour Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, China
| | - Yang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, China
| | - Zhaoguo Han
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, China.,Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xiance Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, China
| | - Shiling Ma
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, China
| | - Lianxin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province 150001, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wan Yee Lau
- Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, China
| |
Collapse
|
6
|
Han T, Duan Q, Yang R, Wang Y, Yin H, Meng F, Liu Y, Qian T. Monitoring the therapeutic efficacy of CA4P in the rabbit VX2 liver tumor using dynamic contrast-enhanced MRI. DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY (ANKARA, TURKEY) 2021; 27:587-594. [PMID: 34559047 DOI: 10.5152/dir.2021.20010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE The present work aims to evaluate whether dynamic contrast-enhanced magnetic resonance Imaging (DCE-MRI) can monitor non-invasively the blocking effect on microvessels of the Combretastatin-A4-phosphate (CA4P) and assess the therapeutic efficacy. METHODS Forty rabbits were implanted the VX2 tumors specimens. Two weeks later, serial MRI (T1 weighted image, T2 weighted image and DCE) were performed at 0 h, 4 h, 24 h, 3 d and 7 d after CA4P (10 mg/kg) or saline treatment. The parameters of DCE (Ktrans, Kep, Ve and iAUC60) of enhancement tumor portions were measured. Then all the tumor samples were stained to count microvessel density (MVD). At last, two-way repeated measures ANOVA was used to analyze the difference between and within groups. The correlation between the Ktrans, Kep, Ve, iAUC60 and MVD was analyzed by using the Pearson correlation analysis and Spearman's rank correlation. RESULTS The Ktrans and iAUC60 in the CA4P group were lower than the values of the control group at 4 h after treatment, which have significant differences (D-value: -0.133 min-1, 95%CI: -0.169~-0.097 min-1,F = 59.109, p < 0.001 for Ktrans; D-value: -10.533 mmol/sec, 95%CI: -17.147~-3.919 mmol/sec,F = 11.110, and p = 0.003 for iAUC60). In the CA4P group, the Ktrans and iAUC60 reached the minimum values at 4 h. There were significant differences between 4 h and other different time points of the Ktrans and iAUC60 in the treatment group (all p < 0.01). The parameters Ktrans (r = 0.532, P = 0.016 and r = 0.681, P = 0.001, respectively) and iAUC60 (r = 0.580, P = 0.007 and r = 0.568, P = 0.009, respectively) of 7 days showed correlation with MVD in both groups, while Kep and Ve did not show correlation with MVD (P > 0.05). CONCLUSION The blocking effect of microvessels after CA4P treatment can be evaluated by DCE-MRI, and the parameters of quantitative Ktrans and semi- quantitative iAUC60 can assess the change of the tumor angiogenesis noninvasively.
Collapse
Affiliation(s)
| | - Qingqing Duan
- Department of Radiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Rong Yang
- Department of Radiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yuzhe Wang
- Department of Radiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Huabin Yin
- Department of Radiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Fanhua Meng
- Department of Radiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yongjuan Liu
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ting Qian
- Department of Radiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Meng F, Zou B, Yang R, Duan Q, Qian T. The diagnostic efficiency of the perfusion-related parameters in assessing the vascular disrupting agent (CA4P) response in a rabbit VX2 liver tumor model. Acta Radiol 2021; 63:1147-1156. [PMID: 34279135 DOI: 10.1177/02841851211032450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND There are inconsistencies when concomitantly using dynamic contrast enhancement (DCE) and intravoxel incoherent motion (IVIM) to evaluate diagnostic efficiency. PURPOSE To evaluate the diagnostic efficiency of perfusion-related parameters in assessing the effect of Combretastatin-A4-phosphate (CA4P) in a rabbit VX2 liver tumor model using DCE and IVIM. MATERIAL AND METHODS Twenty rabbits implanted with VX2 tumors were included in the study. The perfusion-parameters of DCE (Ktrans and iAUC60) and IVIM (f and D*) were measured at baseline and 4 h after administration of CA4P. Subsequently, the rabbits were euthanized. Pre- and post-treatment perfusion parameters were analyzed using paired t-test. Correlation between the various perfusion parameters and correlation of perfusion parameters with microvascular density (MVD) were assessed using Pearson correlation analysis. The diagnostic efficiency was evaluated using receiver operating characteristic (ROC) curve analysis. RESULTS All perfusion parameters (Ktrans, iAUC60, f and D*) showed significant decrease after 4 h of CA4P administration (all P < 0.001). Post-treatment perfusion parameters showed a moderate correlation with MVD (r = 0.663, r = 0.567, r = 0.685, r = 0.618, respectively; all P < 0.05). At baseline and after treatment, Ktrans values and iAUC60 showed correlation with f and D* (all P < 0.05). Concomitant use of perfusion parameters of DCE and IVIM showed the best diagnostic performance, which was slightly greater than that observed with individual application of DCE or IVIM (AUC = 0.915, 0.880, and 0.895, respectively). CONCLUSION Although concomitant application of DCE and IVIM can slightly improve the diagnostic value in assessing the effect of CA4P, the values were relatively small.
Collapse
Affiliation(s)
- Fanhua Meng
- Department of Radiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, PR China
| | - Biao Zou
- Department of Radiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, PR China
| | - Rong Yang
- Department of Radiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, PR China
| | - Qingqing Duan
- Department of Radiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, PR China
| | - Ting Qian
- Department of Radiology, International Peace Maternity and Child Health Hospital, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
8
|
Liu L, O’Kelly D, Schuetze R, Carlson G, Zhou H, Trawick ML, Pinney KG, Mason RP. Non-Invasive Evaluation of Acute Effects of Tubulin Binding Agents: A Review of Imaging Vascular Disruption in Tumors. Molecules 2021; 26:2551. [PMID: 33925707 PMCID: PMC8125421 DOI: 10.3390/molecules26092551] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor vasculature proliferates rapidly, generally lacks pericyte coverage, and is uniquely fragile making it an attractive therapeutic target. A subset of small-molecule tubulin binding agents cause disaggregation of the endothelial cytoskeleton leading to enhanced vascular permeability generating increased interstitial pressure. The resulting vascular collapse and ischemia cause downstream hypoxia, ultimately leading to cell death and necrosis. Thus, local damage generates massive amplification and tumor destruction. The tumor vasculature is readily accessed and potentially a common target irrespective of disease site in the body. Development of a therapeutic approach and particularly next generation agents benefits from effective non-invasive assays. Imaging technologies offer varying degrees of sophistication and ease of implementation. This review considers technological strengths and weaknesses with examples from our own laboratory. Methods reveal vascular extent and patency, as well as insights into tissue viability, proliferation and necrosis. Spatiotemporal resolution ranges from cellular microscopy to single slice tomography and full three-dimensional views of whole tumors and measurements can be sufficiently rapid to reveal acute changes or long-term outcomes. Since imaging is non-invasive, each tumor may serve as its own control making investigations particularly efficient and rigorous. The concept of tumor vascular disruption was proposed over 30 years ago and it remains an active area of research.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Devin O’Kelly
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Regan Schuetze
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Graham Carlson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Heling Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| |
Collapse
|
9
|
Intravoxel incoherent motion magnetic resonance imaging: basic principles and clinical applications. Pol J Radiol 2020; 85:e624-e635. [PMID: 33376564 PMCID: PMC7757509 DOI: 10.5114/pjr.2020.101476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/03/2020] [Indexed: 12/26/2022] Open
Abstract
The purpose of this article was to show basic principles, acquisition, advantages, disadvantages, and clinical applications of intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI). IVIM MRI as a method was introduced in the late 1980s, but recently it started attracting more interest thanks to its applications in many fields, particularly in oncology and neuroradiology. This imaging technique has been developed with the objective of obtaining not only a functional analysis of different organs but also different types of lesions. Among many accessible tools in diagnostic imaging, IVIM MRI aroused the interest of many researchers in terms of studying its applicability in the evaluation of abdominal organs and diseases. The major conclusion of this article is that IVIM MRI seems to be a very auspicious method to investigate the human body, and that nowadays the most promising clinical application for IVIM perfusion MRI is oncology. However, due to lack of standardisation of image acquisition and analysis, further studies are needed to validate this method in clinical practice.
