1
|
Luo P, Lu L, Xu R, Jiang L, Li G. Gaining Insight into Updated MR Imaging for Quantitative Assessment of Cartilage Injury in Knee Osteoarthritis. Curr Rheumatol Rep 2024; 26:311-320. [PMID: 38809506 DOI: 10.1007/s11926-024-01152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE OF THE REVIEW Knee Osteoarthritis (KOA) entails progressive cartilage degradation, reviewed via MRI for morphology, biochemical composition, and microtissue alterations, discussing clinical advantages, limitations, and research applicability. RECENT FINDINGS Compositional MRI, like T2/T2* mapping, T1rho mapping, gagCEST, dGEMRIC, sodium imaging, diffusion-weighted imaging, and diffusion-tensor imaging, provide insights into cartilage injury in KOA. These methods quantitatively measure collagen, glycosaminoglycans, and water content, revealing important information about biochemical compositional and microstructural alterations. Innovative techniques like hybrid multi-dimensional MRI and diffusion-relaxation correlation spectrum imaging show potential in depicting initial cartilage changes at a sub-voxel level. Integration of automated image analysis tools addressed limitations in manual cartilage segmentation, ensuring robust and reproducible assessments of KOA cartilage. Compositional MRI techniques reveal microstructural changes in cartilage. Multi-dimensional MR imaging assesses biochemical alterations in KOA-afflicted cartilage, aiding early degeneration identification. Integrating artificial intelligence enhances cartilage analysis, optimal diagnostic accuracy for early KOA detection and monitoring.
Collapse
Affiliation(s)
- Peng Luo
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai, 200437, China
| | - Li Lu
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai, 200437, China
| | - Run Xu
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai, 200437, China
| | - Lei Jiang
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai, 200437, China
| | - Guanwu Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai, 200437, China.
| |
Collapse
|
2
|
Champagne AA, Zuleger TM, Smith DR, Slutsky-Ganesh AB, Warren SM, Ramirez ME, Sengkhammee LM, Mandava S, Wei H, Bardana DD, Lamplot JD, Myer GD, Diekfuss JA. Quantitative susceptibility and T1 ρ mapping of knee articular cartilage at 3T. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100509. [PMID: 39224132 PMCID: PMC11367491 DOI: 10.1016/j.ocarto.2024.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
T1 ρ and Quantitative Susceptibility Mapping (QSM) are evolving as substrates for quantifying the progressive nature of knee osteoarthritis. Objective To evaluate the effects of spin lock time combinations on depth-dependent T1 ρ estimation, in adjunct to QSM, and characterize the degree of shared variance in QSM and T1 ρ for the quantitative measurement of articular cartilage. Design Twenty healthy participants (10 M/10F, 22.2 ± 3.4 years) underwent bilateral knee MRI using T1 ρ MAPPS sequences with varying TSLs ([0-120] ms), along with a 3D spoiled gradient echo for QSM. Five total TSL combinations were used for T1 ρ computation, and direct depth-based comparison. Depth-wide variance was assessed in comparison to QSM as a basis to assess for depth-specific variation in T1 ρ computations across healthy cartilage. Results Longer T1 ρ relaxation times were observed for TSL combinations with higher spin lock times. Depth-specific differences were documented for both QSM and T1 ρ , with most change found at ∼60% depth of the cartilage, relative to the surface. Direct squared linear correlation revealed that most T1 ρ TSL combinations can explain over 30% of the variability in QSM, suggesting inherent shared sensitivity to cartilage microstructure. Conclusions T1 ρ mapping is subjective to the spin lock time combinations used for computation of relaxation times. When paired with QSM, both similarities and differences in signal sensitivity may be complementary to capture depth-wide changes in articular cartilage.