Collapse
|
10
|
Kim MY, Shin JY, Kim JO, Son KH, Kim YS, Jung CK, Kang JH. Anti-tumor efficacy of CKD-516 in combination with radiation in xenograft mouse model of lung squamous cell carcinoma. BMC Cancer 2020; 20:1057. [PMID: 33143663 PMCID: PMC7607852 DOI: 10.1186/s12885-020-07566-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/26/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hypoxic tumors are known to be highly resistant to radiotherapy and cause poor prognosis in non-small cell lung cancer (NSCLC) patients. CKD-516, a novel vascular disrupting agent (VDA), mainly affects blood vessels in the central area of the tumor and blocks tubulin polymerization, thereby destroying the aberrant tumor vasculature with a rapid decrease in blood, resulting in rapid tumor cell death. Therefore, we evaluated the anti-tumor efficacy of CKD-516 in combination with irradiation (IR) and examined tumor necrosis, delayed tumor growth, and expression of proteins involved in hypoxia and angiogenesis in this study. METHODS A xenograft mouse model of lung squamous cell carcinoma was established, and the tumor was exposed to IR 5 days per week. CKD-516 was administered with two treatment schedules (day 1 or days 1 and 5) 1 h after IR. After treatment, tumor tissues were stained with hematoxylin and eosin, and pimonidazole. HIF-1α, Glut-1, VEGF, CD31, and Ki-67 expression levels were evaluated using immunohistochemical staining. RESULTS Short-term treatment with IR alone and CKD-516 + IR (d1) significantly reduced tumor volume (p = 0.006 and p = 0.048, respectively). Treatment with CKD-516 + IR (d1 and d1, 5) resulted in a marked reduction in the number of blood vessels (p < 0.005). More specifically, CKD-516 + IR (d1) caused the most extensive tumor necrosis, which resulted in a significantly large hypoxic area (p = 0.02) and decreased HIF-1α, Glut-1, VEGF, and Ki-67 expression. Long-term administration of CKD-516 + IR reduced tumor volume and delayed tumor growth. This combination also greatly reduced the number of blood vessels (p = 0.0006) and significantly enhanced tumor necrosis (p = 0.004). CKD-516 + IR significantly increased HIF-1α expression (p = 0.0047), but significantly reduced VEGF expression (p = 0.0046). CONCLUSIONS Taken together, our data show that when used in combination, CKD-516 and IR can significantly enhance anti-tumor efficacy compared to monotherapy in lung cancer xenograft mice.
Collapse
Affiliation(s)
- Min-Young Kim
- Laboratory of Medical Oncology, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung-Young Shin
- Laboratory of Medical Oncology, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong-Oh Kim
- Laboratory of Medical Oncology, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyoung-Hwa Son
- Laboratory of Medical Oncology, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeon Sil Kim
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kwon Jung
- Department of Pathology, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Hyoung Kang
- Laboratory of Medical Oncology, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Oncology, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| |
Collapse
|
11
|
Dreher C, Linde P, Boda-Heggemann J, Baessler B. Radiomics for liver tumours. Strahlenther Onkol 2020; 196:888-899. [PMID: 32296901 PMCID: PMC7498486 DOI: 10.1007/s00066-020-01615-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022]
Abstract
Current research, especially in oncology, increasingly focuses on the integration of quantitative, multiparametric and functional imaging data. In this fast-growing field of research, radiomics may allow for a more sophisticated analysis of imaging data, far beyond the qualitative evaluation of visible tissue changes. Through use of quantitative imaging data, more tailored and tumour-specific diagnostic work-up and individualized treatment concepts may be applied for oncologic patients in the future. This is of special importance in cross-sectional disciplines such as radiology and radiation oncology, with already high and still further increasing use of imaging data in daily clinical practice. Liver targets are generally treated with stereotactic body radiotherapy (SBRT), allowing for local dose escalation while preserving surrounding normal tissue. With the introduction of online target surveillance with implanted markers, 3D-ultrasound on conventional linacs and hybrid magnetic resonance imaging (MRI)-linear accelerators, individualized adaptive radiotherapy is heading towards realization. The use of big data such as radiomics and the integration of artificial intelligence techniques have the potential to further improve image-based treatment planning and structured follow-up, with outcome/toxicity prediction and immediate detection of (oligo)progression. The scope of current research in this innovative field is to identify and critically discuss possible application forms of radiomics, which is why this review tries to summarize current knowledge about interdisciplinary integration of radiomics in oncologic patients, with a focus on investigations of radiotherapy in patients with liver cancer or oligometastases including multiparametric, quantitative data into (radio)-oncologic workflow from disease diagnosis, treatment planning, delivery and patient follow-up.
Collapse
Affiliation(s)
- Constantin Dreher
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1–3, 68167 Mannheim, Germany
| | - Philipp Linde
- Department of Radiation Oncology, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1–3, 68167 Mannheim, Germany
| | - Bettina Baessler
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
12
|
Lorza AMA, Ravi H, Philip RC, Galons JP, Trouard TP, Parra NA, Von Hoff DD, Read WL, Tibes R, Korn RL, Raghunand N. Dose-response assessment by quantitative MRI in a phase 1 clinical study of the anti-cancer vascular disrupting agent crolibulin. Sci Rep 2020; 10:14449. [PMID: 32879326 PMCID: PMC7468301 DOI: 10.1038/s41598-020-71246-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
The vascular disrupting agent crolibulin binds to the colchicine binding site and produces anti-vascular and apoptotic effects. In a multisite phase 1 clinical study of crolibulin (NCT00423410), we measured treatment-induced changes in tumor perfusion and water diffusivity (ADC) using dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI), and computed correlates of crolibulin pharmacokinetics. 11 subjects with advanced solid tumors were imaged by MRI at baseline and 2–3 days post-crolibulin (13–24 mg/m2). ADC maps were computed from DW-MRI. Pre-contrast T1 maps were computed, co-registered with the DCE-MRI series, and maps of area-under-the-gadolinium-concentration-curve-at-90 s (AUC90s) and the Extended Tofts Model parameters ktrans, ve, and vp were calculated. There was a strong correlation between higher plasma drug \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${C}^{max}$$\end{document}Cmax and a linear combination of (1) reduction in tumor fraction with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${AUC}_{90s}>15.8$$\end{document}AUC90s>15.8 mM s, and, (2) increase in tumor fraction with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${v}_{e}<0.3$$\end{document}ve<0.3. A higher plasma drug AUC was correlated with a linear combination of (1) increase in tumor fraction with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{ADC}} < 1.1 \times 10^{ - 3} \;{\text{mm}}^{2} /{\text{s}}$$\end{document}ADC<1.1×10-3mm2/s, and, (2) increase in tumor fraction with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$v_{e}<0.3$$\end{document}ve<0.3. These findings are suggestive of cell swelling and decreased tumor perfusion 2–3 days post-treatment with crolibulin. The multivariable linear regression models reported here can inform crolibulin dosing in future clinical studies of crolibulin combined with cytotoxic or immune-oncology agents.
Collapse
Affiliation(s)
- Andres M Arias Lorza
- Department of Cancer Physiology, Moffitt Cancer Center, SRB-4, Tampa, FL, 33612, USA
| | - Harshan Ravi
- Department of Cancer Physiology, Moffitt Cancer Center, SRB-4, Tampa, FL, 33612, USA
| | - Rohit C Philip
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Theodore P Trouard
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85724, USA
| | - Nestor A Parra
- Department of Cancer Physiology, Moffitt Cancer Center, SRB-4, Tampa, FL, 33612, USA
| | - Daniel D Von Hoff
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA.,HonorHealth Clinical Research Institute, Scottsdale, AZ, USA
| | - William L Read
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Raoul Tibes
- Department of Internal Medicine II, Julius Maximilians University and Medical Center, Würzburg, Germany
| | | | - Natarajan Raghunand
- Department of Cancer Physiology, Moffitt Cancer Center, SRB-4, Tampa, FL, 33612, USA. .,Department of Oncologic Sciences, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
13
|
Quantified MRI and 25OH-VitD3 can be used as effective biomarkers for patients with neoadjuvant chemotherapy-induced liver injury in CRCLM? BMC Cancer 2020; 20:767. [PMID: 32799832 PMCID: PMC7429712 DOI: 10.1186/s12885-020-07282-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/09/2020] [Indexed: 12/26/2022] Open
Abstract
Background To evaluate proton-density fat-fraction (PDFF) and intravoxel incoherent motion (IVIM) techniques, and human 25-hydroxyvitamin D3 (25OH-VitD3) levels, as potential biomarkers in patients with colorectal cancer with liver metastasis (CRCLM). Changes were compared with those related to chemotherapy-associated steatohepatitis (CASH) and sinusoidal obstruction syndrome (SOS). Methods 63 patients with pathologically confirmed colorectal adenocarcinoma received 4–6 courses of NC before liver resection and underwent magnetic resonance imaging (MRI) with iterative decomposition of water and fat with echo asymmetry and least-squares estimation quantification and IVIM sequences. Blood samples were analyzed using CTCAE. Pathological changes of liver tissues outside the metastases were assessed as the gold standard, and receiver operating characteristic (ROC) curves were analyzed. Results 16 cases had CASH liver injury, 14 cases had SOS changes, and 4 cases had CASH and SOS, and 7 showed no significant changes. Consistency between biochemical indices and pathological findings was poor (kappa = 0.246, p = 0.005). The areas under the ROC curve (AUCs) of ALT, AST, ALP, GGT, and TBIL were 0.571–0.691. AUCs of D, FF, and 25OH-VitD3 exceeded 0.8; when considering these markers together, sensitivity was 85.29% and specificity was 93.13%. ANOVA showed statistically significant differences among D, FF, and 25OH-VitD3 for different grades of liver injury (F = 4.64–26.5, p = 0.000–0.016). Conclusions D, FF, and 25OH-VitD3 are biomarkers for accurate prediction of NC-induced liver injury in patients with CRCLM, while FF and 25OH-VitD3 might be beneficial to distinguish liver injury grades. Trial registration Current Trials was retrospectively registered as ChiCTR1800015242 at Chinese Clinical Trial Registry on March 16, 2018.
Collapse
|
14
|
Mi HL, Suo ST, Cheng JJ, Yin X, Zhu L, Dong SJ, Huang SS, Lin C, Xu JR, Lu Q. The invasion status of lymphovascular space and lymph nodes in cervical cancer assessed by mono-exponential and bi-exponential DWI-related parameters. Clin Radiol 2020; 75:763-771. [PMID: 32723502 DOI: 10.1016/j.crad.2020.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/06/2020] [Indexed: 12/27/2022]
Abstract
AIM To investigate whether mono-exponential and bi-exponential diffusion-weighted imaging (DWI)-related parameters of the primary tumour can evaluate the status of lymphovascular space invasion (LVSI) and lymph node metastasis (LNM) in patients with cervical carcinoma preoperatively. MATERIALS AND METHODS Eighty patients with cervical carcinoma were enrolled, who underwent preoperative multi b-value DWI and radical hysterectomy. They were classified into LVSI(+) versus LVSI(-) and LNM(+) versus LNM(-) according to postoperative pathology. The apparent diffusion coefficient (ADC), pure molecular diffusion (D), pseudo-diffusion coefficient (D∗), and perfusion fraction (f) were calculated from the whole tumour (_whole) and tumour margin (_margin). All parameters were compared between LVSI(+) and LVSI(-) and between LNM(+) and LNM(-). Logistic regression analysis and receiver operating characteristic (ROC) curve analysis were performed to evaluate the diagnostic performance of these parameters. RESULTS f_margin and D∗_whole showed significant differences in differentiating LVSI(+) from LVSI(-) tumours (p=0.002, 0.008, respectively), while LNM(+) tumours presented with significantly higher ADC_margin than that of LNM(-) tumours (p=0.009). The other parameters were not independent related factors with the status of LVSI or LNM according to logistic regression analysis (p>0.05). The area under the ROC curve of f_margin combined with D∗_whole in discriminating LVSI(+) from LVSI(-) was 0.826 (95% confidence interval [CI]: 0.691-0.961), while ADC_margin in differentiating LNM(+) from LNM(-) was 0.788 (95% CI: 0.648-0.928). CONCLUSIONS The parameters generated from mono-exponential and bi-exponential DWI of the primary cervical carcinoma could help discriminate its status regarding LVSI (f_margin and D∗_whole) and LNM (ADC_margin).
Collapse
Affiliation(s)
- H L Mi
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - S T Suo
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - J J Cheng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - X Yin
- Department of Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - L Zhu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - S J Dong
- Department of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd, Shanghai, 20093, China
| | - S S Huang
- Department of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd, Shanghai, 20093, China
| | - C Lin
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - J R Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Q Lu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China.
| |
Collapse
|
15
|
Gao P, Liu Y, Shi C, Liu Y, Luo L. Performing IVIM-DWI using the multifunctional nanosystem for the evaluation of the antitumor microcirculation changes. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 33:517-526. [PMID: 31897903 DOI: 10.1007/s10334-019-00814-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/16/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES There is a controversy about the D* and f values of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) for mid- and long-term efficacy monitoring of tumor blood perfusion. To monitor the antitumor efficacy of the F/A-PLGA@DOX/SPIO nanosystem via IVIM-DWI and to explore the value of parameters pseudo-diffusion (D*) and fraction of pseudo-diffusion (f) for evaluating therapeutic effect in non-small cell lung cancer (NSCLC). MATERIALS AND METHODS Thirty-six A549 tumor-bearing mice were divided randomly into three groups (each n = 12). Group 1 (G1) was injected with saline (the control group). Group 2 (G2) and group 3(G3) were injected with DOX and F/A-PLGA@DOX/SPIO, respectively. Each group underwent IVIM-DWI scanning at baseline and 3, 14, 21, and 28 days after treatment. D* and f values were derived using GE AW 4.5 post-processing station. All mice were sacrificed for pathological examination. RESULTS The D* value of all three groups showed an upward trend, with the highest increase in G1 and the lowest in G3. Conversely, the f value of all groups trended to decrease within 7 days, of which G3 showed the most significant decline. Immunohistochemical staining revealed that vascular endothelial growth factor (VEGF)-positive staining rate and the microvessel density (MVD) of the tumors in G3 were significantly lower than those of the other groups (P < 0.05). The D* and f values were significantly and positively correlated to CD31 (r = 0.654, P < 0.001; r = 0.712, P < 0.001) and VEGF (r = 0.694, P < 0.001; r = 0.664, P < 0.001). CONCLUSION IVIM-DWI-derived parameters D* and f are valuable indicators for the evaluation of the antitumor microcirculation changes of multifunctional nanosystem.
Collapse
Affiliation(s)
- Peng Gao
- Medical Imaging Center, Shenzhen Hospital, Southern Medical University, Shenzhen, 518100, China
| | - Yiyong Liu
- Department of Radiology and Nuclear Medicine, People's Hospital of Yichun, Yichun, 336000, China
| | - Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yubao Liu
- Medical Imaging Center, Shenzhen Hospital, Southern Medical University, Shenzhen, 518100, China.
| | - Liangping Luo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
16
|
Keller S, Chapiro J, Brangsch J, Reimann C, Collettini F, Sack I, Savic LJ, Hamm B, Goldberg SN, Makowski M. Quantitative MRI for Assessment of Treatment Outcomes in a Rabbit VX2 Hepatic Tumor Model. J Magn Reson Imaging 2019; 52:668-685. [PMID: 31713973 DOI: 10.1002/jmri.26968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
Globally, primary and secondary liver cancer is one of the most common cancer types, accounting 8.2% of deaths worldwide in 2018. One of the key strategies to improve the patient's prognosis is the early diagnosis, when liver function is still preserved. In hepatocellular carcinoma (HCC), the typical wash-in/wash-out pattern in conventional magnetic resonance imaging (MRI) reaches a sensitivity of 60% and specificity of 96-100%. However, in recent years functional MRI sequences such as hepatocellular-specific gadolinium-based dynamic-contrast enhanced MRI, diffusion-weighted imaging (DWI), and magnetic resonance spectroscopy (MRS) have been demonstrated to improve the evaluation of treatment success and thus the therapeutic decision-making and the patient's outcome. In the preclinical research setting, the VX2 liver rabbit tumor, which once originated from a virus-induced anaplastic squamous cell carcinoma, has played a longstanding role in experimental interventional oncology. Especially the high tumor vascularity allows assessing the treatment response of locoregional interventions such as radiofrequency ablation (RFA) and transcatheter arterial embolization (TACE). Functional MRI has been used to monitor the tumor growth and viability following interventional treatment. Besides promising results, a comprehensive overview of functional MRI sequences used so far in different treatment setting is lacking, thus lowering the comparability of study results. This review offers a comprehensive overview of study protocols, results, and limitations of quantitative MRI sequences applied to evaluate the treatment outcome of VX2 hepatic tumor models, thus generating a unique basis for future MRI studies and potential translation into the clinical setting. Level of Evidence: 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2019. J. Magn. Reson. Imaging 2020;52:668-685.