Collapse
Affiliation(s)
- Allen A. Champagne
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Taylor M. Zuleger
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel R. Smith
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexis B. Slutsky-Ganesh
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Shayla M. Warren
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Mario E. Ramirez
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- School of Medicine, Medical College of Georgia, Augusta, GA, USA
| | - Lexie M. Sengkhammee
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Davide D. Bardana
- Department of Orthopedic Surgery, Queen's University, Kingston, ON, Canada
| | | | - Gregory D. Myer
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
- Youth Physical Development Centre, Cardiff Metropolitan University, Wales, UK
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Jed A. Diekfuss
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
3
|
Casula V, Karjalainen J, Mlynarik V, Liimatainen T, Hanni M, Oei EHG, Nissi MJ, Nieminen MT. Does T1ρ Measure Proteoglycan Concentration in Cartilage? J Magn Reson Imaging 2024; 59:1874-1875. [PMID: 37698287 DOI: 10.1002/jmri.28981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023] Open
Affiliation(s)
- Victor Casula
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Jouni Karjalainen
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Vladimir Mlynarik
- Institute for Clinical Molecular MR Imaging in the Musculoskeletal Area, Karl Landsteiner Society, Vienna, Austria
| | - Timo Liimatainen
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Matti Hanni
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Edwin H G Oei
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mikko J Nissi
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Miika T Nieminen
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
4
|
Link TM, Joseph GB, Li X. MRI-based T 1rho and T 2 cartilage compositional imaging in osteoarthritis: what have we learned and what is needed to apply it clinically and in a trial setting? Skeletal Radiol 2023; 52:2137-2147. [PMID: 37000230 PMCID: PMC11409322 DOI: 10.1007/s00256-023-04310-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 04/01/2023]
Abstract
Cartilage MRI-based T1rho and T2 compositional measurements have been developed to characterize cartilage matrix quality and diagnose cartilage damage before irreversible defects are found, allowing intervention at an early, potentially reversible disease stage. Over the last 2 decades, this technology was investigated in numerous studies and was validated using specimen studies and arthroscopy; and longitudinal studies documented its ability to predict progression of degenerative disease and radiographic osteoarthritis (OA). While T1rho and T2 measurements have shown promise in early disease stages, several hurdles have been encountered to apply this technology clinically. These include (i) challenges with cartilage segmentation, (ii) long image acquisition times, (iii) a lack of standardization of imaging, and (iv) an absence of reference databases and definitions of abnormal cut-off values. Progress has been made by developing deep-learning based automatic cartilage segmentation and faster imaging methods, enabling the feasibility of T1rho and T2 imaging for clinical and scientific trial applications. Also, the Radiological Society of North America (RSNA) Quantitative Imaging Biomarker Alliance mechanism was used to establish standardized profiles for compositional T1rho and T2 imaging, and multi-center feasibility testing is work in progress. The last hurdles are the development of reference databases and establishing a definition of normal versus abnormal cartilage T1rho and T2 values. Finally, effective treatments for prevention and slowing progression of OA are required in order to establish T1rho and T2 as imaging biomarkers for initiating and monitoring therapies, analogous to the role of dual X-ray absorptiometry (DXA) bone mineral density measurements in the management of osteoporosis. KEY POINTS: • T1rho and T2 cartilage measurements have been validated in characterizing cartilage degenerative change using histology and arthroscopy as a reference. • They have also been shown to predict progression of cartilage degeneration and incidence of radiographic OA. • Advances have been made to facilitate clinical and trial application of T1rho and T2 by improved standardization of imaging and by establishing deep learning-based automatic cartilage segmentation. • Effective treatments with disease-modifying OA specific drugs may establish T1rho and T2 cartilage compositional measurements as biomarkers to initiate and monitor treatment.
Collapse
Affiliation(s)
- Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California, 400 Parnassus Ave, A-367, San Francisco, CA, 94143, USA.
| | - Gabby B Joseph
- Department of Radiology and Biomedical Imaging, University of California, 400 Parnassus Ave, A-367, San Francisco, CA, 94143, USA
| | - Xiaojuan Li
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
5
|
Li X, Roemer FW, Cicuttini F, MacKay JW, Turmezei T, Link TM. Early knee OA definition-what do we know at this stage? An imaging perspective. Ther Adv Musculoskelet Dis 2023; 15:1759720X231158204. [PMID: 36937824 PMCID: PMC10017942 DOI: 10.1177/1759720x231158204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/01/2023] [Indexed: 03/16/2023] Open
Abstract
While criteria for early-stage knee osteoarthritis (OA) in a primary care setting have been proposed, the role of imaging has been limited to radiography using the standard Kellgren-Lawrence classification. Standardized imaging and interpretation are critical with radiographs, yet studies have also shown that even early stages of radiographic OA already demonstrate advanced damage to knee joint tissues such as cartilage, menisci, and bone marrow. Morphological magnetic resonance imaging (MRI) shows degenerative damage earlier than radiographs and definitions for OA using MRI have been published though no accepted definition of early OA based on MRI is currently available. The clinical significance of structural abnormalities has also not been well defined, and the differentiation between normal aging and structural OA development remains a challenge. Compositional MRI of cartilage provides information on biochemical, degenerative changes within the cartilage matrix before cartilage defects occur and when cartilage damage is potentially reversible. Studies have shown that cartilage composition can predict cartilage loss and radiographic OA. However, while this technology is most promising for characterizing early OA it has currently limited clinical application. Better standardization of compositional MRI is required, which is currently work in progress. Finally, there has been renewed interest in computed tomography (CT) for assessing early knee OA as new techniques such as weight bearing and spectral CT are available, which may provide information on joint loading, cartilage, and bone and potentially have a role in better characterizing early OA. In conclusion, while imaging may have a limited role in diagnosing early OA in a primary care setting, there are advanced imaging technologies available, which detect early degeneration and may thus significantly alter management as new therapeutic modalities evolve.
Collapse
Affiliation(s)
- Xiaojuan Li
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Frank W. Roemer
- Department of Radiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Flavia Cicuttini
- Musculoskeletal Unit, Monash University and Rheumatology, Alfred Hospital, Melbourne, VIC, Australia
| | - Jamie W. MacKay
- Department of Radiology, University of Cambridge, Cambridge, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Tom Turmezei
- Department of Radiology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Thomas M. Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 400 Parnassus Ave, A-367, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
Histological Findings and T2 Relaxation Time in Canine Menisci of Elderly Dogs—An Ex Vivo Study in Stifle Joints. Vet Sci 2023; 10:vetsci10030182. [PMID: 36977221 PMCID: PMC10053884 DOI: 10.3390/vetsci10030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Osteoarthritis is a chronic disease that often affects the canine stifle joint. Due to their biomechanical function, the menisci in the canine stifle play an important role in osteoarthritis. They compensate for the incongruence in the joint and distribute and minimize compressive loads, protecting the hyaline articular cartilage from damage. Meniscal degeneration favors the development and progression of stifle joint osteoarthritis. Qualitative magnetic resonance imaging (MRI) is the current golden standard for detecting meniscal changes, but it has limitations in detecting early signs of meniscal degeneration. A quantitative MRI offers new options for detecting early structural changes. T2 mapping can especially visualize structural changes such as altered collagen structures and water content, as well as deviations in proteoglycan content. This study evaluated T2 mapping and performed a histological scoring of menisci in elderly dogs that had no or only low radiographic osteoarthritis grades. A total of 16 stifles from 8 older dogs of different sex and breed underwent ex vivo magnet resonance imaging, including a T2 mapping pulse sequence with multiple echoes. A histological analysis of corresponding menisci was performed using a modified scoring system. The mean T2 relaxation time was 18.2 ms and the mean histological score was 4.25. Descriptive statistics did not reveal a correlation between T2 relaxation time and histological score. Ex vivo T2 mapping of canine menisci did not demonstrate histological changes, suggesting that early meniscal degeneration can be present in the absence of radiological signs of osteoarthritis, including no significant changes in T2 relaxation time.
Collapse
|
7
|
Wu M, Ma YJ, Liu M, Xue Y, Gong L, Wei Z, Jerban S, Jang H, Chang DG, Chang EY, Ma L, Du J. Quantitative assessment of articular cartilage degeneration using 3D ultrashort echo time cones adiabatic T 1ρ (3D UTE-Cones-AdiabT 1ρ) imaging. Eur Radiol 2022; 32:6178-6186. [PMID: 35357540 PMCID: PMC9388581 DOI: 10.1007/s00330-022-08722-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To evaluate articular cartilage degeneration using quantitative three-dimensional ultrashort-echo-time cones adiabatic-T1ρ (3D UTE-Cones-AdiabT1ρ) imaging. METHODS Sixty-six human subjects were recruited for this study. Kellgren-Lawrence (KL) grade and Whole-Organ Magnetic-Resonance-Imaging Score (WORMS) were evaluated by two musculoskeletal radiologists. The human subjects were categorized into three groups, namely normal controls (KL0), doubtful-minimal osteoarthritis (OA) (KL1-2), and moderate-severe OA (KL3-4). WORMS were regrouped to encompass the extent of lesions and the depth of lesions. The UTE-Cones-AdiabT1ρ values were obtained using 3D UTE-Cones data acquisitions preceded by seven paired adiabatic full passage pulses that corresponded to seven spin-locking times (TSLs) of 0, 12, 24, 36, 48, 72, and 96 ms. The performance of the UTE-Cones-AdiabT1ρ technique in evaluating the degeneration of knee cartilage was assessed via the ANOVA comparisons with subregional analysis and Spearman's correlation coefficient as well as the receiver-operating-characteristic (ROC) curve. RESULTS UTE-Cones-AdiabT1ρ showed significant positive correlations with KL grade (r = 0.15, p < 0.05) and WORMS (r = 0.57, p < 0.05). Higher UTE-Cones-AdiabT1ρ values were observed in both larger and deeper lesions in the cartilage. The differences in UTE-Cones-AdiabT1ρ values among different extent and depth groups of cartilage lesions were all statistically significant (p < 0.05). Subregional analyses showed that the correlations between UTE-Cones-AdiabT1ρ and WORMS varied with the location of cartilage. The AUC value of UTE-Cones-AdiabT1ρ for mild cartilage degeneration (WORMS=1) was 0.8. The diagnostic threshold value of UTE-Cones-AdiabT1ρ for mild cartilage degeneration was 39.4 ms with 80.8% sensitivity. CONCLUSIONS The 3D UTE-Cones-AdiabT1ρ sequence can be useful in quantitative evaluation of articular cartilage degeneration. KEY POINTS • The 3D UTE-Cones-AdiabT1ρ sequence can distinguish mild cartilage degeneration from normal cartilage with a diagnostic threshold value of 39.4 ms for mild cartilage degeneration with 80.8% sensitivity. • Higher UTE-Cones-AdiabT1ρ values were observed in both larger and deeper lesions in the articular cartilage. • UTE-Cones-AdiabT1ρ is a promising biomarker for quantitative evaluation of early cartilage degeneration.