Collapse
Affiliation(s)
- Sarah Keller
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Julia Brangsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carolin Reimann
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Federico Collettini
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lynn Jeanette Savic
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Shraga Nahum Goldberg
- Department of Radiology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Marcus Makowski
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Spectral Computed Tomographic Parameters Predict the Therapeutic Efficacy and Overall Survival of the Angiogenesis Inhibitor AL3818 in Hepatic Lesions: Preliminary Animal Study. J Comput Assist Tomogr 2019; 43:721-728. [PMID: 31356519 DOI: 10.1097/rct.0000000000000898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study aimed to investigate the predictive and prognostic values of repeated spectral computed tomographic (CT) parameter changes for the prediction of treatment responses to the angiogenesis inhibitor AL3818 in hepatic tumors. METHODS A total of 30 rabbits with VX2 hepatic tumors that underwent spectral contrast-enhanced abdominal CT before and during treatment were included in the study. The percent change (Δ, %) of the normalized iodine concentration (nIC) during the arterial phase (AP) and venous phase (VP) was used to predict the tumor response and to calculate the overall survival (OS). The threshold of the nIC for tumor response prediction and prognostic significance was determined by a receiver operating characteristic curve and Kaplan-Meier analysis. RESULTS After treatment, there were 43% (13/30) responders and 57% (17/30) nonresponders. When ΔnICAP ≥ -13.10% was used as the threshold, the sensitivity and specificity for the prediction of tumor response were 82.41% and 92.31%, respectively. ΔnICVP resulted in 88.20% sensitivity and 76.92% specificity for cutoff values ≥10.78%. Kaplan-Meier analyses showed that high ΔnICAP and ΔnICVP were associated with improved OS. CONCLUSIONS The current study shows the capability of the changes (Δ) in repeated spectral CT parameters to predict the tumor response during antiangiogenesis therapy in small hepatic tumors. ΔnICAP and ΔnICVP were predictors for treatment response and were associated with OS.
Collapse
|
18
|
Modulating Diffusion-Weighted Magnetic Resonance Imaging for Screening in Oncologic Tertiary Prevention: A Prospective Ex Vivo and In Vivo Study. Invest Radiol 2019; 54:704-711. [PMID: 31356384 DOI: 10.1097/rli.0000000000000596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Diffusion-weighted imaging (DWI) is an important part of oncological magnetic resonance imaging (MRI) examinations, especially for tertiary cancer prevention in terms of early detection of recurrent disease. However, abdominal studies can be challenged by motion artifacts, poor signal-to-noise ratios, and visibility of retroperitoneal structures, which necessitates sequence optimization depending on the investigated region. This study aims at prospectively evaluating an adapted DWI sequence ex vivo and in vivo in oncologic patients undergoing abdominal MRI. METHODS This institutional review board-approved, prospective study included phantom measurements, volunteer examinations, and oncologic patient examinations of the abdomen. Fifty-seven MRI examinations in 54 patients (mean age, 58 years; range, 21-90 years) were included into the analysis. The MRI examination were performed at a 1.5 T MRI scanner (MAGNETOM Aera; Siemens Healthcare, Erlangen, Germany) and included both a standard EPI-DWI (s-DWI; b = 50, 900 s/mm) and an adapted DWI (opt-DWI; EPI-DWI with b = 0, 50, 900, 1500 s/mm, acquisition with higher spatial resolution and optimized processing for the abdomen including motion correction, adaptive image combination, and background suppression). For b = 900 s/mm, the ratio of signal intensity in the normal tissue and the standard deviation of the noise in the surrounding air was quantitatively calculated; image quality and tissue differentiation parameters were rated by 2 independent, blinded readers using a 5-point Likert scale. Statistics included Wilcoxon signed-rank test and kappa statistic (P < 0.05/0.0125 after Bonferroni correction). RESULTS The DWI phantom demonstrated an optimized contour sharpness and inlay differentiation for opt-DWI. The apparent ratio of normal tissue signal/standard deviation of background noise at b = 900 s/mm of the right/left hemiabdomen was significantly increased in opt-DWI (mean, 71.9 ± 23.5/86.0 ± 43.3) versus s-DWI (mean, 51.4 ± 15.4/63.4 ± 36.5; P < 0.001). Image quality parameters (contour sharpness and tissue differentiation of upper abdominal and retroperitoneal structures) were significantly increased in opt-DWI versus s-DWI (P < 0.001). Interreader reliability test showed good agreement (kappa = 0.768; P < 0.001). DISCUSSION This study prospectively evaluated the potential of adapted DWI for screening in tertiary prevention of oncologic patients. An optimized DWI protocol with advanced processing achieved improved image quality in quantitative and qualitative analyses. Oncological optimization of DWI should be performed before its application in cancer patients to improve both screening and follow-up examinations, to better unleash the diagnostic potential of DWI.
Collapse
|
19
|
Hong EK, Joo I, Park J, Lee K. Assessment of hepatic sinusoidal obstruction syndrome with intravoxel incoherent motion diffusion-weighted imaging: An experimental study in a rat model. J Magn Reson Imaging 2019; 51:81-89. [PMID: 31094055 DOI: 10.1002/jmri.26790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) parameters may reflect perfusion and diffusion changes in hepatic sinusoidal obstruction syndrome (SOS). PURPOSE To investigate the feasibility of IVIM-DWI in the noninvasive assessment of hepatic SOS in an experimental rat model. STUDY TYPE Animal study. POPULATION/SUBJECTS Forty-four rats were administered different doses (90 or 160 mg/kg) of monocrotaline by gavage either 48 or 72 hours before MRI to induce different degrees of hepatic SOS, and another 10 rats served as controls. FIELD STRENGTH/SEQUENCE 3T scanner, IVIM-DWI using nine b values (0-800 sec/mm2 ). ASSESSMENT Histologically, rats were classified as having none (n = 10), mild (n = 8), moderate (n = 19), or severe SOS (n = 17). The apparent diffusion coefficient (ADC) and IVIM-derived parameters (D: true diffusion coefficient, D*: pseudo-diffusion coefficient, and f: perfusion fraction) of the liver parenchyma were measured. STATISTICAL TESTS IVIM-DWI parameters were compared according to histologic grades of SOS (none, mild, moderate, and severe), and receiver operating characteristic (ROC) curve analysis was performed to determine the diagnostic accuracy. RESULTS ADC, D, and f of the liver parenchyma were significantly different according to SOS severity groups (Ps < 0.01) and significantly decreased as SOS severity increased (rho = -0.323, -0.313, and -0.700; P = 0.017, 0.021, and <0.001, respectively). Means of f in none, mild, moderate, and severe SOS were 17.2%, 13.3%, 12.3%, and 11.1%, respectively. Among ADC and IVIM-derived parameters, f provided the highest area under the ROC curves for detecting ≥mild, ≥moderate, and severe SOS (0.991, 0.890, and 0.803, respectively). DATA CONCLUSION IVIM-DWI may be useful in the diagnosis and severity assessment of hepatic SOS. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:81-89.