Collapse
Affiliation(s)
- Mei Wu
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Mouyuan Liu
- Imaging Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yanping Xue
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Lillian Gong
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Zhao Wei
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Saeed Jerban
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Hyungseok Jang
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
| | - Douglas G Chang
- Department of Orthopaedic Surgery, University of California San Diego, San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Liheng Ma
- Imaging Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiang Du
- Department of Radiology, University of California San Diego, 9452 Medical Center Dr., San Diego, CA, 92037, USA.
| |
Collapse
|
8
|
Emanuel KS, Kellner LJ, Peters MJM, Haartmans MJJ, Hooijmans MT, Emans PJ. The relation between the biochemical composition of knee articular cartilage and quantitative MRI: a systematic review and meta-analysis. Osteoarthritis Cartilage 2022; 30:650-662. [PMID: 34826570 DOI: 10.1016/j.joca.2021.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Early and non-invasive detection of osteoarthritis (OA) is required to enable early treatment and monitoring of interventions. Some of the earliest signs of OA are the change in proteoglycan and collagen composition. The aim of this study is to establish the relations between quantitative magnetic resonance imaging (MRI) and biochemical concentration and organization in knee articular cartilage. METHODS A preregistered systematic literature review was performed using the databases PubMed and Embase. Papers were included if quantitative MRI and a biochemical assay or polarized light microscopy (PLM) was performed on knee articular cartilage, and a quantified correlation was described. The extracted correlations were pooled using a random effects model. RESULTS 21 papers were identified. The strongest pooled correlation was found for delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) vs proteoglycan concentration (r = 0.59). T1ρ relaxation times are inversely correlated to proteoglycan concentration (r = -0.54). A weak correlation between T2 relaxation times and proteoglycans was found (r = -0.38). No correlation between T2 relaxation time and collagen concentration was found (r = -0.02). A heterogeneous set of correlations between T2 relaxation times and PLM were identified, including strong correlations to anisotropy. CONCLUSION DGEMRIC measures are significantly correlated to proteoglycan concentration. The needed contrast agent is however a disadvantage; the T1ρ sequence was found as a non-invasive alternative. Remarkably, no correlation was found between T2 relaxation times and collagen concentration. T2 relaxation times is related to organization, rather than concentration of collagen fibers. PROSPERO ID CRD42020168337.
Collapse
Affiliation(s)
- K S Emanuel
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Orthopaedic Surgery, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| | - L J Kellner
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - M J M Peters
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - M J J Haartmans
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - M T Hooijmans
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| | - P J Emans
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
9
|
Shao H, Yang J, Ma Y, Su X, Tang G, Jiang J, Du J, Liu J. Evaluation of cartilage degeneration using multiparametric quantitative ultrashort echo time-based MRI: an ex vivo study. Quant Imaging Med Surg 2022; 12:1738-1749. [PMID: 35284286 PMCID: PMC8899946 DOI: 10.21037/qims-21-550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/10/2021] [Indexed: 01/26/2024]
Abstract
BACKGROUND The quantitative MR techniques developed rapidly, vary MR-biomarkers have shown the ability to assess the quality of articular cartilage. This study aimed to investigate the diagnostic efficacy of multi-parametric quantitative ultrashort echo time (UTE)-based MRI for evaluating human cartilage degeneration. METHODS Twenty fresh anterolateral femoral condyle samples were obtained from 20 patients (age, 58.8±6.6 years; 6 females) who underwent total knee arthroplasty due to primary osteoarthritis (OA). The samples were imaged using UTE-based magnetization transfer (UTE-MT), UTE-based adiabatic T1ρ (UTE-AdiabT1ρ), UTE-based T2* (UTE-T2*), and CubeQuant-T2 sequences. Cartilage degeneration was classified based on the OA Research Society International grade and polarized light microscopy (PLM) collagen organization score. Spearman's correlation analysis was used to determine the relationships between quantitative MRI biomarkers [UTE-MT ratio (UTE-MTR), UTE-AdiabT1ρ, UTE-T2*, and CubeQuant-T2], OA Research Society International grade, and PLM collagen organization score. The diagnostic efficacy of each MRI biomarker for the detection of mild cartilage degeneration was assessed using the area under the receiver operating characteristic (ROC) curve (AUC). RESULTS Of the quantitative MRI biomarkers, UTE-MTR had the strongest correlation with both OA Research Society International grade (r=-0.709, P<0.001) and PLM collagen organization score (r=0.579, P<0.001). The UTE-MTR and UTE-AdiabT1ρ values showed significant differences between the normal group and the mild degeneration group (P=0.047 and 0.015, respectively), while UTE-T2* and CubeQuant-T2 did not. The UTE-MTR values were 15.90%±1.06% and 14.59%±1.35% for normal and mildly degenerated cartilage, respectively. The UTE-AdiabT1ρ values were 40.19±2.87 and 42.6±2.26 ms for normal and mildly degenerated cartilage, respectively. ROC analysis showed that UTE-MTR (AUC =0.805, P=0.001, sensitivity =73.7%, specificity =89.5%) had the highest diagnostic efficacy for mild cartilage degeneration, while UTE-AdiabT1ρ (AUC =0.727, P=0.017) and CubeQuant-T2 (AUC =0.712, P=0.026) showed lower diagnostic efficacy. CONCLUSIONS Quantitative UTE-MT and UTE-AdiabT1ρ biomarkers may potentially be used in the evaluation of early cartilage degeneration.