Collapse
Affiliation(s)
- Eun Kyoung Hong
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Juil Park
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoungbun Lee
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
20
|
Lee JH, Kim JH, Lee S, Han JK. Monitoring of impaired phagocytic function of Kupffer cells in an obstructive cholangitis rat model using superparamagnetic iron oxide MRI and contrast-enhanced ultrasound. Acta Radiol 2019; 60:407-414. [PMID: 30724596 DOI: 10.1177/0284185118784978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Kupffer cells (KC) have an important role in the host defense in obstructive cholangitis. Non-invasive monitoring of phagocytic function of KC is pivotal. Several studies showed the possibility of non-invasive monitoring of phagocytic function of KC using superparamagnetic iron oxide-enhanced magnetic resonance imaging (SPIO-MRI) or contrast-enhanced ultrasound (CEUS). PURPOSE To investigate the serial change of KC function using SPIO-MRI and CEUS and whether the SPIO-MRI parameter correlates with the CEUS parameter in obstructive cholangitis rat models. MATERIAL AND METHODS With our institutional Animal Care and Use Committee approval, 19 rats (common bile duct ligation [CBDL]: n = 9; control: n = 10) underwent SPIO-MRI and CEUS at baseline, two, and four weeks after CBDL. The relative signal loss (RSL) of T2* value on SPIO-MRI and Kupffer phase parenchymal echogenicity (KPE) on CEUS were measured. The correlation between SPIO-MRI and CEUS parameters were compared with KC count. RESULTS In CBDL group, RSL and KPE had significantly decreased (72.1% to 29.5%, 2.7 to 0.4) at four weeks compared with those in the control group (68.2% to 58.3%, 2.5 to 3.0, P < 0.05). During the follow-up period, RSL showed significantly positive correlations with KPE ( P = 0.007). In addition, at four weeks, we found RSL was positively correlated with KPE (ρ = 0.750, P = 0.002). KC count was negatively correlated to RSL and KPE at four weeks (ρ = -0.771, P = 0.001 and ρ = -0.644, P = 0.013). CONCLUSION SPIO-MRI and CEUS may be equally useful for monitoring the serial changes of KC phagocytic function in vivo.
Collapse
Affiliation(s)
- Jae Hwan Lee
- Center for Liver Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
21
|
Xiao Z, Chan L, Zhang D, Huang C, Mei C, Gao P, Huang Y, Liang J, He L, Shi C, Chen T, Luo L. Precise delivery of a multifunctional nanosystem for MRI-guided cancer therapy and monitoring of tumor response by functional diffusion-weighted MRI. J Mater Chem B 2019. [DOI: 10.1039/c8tb03153c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein we synthesize a cRGD peptide-conjugated PLGA nanosystem which is a high-efficiency drug-delivery platform for MR imaging-guided cancer theranostics.
Collapse
|
22
|
Gao P, Mei C, He L, Xiao Z, Chan L, Zhang D, Shi C, Chen T, Luo L. Designing multifunctional cancer-targeted nanosystem for magnetic resonance molecular imaging-guided theranostics of lung cancer. Drug Deliv 2018; 25:1811-1825. [PMID: 30465437 PMCID: PMC6263109 DOI: 10.1080/10717544.2018.1494224] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
The integration of diagnosis and therapy is an effective way to improve therapeutic effects for cancer patients, which has acquired widely attentions from researchers. Herein, a multifunctional drug-loaded nanosystem (F/A-PLGA@DOX/SPIO) has been designed and synthesized to reduce the side effects of traditional chemotherapy drugs and realize simultaneous tumor diagnosis and treatment. The surface modification of folic acid (FA) and activatable cell-penetrating peptide (ACPP) endows the nanosystem with excellent cancer targeting capabilities, thus reducing toxicity to normal organs. Besides, the F/A-PLGA@DOX/SPIO nanosystem can serve as an excellent magnetic resonance imaging (MRI) T2-negative contrast agent. More importantly, according to in vitro experiments, the F/A-PLGA@DOX/SPIO nanosystem can promote the overproduction of reactive oxygen species (ROS) within A549 lung cancer cells, inducing cell apoptosis, greatly enhancing the antineoplastic effect. Furthermore, with the help of MRI technology, the targeting imaging of the F/A-PLGA@DOX/SPIO nanosystem within tumors and the dynamic monitoring of medicine efficacy can be realized. Therefore, this study provided a multifunctional drug-loaded F/A-PLGA@DOX/SPIO targeted nanosystem for magnetic resonance molecular imaging-guided theranostics, which has excellent potential for the application in tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Peng Gao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Radiology, Guangdong Women and Children Hospital and Health Institute, Guangzhou, China
| | - Chaoming Mei
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Lizhen He
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Zeyu Xiao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Leung Chan
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Dong Zhang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Changzheng Shi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Liangping Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
23
|
Paschoal AM, Leoni RF, Dos Santos AC, Paiva FF. Intravoxel incoherent motion MRI in neurological and cerebrovascular diseases. Neuroimage Clin 2018; 20:705-714. [PMID: 30221622 PMCID: PMC6141267 DOI: 10.1016/j.nicl.2018.08.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022]
Abstract
Intravoxel Incoherent Motion (IVIM) is a recently rediscovered noninvasive magnetic resonance imaging (MRI) method based on diffusion-weighted imaging. It enables the separation of the intravoxel signal into diffusion due to Brownian motion and perfusion-related contributions and provides important information on microperfusion in the tissue and therefore it is a promising tool for applications in neurological and neurovascular diseases. This review focuses on the basic principles and outputs of IVIM and details it major applications in the brain, such as stroke, tumor, and cerebral small vessel disease. A bi-exponential model that considers two different compartments, namely capillaries, and medium-sized vessels, has been frequently used for the description of the IVIM signal and may be important in those clinical applications cited before. Moreover, the combination of IVIM and arterial spin labeling MRI enables the estimation of water permeability across the blood-brain barrier (BBB), suggesting a potential imaging biomarker for disrupted-BBB diseases.
Collapse
Affiliation(s)
- André M Paschoal
- Inbrain Lab, Department de Física, FFCLRP, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Renata F Leoni
- Inbrain Lab, Department de Física, FFCLRP, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Antonio C Dos Santos
- Departamento de Clínica Médica, FMRP, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Fernando F Paiva
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
24
|
Yang J, Xu Z, Gao J, Liao C, Wang P, Liu Y, Ke T, Li Q, Han D. Evaluation of early acute radiation-induced brain injury: Hybrid multifunctional MRI-based study. Magn Reson Imaging 2018; 54:101-108. [PMID: 30165095 DOI: 10.1016/j.mri.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/04/2018] [Accepted: 08/24/2018] [Indexed: 02/04/2023]
Abstract
PURPOSE Radiation injury is a serious threat to humans that requires prompt and accurate diagnosis and assessment. Currently, there is no effective imaging method to evaluate acute radiation injury in the early stage. We used hybrid multifunctional MRI to evaluate acute radiation-induced brain injury. MATERIALS AND METHODS Different extents of brain injury were created by exposing SD rats to different radiation doses, namely, 0, 10, 20, 30 and 40 Gy. DCE, IVIM-MRI and MRS were performed on the 5th day after irradiation. Immunohistochemistry, western blotting and electron microscopy were used to determine histopathological changes in neurons and glial cells. RESULTS The Ktrans, Ve, and iAUC values in DCE and the S0, f and D* values in IVIM showed significant positive correlations with injury grade. In particular, Ktrans, iAUC and S0 showed very good correlations with injury grade (r > 0.5, P < 0.05), and the values in the 30 Gy group were significantly higher than those in the other groups (P < 0.05). The NAA/Cr ratio in the 30 Gy group was significantly lower than those in the other groups, whereas the NAA/Cho ratio increased from the 10 Gy to the 20 Gy group and decreased significantly in the 30 Gy group (P < 0.05). VEGF, Caspase-3 and GFAP increased with irradiation dose increasing from 10 Gy to 30 Gy (P < 0.05). ROC analysis demonstrated that multifunctional MRI was more effective for diagnosing the 30 Gy group than it was for the 10 Gy and 20 Gy groups. CONCLUSION Hybrid multifunctional MRI can noninvasively evaluate acute radiation-induced brain injury in the early stage, particularly high-dose radiation exposure.