Collapse
Affiliation(s)
- Hongda Shao
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawei Yang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Xiaolian Su
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junjie Jiang
- Department of Orthopedics, People’s Hospital of Jingjiang, Jingjiang, China
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiang Du
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Jerban S, Ma Y, Kasibhatla A, Wu M, Szeverenyi N, Guma M, Covey D, D'lima D, Ward SR, Sah RL, Chang EY, Du J, Chung CB. Ultrashort echo time adiabatic T 1ρ (UTE-Adiab-T 1ρ) is sensitive to human cadaveric knee joint deformation induced by mechanical loading and unloading. Magn Reson Imaging 2021; 80:98-105. [PMID: 33945858 PMCID: PMC10858706 DOI: 10.1016/j.mri.2021.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE The development of ultrashort echo time (UTE) MRI sequences has led to improved imaging of tissues with short T2 relaxation times, such as the deep layer cartilage and meniscus. UTE combined with adiabatic T1ρ preparation (UTE-Adiab-T1ρ) is an MRI measure with low sensitivity to the magic angle effect. This study aimed to investigate the sensitivity of UTE-Adiab-T1ρ to mechanical load-induced deformations in the tibiofemoral cartilage and meniscus of human cadaveric knee joints. METHODS Eight knee joints from young (42 ± 12 years at death) donors were evaluated on a 3 T scanner using the UTE-Adiab-T1ρ sequence under four sequential loading conditions: load = 0 N (Load0), load = 300 N (Load1), load = 500 N (Load2), and load = 0 N (Unload). UTE-Adiab-T1ρ was measured in the meniscus (M), femoral articular cartilage (FAC), tibial articular cartilage (TAC), articular cartilage regions uncovered by meniscus (AC-UC), and articular cartilage regions covered by meniscus (AC-MC) within region of interests (ROIs) manually selected by an experienced MR scientist. The Kruskal-Wallis test, with corrected significance level for multiple comparisons, was used to examine the UTE-Adiab-T1ρ differences between different loading conditions. RESULTS UTE-Adiab-T1ρ decreased in all grouped ROIs under both Load1 and Load2 conditions (-18.7% and - 16.9% for M, -18.8% and - 12.6% for FAC, -21.4% and - 10.7% for TAC, -26.2% and - 13.9% for AC-UC, and - 16.9% and - 10.7% for AC-MC). After unloading, average UTE-Adiab-T1ρ increased across all ROIs and within a lower range compared with the average UTE-Adiab-T1ρ decreases induced by the two previous loading conditions. The loading-induced differences were statistically non-significant. CONCLUSIONS While UTE-Adiab-T1ρ reduction by loading is likely an indication of tissue deformation, the increase of UTE-Adiab-T1ρ within a lower range by unloading implies partial tissue restoration. This study highlights the UTE-Adiab-T1ρ technique as an imaging marker of tissue function for detecting deformation patterns under loading.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA.
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Akhil Kasibhatla
- Department of Radiology, University of California, San Diego, CA, USA
| | - Mei Wu
- Department of Radiology, University of California, San Diego, CA, USA
| | | | - Monica Guma
- Department of Medicine, School of Medicine, University of California, San Diego, CA, USA
| | - Dana Covey
- Orthopaedic Service, VA San Diego Healthcare System, San Diego, CA, USA; Department of Orthopedic Surgery, University of California, San Diego, CA, USA
| | - Darryl D'lima
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, CA, USA
| | - Samuel R Ward
- Department of Orthopedic Surgery, University of California, San Diego, CA, USA; Department of Bioengineering, University of California, San Diego, CA, USA
| | - Robert L Sah
- Department of Orthopedic Surgery, University of California, San Diego, CA, USA; Department of Bioengineering, University of California, San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, CA, USA
| |
Collapse
|
11
|
Gao KT, Pedoia V, Young KA, Kogan F, Koff MF, Gold GE, Potter HG, Majumdar S. Multiparametric MRI characterization of knee articular cartilage and subchondral bone shape in collegiate basketball players. J Orthop Res 2021; 39:1512-1522. [PMID: 32910520 PMCID: PMC8359246 DOI: 10.1002/jor.24851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/31/2020] [Accepted: 09/02/2020] [Indexed: 02/04/2023]
Abstract
Magnetic resonance imaging (MRI) is commonly used to evaluate the morphology of the knee in athletes with high-knee impact; however, complex repeated loading of the joint can lead to biochemical and structural degeneration that occurs before visible morphological changes. In this study, we utilized multiparametric quantitative MRI to compare morphology and composition of articular cartilage and subchondral bone shape between young athletes with high-knee impact (basketball players; n = 40) and non-knee impact (swimmers; n = 25). We implemented voxel-based relaxometry to register all cases to a single reference space and performed a localized compositional analysis of T 1ρ - and T 2 -relaxation times on a voxel-by-voxel basis. Additionally, statistical shape modeling was employed to extract differences in subchondral bone shape between the two groups. Evaluation of cartilage composition demonstrated a significant prolongation of relaxation times in the medial femoral and tibial compartments and in the posterolateral femur of basketball players in comparison to relaxation times in the same cartilage compartments of swimmers. The compositional analysis also showed depth-dependent differences with prolongation of the superficial layer in basketball players. For subchondral bone shape, three total modes were found to be significantly different between groups and related to the relative sizes of the tibial plateaus, intercondylar eminences, and the curvature and concavity of the patellar lateral facet. In summary, this study identified several characteristics associated with a high-knee impact which may expand our understanding of local degenerative patterns in this population.
Collapse
Affiliation(s)
- Kenneth T. Gao
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Valentina Pedoia
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Feliks Kogan
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Matthew F. Koff
- Department of Radiology and ImagingHospital for Special SurgeryNew York CityNew YorkUSA
| | - Garry E. Gold
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Hollis G. Potter
- Department of Radiology and ImagingHospital for Special SurgeryNew York CityNew YorkUSA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
12
|
Pang Y, Palmieri-Smith RM, Maerz T. An efficient R 1ρ dispersion imaging method for human knee cartilage using constant magnetization prepared turbo-FLASH. NMR IN BIOMEDICINE 2021; 34:e4500. [PMID: 33675138 PMCID: PMC8122047 DOI: 10.1002/nbm.4500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 05/10/2023]
Abstract
This work aimed to develop an efficient R1ρ dispersion imaging method for clinical studies of human knee cartilage at 3 T. Eight constant magnetizations (Mprep ) were prepared by tailoring both the duration and amplitude (ω1 ) of a fully refocused spin-lock preparation pulse. The limited Mprep dynamic range was expanded by the measure, equivalent to that with ω1 = ∞, from the magic angle location in the deep femoral cartilage. The developed protocol with Mprep = 60% was demonstrated on one subject's bilateral and two subjects' unilateral asymptomatic knees. The repeatability of the proposed protocol was estimated by two repeated scans with a three-month gap for the last two subjects. The synthetic R1ρ and R2 derived from R1ρ dispersions were compared with the published references using state-of-the-art R1ρ and R2 mapping (MAPSS). The proposed protocol demonstrated good (<5%) repeatability quantified by the intra- and intersubject coefficients of variation in the femoral and tibial cartilage. The synthetic R1ρ (1/s) and the references were comparable in the femoral (23.0 ± 5.3 versus 24.1 ± 3.8, P = 0.67) and the tibial (29.1 ± 8.8 versus 27.1 ± 5.1, P = 0.62), but not the patellar (16.5 ± 4.9 versus 22.7 ± 1.6, P < 0.01) cartilage. The same trends were also observed for the current and the previous R2 . In conclusion, the developed R1ρ dispersion imaging scheme has been revealed to be not only efficient but also robust for clinical studies of human knee cartilage at 3 T.