Collapse
Affiliation(s)
- Jun Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, No. 519 Kunzhou Road, Xishan District, Kunming 650118, Yunnan, PR China; Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming 650032, Yunnan, PR China
| | - Zeyan Xu
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, No. 519 Kunzhou Road, Xishan District, Kunming 650118, Yunnan, PR China
| | - Jingyan Gao
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, No. 519 Kunzhou Road, Xishan District, Kunming 650118, Yunnan, PR China
| | - Chengde Liao
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, No. 519 Kunzhou Road, Xishan District, Kunming 650118, Yunnan, PR China
| | - Pengfei Wang
- Department of Key Laboratory, The 2nd Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Road, Kunming 650101, Yunnan, PR China
| | - Yifan Liu
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, No. 519 Kunzhou Road, Xishan District, Kunming 650118, Yunnan, PR China
| | - Tengfei Ke
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, No. 519 Kunzhou Road, Xishan District, Kunming 650118, Yunnan, PR China
| | - Qinqing Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, No. 519 Kunzhou Road, Xishan District, Kunming 650118, Yunnan, PR China.
| | - Dan Han
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming 650032, Yunnan, PR China.
| |
Collapse
|
25
|
Chemoembolization with Vascular Disrupting Agent CKD-516 Dissolved in Ethiodized Oil in Combination with Doxorubicin: A VX2 Tumor Model Study. J Vasc Interv Radiol 2018; 29:1078-1084. [DOI: 10.1016/j.jvir.2018.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/25/2018] [Accepted: 03/16/2018] [Indexed: 12/16/2022] Open
|
26
|
Evaluation of Regional Variability and Measurement Reproducibility of Intravoxel Incoherent Motion Diffusion Weighted Imaging Using a Cardiac Stationary Phase Based ECG Trigger Method. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4604218. [PMID: 29850518 PMCID: PMC5932501 DOI: 10.1155/2018/4604218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/08/2018] [Indexed: 12/21/2022]
Abstract
Purpose To evaluate the performance of an optimized ECG trigger diffusion weighted imaging (DWI) sequence in liver and its application in liver disease. Materials and Methods Eighteen healthy volunteers underwent intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI) scan of the liver twice in 1.5T MR scanner with signed informed consent approved by local ethic committees. A new method, called cardiac stationary phase based ECG trigger (CaspECG), and FB method were applied. The apparent diffusion coefficient (ADC) and the IVIM parameters, including pure diffusion coefficient (D), perfusion-related diffusion coefficient (D⁎), and perfusion fraction, (PF) were calculated, and then 18 region of interests were drawn on these parameter maps independently by two readers through whole hepatic lobe. The regional variability and reproducibility between two repeated scans were evaluated using interclass correlation coefficients (ICCs) and Bland-Altman plot, respectively, and compared between the CaspECG and FB methods. The signal-to-noise ratio (SNR) of DWI data was also evaluated. Result Compared to the FB method, the proposed CaspECG method showed significant higher SNRs in DWI data, lower regional variability between left and right hepatic lobes, and higher reproducibility of ADC, PF, D, and D⁎ between repeat scans [left lobe, limit of agreement (LOA) of Bland-Altman plot: 10.1%, 18.3%, 19.8%, and 59.2%; right lobe, LOA: 10.25%, 14.15%, 16.45%, and 39.45%]. D⁎ showed the worst reproducibility in all parameters. Conclusion The novel CaspECG method outperformed the FB method in compensating the cardiac motion induced artifacts in DWI data and generating more reliable quantitative parameters, with less regional variability and higher repeatability, especially in the left hepatic lobe.
Collapse
|
27
|
Ahn SY, Goo JM, Lee KH, Ha S, Paeng JC. Monitoring tumor response to the vascular disrupting agent CKD-516 in a rabbit VX2 intramuscular tumor model using PET/MRI: Simultaneous evaluation of vascular and metabolic parameters. PLoS One 2018; 13:e0192706. [PMID: 29438381 PMCID: PMC5811032 DOI: 10.1371/journal.pone.0192706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 01/29/2018] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES To determine whether the CKD-516 produces a significant change in vascular and metabolic parameters in PET/MRI. MATERIALS AND METHODS With institutional Animal Care and Use Committee approval, 18 VX2 carcinoma tumors implanted in bilateral back muscles of 9 rabbits were evaluated. Serial PET/MRI were performed before, 4 hours after and 1-week after vascular disrupting agent, CKD-516 at a dose of 0.7 mg/kg (treated group, n = 10) or saline (control group, n = 8) administration. PET/MRI-derived parameters and their interval changes were compared between the treated and control group by using the linear mixed model. Each parameter within each group was also compared by using the linear mixed model. RESULTS Changes of the volume transfer coefficient (Ktrans) and the initial area under the gadolinium concentration-time curve until 60 seconds (iAUC) in the treated group were significantly larger compared with those in the control group at 4-hour follow-up (mean, -39.91% vs. -6.04%, P = 0.018; and -49.71% vs. +6.23%, P = 0.013). Change of metabolic tumor volume (MTV) in the treated group was significantly smaller compared with that in the control group at 1-week follow-up (mean, +118.34% vs. +208.87%, P = 0.044). Serial measurements in the treated group revealed that Ktrans and iAUC decreased at 4-hour follow-up (P < 0.001) and partially recovered at 1-week follow-up (P = 0.001 and 0.024, respectively). MTV increased at a 4-hour follow-up (P = 0.038) and further increased at a 1-week follow-up (P < 0.001), while total lesion glycolysis (TLG) did not show a significant difference between the time points. SUVmax and SUVmean did not show significant interval changes between time points (P > 0.05). CONCLUSIONS PET/MRI is able to monitor the changes of vascular and metabolic parameters at different time points simultaneously, and confirmed that vascular changes precede the metabolic changes by VDA, CKD-516.
Collapse
Affiliation(s)
- Su Yeon Ahn
- Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Jin Mo Goo
- Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- * E-mail:
| | - Kyung Hee Lee
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
| | - Seunggyun Ha
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Li R, Wu G, Wang R. Application values of 3.0T magnetic resonance diffusion weighted imaging for distinguishing liver malignant tumors and benign lesions. Oncol Lett 2018; 15:2091-2096. [PMID: 29434910 PMCID: PMC5776940 DOI: 10.3892/ol.2017.7565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to investigate the significance and values of 3.0T diffusion weighted imaging (DWI) to differentially diagnose benign and malignant space-occupying liver lesions. A total of 91 patients with liver space-occupying lesions (145 lesions) were admitted into Zhongnan Hospital of Wuhan University (Wuhan, China) from November 2015 to May 2016. Routine scanning, DWI and high-resolution T2-weighted imaging using spin-echo echo-planar imaging were performed on all patients, to compare the apparent diffusion coefficient (ADC) values of three regions of interest in lesions with normal liver tissue. The ADC values of malignant liver lesions compared with benign liver cysts demonstrated a statistically significant difference in low b-value (P<0.05) and there was also a significant difference between malignant lesion and hepatic cyst, hepatic hemangioma or hepatic abscess in middle b-value (P<0.05). The measured ADC value may be more conducive to identify the nature of the liver space-occupying lesions; as the ADC values of malignant liver lesion, liver cyst, and liver abscesses demonstrated a statistical significance in high b-value (P<0.05). The mean ADC values between malignant liver tumors compared with benign lesions indicated a statistically significant difference. In the present study, liver space-occupying lesions demonstrated different DWI features and ADC ranges, and 3.0T DWI may be a potential means to accurately determine the nature of lesions, identifying benign and malignant space-occupying lesions.
Collapse
Affiliation(s)
- Ruibin Li
- Department of Diagnostic Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Guangyao Wu
- Department of Diagnostic Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Rui Wang
- Department of Diagnostic Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
29
|
Yang J, Liao C, Liu Y, Yang G, Ke T, Ding Y, Li Q. MR imaging biomarkers evaluating vascular normalization window after anti-vessel treatment. Oncotarget 2017; 9:11964-11976. [PMID: 29552285 PMCID: PMC5844721 DOI: 10.18632/oncotarget.22600] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/28/2017] [Indexed: 12/17/2022] Open
Abstract
The beginning and the end of the vascular normalization window are not clear in response to anti-angiogenic therapies. We used dynamic contrast-enhanced MRI (DCE-MRI) and intravoxel incoherent motion MRI (IVIM-MRI) to noninvasively evaluate the vascular normalization window. MRI was performed five times: before treatment and on the second, fourth, sixth and eighth days of treatment. Quantitative perfusion parameters were calculated at each time point, including the volume transfer coefficient (Ktrans), reverse transfer constant (Kep), pseudodiffusion coefficient (D*) and perfusion fraction (f). Tumors were evaluated for changes by immunohistochemistry. An increase in Ktrans and Kep was observed after bevacizumab treatment on days 2 and 4. Similar trends were observed for D* and f on days 2 and 4. However, the parameters of Ktrans, Kep, D* and f were decreased on days 6 and 8. A significant increase of the vessel maturity index between the treatment and control groups was measured on days 2 and 4, but this increase abated by days 6 and 8. IVIM and DCE-MRI are helpful when quantifying the tumor perfusion and evaluating the vascular normalization window after anti-vessel therapy. IVIM and DCE-MRI can outline the important period after anti-vessel treatment.