Collapse
Affiliation(s)
- Yuxi Pang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Riann M. Palmieri-Smith
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Truhn D, Zwingenberger KT, Schock J, Abrar DB, Radke KL, Post M, Linka K, Knobe M, Kuhl C, Nebelung S. No pressure, no diamonds? - Static vs. dynamic compressive in-situ loading to evaluate human articular cartilage functionality by functional MRI. J Mech Behav Biomed Mater 2021; 120:104558. [PMID: 33957568 DOI: 10.1016/j.jmbbm.2021.104558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/22/2021] [Accepted: 04/19/2021] [Indexed: 01/21/2023]
Abstract
Biomechanical Magnetic Resonance Imaging (MRI) of articular cartilage, i.e. its imaging under loading, is a promising diagnostic tool to assess the tissue's functionality in health and disease. This study aimed to assess the response to static and dynamic loading of histologically intact cartilage samples by functional MRI and pressure-controlled in-situ loading. To this end, 47 cartilage samples were obtained from the medial femoral condyles of total knee arthroplasties (from 24 patients), prepared to standard thickness, and placed in a standard knee joint in a pressure-controlled whole knee-joint compressive loading device. Cartilage samples' responses to static (i.e. constant), dynamic (i.e. alternating), and no loading, i.e. free-swelling conditions, were assessed before (δ0), and after 30 min (δ1) and 60 min (δ2) of loading using serial T1ρ maps acquired on a 3.0T clinical MRI scanner (Achieva, Philips). Alongside texture features, relative changes in T1ρ (Δ1, Δ2) were determined for the upper and lower sample halves and the entire sample, analyzed using appropriate statistical tests, and referenced to histological (Mankin scoring) and biomechanical reference measures (tangent stiffness). Histological, biomechanical, and T1ρ sample characteristics at δ0 were relatively homogenous in all samples. In response to loading, relative increases in T1ρ were strong and significant after dynamic loading (Δ1 = 10.3 ± 17.0%, Δ2 = 21.6 ± 21.8%, p = 0.002), while relative increases in T1ρ after static loading and in controls were moderate and not significant. Generally, texture features did not demonstrate clear loading-related associations underlying the spatial relationships of T1ρ. When realizing the clinical translation, this in-situ study suggests that serial T1ρ mapping is best combined with dynamic loading to assess cartilage functionality in humans based on advanced MRI techniques.
Collapse
Affiliation(s)
- Daniel Truhn
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology, D-52074, Aachen, Germany
| | - Ken Tonio Zwingenberger
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology, D-52074, Aachen, Germany
| | - Justus Schock
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225, Düsseldorf, Germany; Institute of Imaging and Computer Vision, RWTH Aachen University, D-52074, Aachen, Germany
| | - Daniel Benjamin Abrar
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225, Düsseldorf, Germany
| | - Karl Ludger Radke
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225, Düsseldorf, Germany
| | - Manuel Post
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology, D-52074, Aachen, Germany
| | - Kevin Linka
- Hamburg University of Technology, Department of Continuum and Materials Mechanics, D-21073, Hamburg, Germany
| | - Matthias Knobe
- Cantonal Hospital Lucerne, Department of Orthopaedic and Trauma Surgery, CH-6000, Lucerne, Switzerland
| | - Christiane Kuhl
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology, D-52074, Aachen, Germany
| | - Sven Nebelung
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225, Düsseldorf, Germany.
| |
Collapse
|
14
|
Linka K, Thüring J, Rieppo L, Aydin RC, Cyron CJ, Kuhl C, Merhof D, Truhn D, Nebelung S. Machine learning-augmented and microspectroscopy-informed multiparametric MRI for the non-invasive prediction of articular cartilage composition. Osteoarthritis Cartilage 2021; 29:592-602. [PMID: 33545330 DOI: 10.1016/j.joca.2020.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Articular cartilage degeneration is the hallmark change of osteoarthritis, a severely disabling disease with high prevalence and considerable socioeconomic and individual burden. Early, potentially reversible cartilage degeneration is characterized by distinct changes in cartilage composition and ultrastructure, while the tissue's morphology remains largely unaltered. Hence, early degenerative changes may not be diagnosed by clinical standard diagnostic tools. METHODS Against this background, this study introduces a novel method to determine the tissue composition non-invasively. Our method involves quantitative MRI parameters (i.e., T1, T1ρ, T2 and [Formula: see text] maps), compositional reference measurements (i.e., microspectroscopically determined local proteoglycan [PG] and collagen [CO] contents) and machine learning techniques (i.e., artificial neural networks [ANNs] and multivariate linear models [MLMs]) on 17 histologically grossly intact human cartilage samples. RESULTS Accuracy and precision were higher in ANN-based predictions than in MLM-based predictions and moderate-to-strong correlations were found between measured and predicted compositional parameters. CONCLUSION Once trained for the clinical setting, advanced machine learning techniques, in particular ANNs, may be used to non-invasively determine compositional features of cartilage based on quantitative MRI parameters with potential implications for the diagnosis of (early) degeneration and for the monitoring of therapeutic outcomes.