Collapse
Affiliation(s)
- Jun Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650118, Yunnan, P.R. China
| | - Chengde Liao
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650118, Yunnan, P.R. China
| | - Yifan Liu
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650118, Yunnan, P.R. China
| | - Guangjun Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650118, Yunnan, P.R. China
| | - Tengfei Ke
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650118, Yunnan, P.R. China
| | - Yingying Ding
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650118, Yunnan, P.R. China
| | - Qinqing Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650118, Yunnan, P.R. China
| |
Collapse
|
30
|
Federau C. Intravoxel incoherent motion MRI as a means to measure in vivo perfusion: A review of the evidence. NMR IN BIOMEDICINE 2017; 30. [PMID: 28885745 DOI: 10.1002/nbm.3780] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/19/2017] [Accepted: 07/07/2017] [Indexed: 05/07/2023]
Abstract
The idea that in vivo intravoxel incoherent motion magnetic resonance signal is influenced by blood motion in the microvasculature is exciting, because it suggests that local and quantitative perfusion information can be obtained in a simple and elegant way from a few diffusion-weighted images, without contrast injection. When the method was proposed in the late 1980s some doubts appeared as to its feasibility, and, probably because the signal to noise and image quality at the time was not sufficient, no obvious experimental evidence could be produced to alleviate them. Helped by the tremendous improvements seen in the last three decades in MR hardware, pulse design, and post-processing capabilities, an increasing number of encouraging reports on the value of intravoxel incoherent motion perfusion imaging have emerged. The aim of this article is to review the current published evidence on the feasibility of in vivo perfusion imaging with intravoxel incoherent motion MRI.
Collapse
Affiliation(s)
- Christian Federau
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Basel, Petersgraben, Basle, Switzerland
| |
Collapse
|
31
|
Jiang J, Xiao Z, Tang Z, Zhong Y, Qiang J. Differentiating between benign and malignant sinonasal lesions using dynamic contrast-enhanced MRI and intravoxel incoherent motion. Eur J Radiol 2017; 98:7-13. [PMID: 29279173 DOI: 10.1016/j.ejrad.2017.10.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/04/2017] [Accepted: 10/29/2017] [Indexed: 11/30/2022]
Abstract
PURPOSE To explore the value of dynamic contrast-enhanced MRI (DCE-MRI) and intravoxel incoherent motion (IVIM) for distinguishing between benign and malignant sinonasal lesions and investigate the correlations between the two methods. METHODS AND MATERIALS Patients with sinonasal lesions (42 benign and 31 malignant) who underwent DCE-MRI and IVIM before confirmation by histopathology were enrolled in this prospective study. Parameters derived from DCE-MRI and IVIM were measured, the optimal cut-off values for differential diagnosis were determined, and the correlations between the two methods were evaluated. Statistical analyses were performed using the Wilcoxon rank sum test, receiver operating characteristic (ROC) curve analysis, and Spearman's rank correlation. RESULTS Significantly higher Ktrans and Kep values but lower D and f values were found in malignant lesions than in benign lesions (all p<0.001). There were no significant differences in the Ve and D* values between the two groups. The area under the curve (AUC) of Ktrans was significantly higher than those of other parameters. There was no significant difference between the AUCs of DCE-MRI and IVIM with parameters combined (p=0.86). Significant inverse but weak correlations were found between D and Ktrans (r=-0.46, p<0.001), f and Ktrans (r=-0.41, p<0.001), D and Kep (r=-0.37, p=0.008), and f and Kep (r=-0.33, p=0.004). CONCLUSIONS DCE-MRI and IVIM can effectively differentiate between benign and malignant sinonasal lesions. IVIM findings correlate with DCE-MRI results and may represent an alternative to DCE-MRI.
Collapse
Affiliation(s)
- Jingxuan Jiang
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai 201508, China; Department of Radiology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China; Department of Radiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zebin Xiao
- Department of Radiology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Zuohua Tang
- Department of Radiology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Yufeng Zhong
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai 201508, China; Department of Radiology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Jinwei Qiang
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai 201508, China.
| |
Collapse
|
32
|
Temporal evolution of perfusion parameters in brain metastases treated with stereotactic radiosurgery: comparison of intravoxel incoherent motion and dynamic contrast enhanced MRI. J Neurooncol 2017; 135:119-127. [PMID: 28669014 DOI: 10.1007/s11060-017-2556-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 06/27/2017] [Indexed: 12/20/2022]
Abstract
Intravoxel incoherent motion (IVIM) is a magnetic resonance imaging (MRI) technique that is seeing increasing use in neuro-oncology and offers an alternative to contrast-enhanced perfusion techniques for evaluation of tumor blood volume after stereotactic radiosurgery (SRS). To date, IVIM has not been validated against contrast enhanced techniques for brain metastases after SRS. In the present study, we measure blood volume for 20 brain metastases (15 patients) at baseline, 1 week and 1 month after SRS using IVIM and dynamic contrast enhanced (DCE)-MRI. Correlation between blood volume measurements made with IVIM and DCE-MRI show poor correlation at baseline, 1 week, and 1 month post SRS (r = 0.33, 0.14 and 0.30 respectively). At 1 week after treatment, no significant change in tumor blood volume was found using IVIM or DCE-MRI (p = 0.81 and 0.41 respectively). At 1 month, DCE-MRI showed a significant decrease in blood volume (p = 0.0002). IVIM, on the other hand, demonstrated the opposite effect and showed a significant increase in blood volume at 1 month (p = 0.03). The results of this study indicate that blood volume measured with IVIM and DCE-MRI are not equivalent. While this may relate to differences in the type of perfusion information each technique is providing, it could also reflect a limitation of tumor blood volume measurements made with IVIM after SRS. IVIM measurements of tumor blood volume in the month after SRS should therefore be interpreted with caution.
Collapse
|
33
|
Donato H, França M, Candelária I, Caseiro-Alves F. Liver MRI: From basic protocol to advanced techniques. Eur J Radiol 2017; 93:30-39. [PMID: 28668428 DOI: 10.1016/j.ejrad.2017.05.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023]
Abstract
Liver MR is a well-established modality with multiparametric capabilities. However, to take advantage of its full capacity, it is mandatory to master the technique and optimize imaging protocols, apply advanced imaging concepts and understand the use of different contrast media. Physiologic artefacts although inherent to upper abdominal studies can be minimized using triggering techniques and new strategies for motion control. For standardization, the liver MR protocol should include motion-resistant T2-w sequences, in-op phase GRE T1 and T2-w fast spin echo sequences with fat suppression. Diffusion-weighted imaging (DWI) is mandatory, especially for detection of sub-centimetre metastases. Contrast-enhanced MR is the cornerstone of liver MR, especially for lesion characterization. Although extracellular agents are the most extensively used contrast agents, hepatobiliary contrast media can provide an extra-layer of functional diagnostic information adding to the diagnostic value of liver MR. The use of high field strength (3T) increases SNR but is more challenging especially concerning artefact control. Quantitative MR belongs to the new and evolving field of radiomics where the use of emerging biomarkers such as perfusion or DWI can derive new information regarding disease detection, prognostication and evaluation of tumour response. This information can overcome some of the limitations of current tests, especially when using vascular disruptive agents for oncologic treatment assessment. MR is, today, a robust, mature, multiparametric imaging modality where clinical applications have greatly expanded from morphology to advanced imaging. This new concept should be acknowledged by all those involved in producing high quality, high-end liver MR studies.
Collapse
Affiliation(s)
- Henrique Donato
- Imaging Department, Faculty of Medicine of Coimbra, University Centre Hospitals of Coimbra (CHUC), Portugal.
| | - Manuela França
- Imaging Department, Centro Hospitalar do Porto, Portugal.
| | - Isabel Candelária
- Imaging Department, Faculty of Medicine of Coimbra, University Centre Hospitals of Coimbra (CHUC), Portugal.
| | - Filipe Caseiro-Alves
- Imaging Department, Faculty of Medicine of Coimbra, University Centre Hospitals of Coimbra (CHUC), Portugal.
| |
Collapse
|
34
|
Shi C, Liu D, Xiao Z, Zhang D, Liu G, Liu G, Chen H, Luo L. Monitoring Tumor Response to Antivascular Therapy Using Non-Contrast Intravoxel Incoherent Motion Diffusion-Weighted MRI. Cancer Res 2017; 77:3491-3501. [PMID: 28487383 DOI: 10.1158/0008-5472.can-16-2499] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 02/15/2017] [Accepted: 05/03/2017] [Indexed: 11/16/2022]
Abstract
Antivascular therapy is a promising approach to the treatment of non-small cell lung cancer (NSCLC), where an imaging modality capable of longitudinally monitoring treatment response could provide early prediction of the outcome. In this study, we sought to investigate the feasibility of using intravoxel incoherent motion (IVIM) diffusion MRI to quantitatively assess the efficacy of the treatments of a vascular-disrupting agent CA4P or its combination with bevacizumab on experimental NSCLC tumors. CA4P caused a strong but reversible effect on tumor vasculature; all perfusion-related parameters-D*, f, fD*, and Ktrans-initially showed a decrease of 30% to 60% at 2 hours and then fully recovered to baseline on day 2 for CA4P treatment or on days 4 to 8 for CA4P + bevacizumab treatment; the diffusion coefficient in tumors decreased initially at 2 hours and then increased from day 2 to day 8. We observed a good correlation between IVIM parameters and dynamic contrast-enhanced MRI (DCE-MRI; Ktrans). We also found that the relative change in f and fD* at 2 hours correlated well with changes in tumor volume on day 8. In conclusion, our results suggest that IVIM is a promising alternative to DCE-MRI for the assessment of the change in tumor perfusion as a result of antivascular agents and can be used to predict the efficacy of antivascular therapies without the need for contrast media injection. Cancer Res; 77(13); 3491-501. ©2017 AACR.
Collapse
Affiliation(s)
- Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dexiang Liu
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Radiology, Panyu Central Hospital, Guangzhou, China
| | - Zeyu Xiao
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dong Zhang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guanfu Liu
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Radiology, Panyu Central Hospital, Guangzhou, China
| | - Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland.,The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hanwei Chen
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. .,Department of Radiology, Panyu Central Hospital, Guangzhou, China
| | - Liangping Luo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
35
|
Li YT, Cercueil JP, Yuan J, Chen W, Loffroy R, Wáng YXJ. Liver intravoxel incoherent motion (IVIM) magnetic resonance imaging: a comprehensive review of published data on normal values and applications for fibrosis and tumor evaluation. Quant Imaging Med Surg 2017; 7:59-78. [PMID: 28275560 DOI: 10.21037/qims.2017.02.03] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A comprehensive literature review was performed on liver intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) technique and its applications. Heterogeneous data have been reported. IVIM parameters are magnetic field strength dependent to a mild extent. A lower Dslow (D) value at 3 T than at 1.5 T and higher perfusion fraction (PF) value at 3 T than at 1.5 T were noted. An increased number of b values are associated with increased IVIM parameter measurement accuracy. With the current status of art, IVIM technique is not yet capable of detecting early stage liver fibrosis and diagnosing liver fibrosis grades, nor can it differentiate liver tumors. Though IVIM parameters show promise for tumor treatment monitoring, till now how PF and Dfast (D*) add diagnostic value to Dslow or apparent diffusion coefficient (ADC) remains unclear. This paper shows the state-of-art IVIM MR technique is still not able to offer reliable measurement for liver. More works on the measurement robustness are warranted as they are essential to justify follow-up clinical studies on patients.
Collapse
Affiliation(s)
- Yáo T Li
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China
| | - Jean-Pierre Cercueil
- Department of Vascular and Interventional Radiology, François-Mitterrand Teaching Hospital, University of Burgundy, Dijon, France
| | - Jing Yuan
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR, China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China
| | - Romaric Loffroy
- Department of Vascular and Interventional Radiology, François-Mitterrand Teaching Hospital, University of Burgundy, Dijon, France
| | - Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong SAR, China
| |
Collapse
|
36
|
Yang SH, Lin J, Lu F, Han ZH, Fu CX, Lv P, Liu H, Gao DM. Evaluation of antiangiogenic and antiproliferative effects of sorafenib by sequential histology and intravoxel incoherent motion diffusion-weighted imaging in an orthotopic hepatocellular carcinoma xenograft model. J Magn Reson Imaging 2016; 45:270-280. [PMID: 27299302 DOI: 10.1002/jmri.25344] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/27/2016] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To investigate the effectiveness of intravoxel incoherent motion (IVIM) in the assessment of the therapeutic efficacy of sorafenib in an orthotopic hepatocellular carcinoma (HCC) xenograft model. MATERIALS AND METHODS Thirty-five HCC nude mouse models were established. IVIM was performed on a 1.5T MR scanner at baseline (n = 5) and serially at 7, 14, and 21 days after sorafenib treatment. The apparent diffusion coefficient (ADCtotal ), true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) at these timepoints were measured and compared between the treated (n = 15) and control group (n = 15). Differences in measurements among different timepoints were evaluated. Correlations between IVIM parameters and histologic features including necrotic fraction (NF) and microvessel density (MVD) were analyzed. RESULTS Compared to the control group, ADCtotal and D were significantly higher at each timepoint (P = 0.009), while f significantly decreased at 7 days (P = 0.009) and increased at 21 days (P = 0.028) in the treated group. Serial measurements in the treated group showed that both ADCtotal and D increased significantly at 7, 14, and 21 days compared to baseline (P < 0.05), while f significantly declined at 7 days (P = 0.016) and increased at 21 days (P = 0.009). Significant correlations were found between ADCtotal and NF (r = 0.811, P < 0.001), D and NF (r = 0.838, P < 0.001), and between f and NF (r = 0.528, P = 0.017) in the treated group. CONCLUSION IVIM may provide useful biomarkers for evaluating the therapeutic effects of sorafenib on HCC. LEVEL OF EVIDENCE 1 J. Magn. Reson. Imaging 2017;45:270-280.
Collapse
Affiliation(s)
- Shuo-Hui Yang
- Department of Radiology, Zhongshan Hospital, Shanghai Medical College, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Jiang Lin
- Department of Radiology, Zhongshan Hospital, Shanghai Medical College, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Fang Lu
- Department of Radiology, Shuguang Hosipital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Hong Han
- Department of Pathology, Shuguang Hosipital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cai-Xia Fu
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Peng Lv
- Department of Radiology, Zhongshan Hospital, Shanghai Medical College, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hao Liu
- Department of Radiology, Zhongshan Hospital, Shanghai Medical College, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Dong-Mei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
37
|
Yang K, Zhang XM, Yang L, Xu H, Peng J. Advanced imaging techniques in the therapeutic response of transarterial chemoembolization for hepatocellular carcinoma. World J Gastroenterol 2016; 22:4835-4847. [PMID: 27239110 PMCID: PMC4873876 DOI: 10.3748/wjg.v22.i20.4835] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/29/2016] [Accepted: 04/20/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the major causes of morbidity and mortality in patients with chronic liver disease. Transarterial chemoembolization (TACE) can significantly improve the survival rate of patients with HCC and is the first treatment choice for patients who are not suitable for surgical resections. The evaluation of the response to TACE treatment affects not only the assessment of the therapy efficacy but also the development of the next step in the treatment plan. The use of imaging to examine changes in tumor volume to assess the response of solid tumors to treatment has been controversial. In recent years, the emergence of new imaging technology has made it possible to observe the response of tumors to treatment prior to any morphological changes. In this article, the advances in studies reporting the use of computed tomography perfusion imaging, diffusion-weighted magnetic resonance imaging (MRI), intravoxel incoherent motion, diffusion kurtosis imaging, magnetic resonance spectroscopy, magnetic resonance perfusion-weighted imaging, blood oxygen level-dependent MRI, positron emission tomography (PET)/computed tomography and PET/MRI to assess the TACE treatment response are reviewed.
Collapse
|