Collapse
Affiliation(s)
- K Linka
- Institute of Continuum and Materials Mechanics, Hamburg University of Technology, Hamburg, 21073, Germany.
| | - J Thüring
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, 52074, Germany.
| | - L Rieppo
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Finland.
| | - R C Aydin
- Institute of Materials Research, Materials Mechanics, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany.
| | - C J Cyron
- Institute of Continuum and Materials Mechanics, Hamburg University of Technology, Hamburg, 21073, Germany; Institute of Materials Research, Materials Mechanics, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany.
| | - C Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, 52074, Germany.
| | - D Merhof
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, 52074, Germany.
| | - D Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, 52074, Germany; Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, 52074, Germany.
| | - S Nebelung
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Dusseldorf, 40225, Dusseldorf, Germany.
| |
Collapse
|
15
|
Huppertz MS, Schock J, Radke KL, Abrar DB, Post M, Kuhl C, Truhn D, Nebelung S. Longitudinal T2 Mapping and Texture Feature Analysis in the Detection and Monitoring of Experimental Post-Traumatic Cartilage Degeneration. Life (Basel) 2021; 11:life11030201. [PMID: 33807740 PMCID: PMC8000874 DOI: 10.3390/life11030201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Traumatic cartilage injuries predispose articulating joints to focal cartilage defects and, eventually, posttraumatic osteoarthritis. Current clinical-standard imaging modalities such as morphologic MRI fail to reliably detect cartilage trauma and to monitor associated posttraumatic degenerative changes with oftentimes severe prognostic implications. Quantitative MRI techniques such as T2 mapping are promising in detecting and monitoring such changes yet lack sufficient validation in controlled basic research contexts. Material and Methods: 35 macroscopically intact cartilage samples obtained from total joint replacements were exposed to standardized injurious impaction with low (0.49 J, n = 14) or high (0.98 J, n = 14) energy levels and imaged before and immediately, 24 h, and 72 h after impaction by T2 mapping. Contrast, homogeneity, energy, and variance were quantified as features of texture on each T2 map. Unimpacted controls (n = 7) and histologic assessment served as reference. Results: As a function of impaction energy and time, absolute T2 values, contrast, and variance were significantly increased, while homogeneity and energy were significantly decreased. Conclusion: T2 mapping and texture feature analysis are sensitive diagnostic means to detect and monitor traumatic impaction injuries of cartilage and associated posttraumatic degenerative changes and may be used to assess cartilage after trauma to identify “cartilage at risk”.
Collapse
Affiliation(s)
- Marc Sebastian Huppertz
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (M.S.H.); (M.P.); (C.K.); (D.T.)
| | - Justus Schock
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (J.S.); (K.L.R.); (D.B.A.)
| | - Karl Ludger Radke
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (J.S.); (K.L.R.); (D.B.A.)
| | - Daniel Benjamin Abrar
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (J.S.); (K.L.R.); (D.B.A.)
| | - Manuel Post
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (M.S.H.); (M.P.); (C.K.); (D.T.)
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (M.S.H.); (M.P.); (C.K.); (D.T.)
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52074 Aachen, Germany; (M.S.H.); (M.P.); (C.K.); (D.T.)
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (J.S.); (K.L.R.); (D.B.A.)
- Correspondence:
| |
Collapse
|
16
|
Brinkhof S, Nizak R, Sim S, Khlebnikov V, Quenneville E, Garon M, Klomp DW, Saris D. In vivo biochemical assessment of cartilage with gagCEST MRI: Correlation with cartilage properties. NMR IN BIOMEDICINE 2021; 34:e4463. [PMID: 33352622 PMCID: PMC7900973 DOI: 10.1002/nbm.4463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/22/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
To assess articular cartilage in vivo, a noninvasive measurement is proposed to evaluate damage of the cartilage. It is hypothesized that glycosaminoglycan chemical exchange saturation transfer (gagCEST) can be applied as a noninvasive imaging technique as it would relate to electromechanical indentation and GAG content as measured with biochemical assays. This pilot study applies gagCEST MRI in total knee arthroplasty (TKA) patients to assess substantially damaged articular cartilage. The outcome was verified against electromechanical indentation and biochemical assays to assess the potential of gagCEST MRI. Five TKA patients were scanned on a 7.0 T MRI with a gagCEST sequence. Articular resurfacing cuts after TKA were obtained for electromechanical and biochemical analyses. The gagCEST MRI measurements on the medial condyle showed a moderate correlation with the GAG content, although sensitivity on the lateral condyle was lacking. Additionally, a strong negative correlation of gagCEST MRI with the electromechanical measurements was observed in the regression analysis. Correlation of gagCEST MRI with electromechanical measurements was shown, but the correlation of gagCEST MRI with GAG content was not convincing. In conclusion, gagCEST could be a useful tool to assess the GAG content in articular cartilage noninvasively, although the mismatch in heterogeneity requires further investigation.
Collapse
Affiliation(s)
- Sander Brinkhof
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Razmara Nizak
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | - Vitaliy Khlebnikov
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | | | - Dennis W.J. Klomp
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Daniel Saris
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrechtthe Netherlands
- MIRA Institute for Biomedical Technology and Technical MedicineUniversity of TwenteEnschedethe Netherlands
- Department of Orthopaedics, Mayo ClinicRochesterMassachusettsUnited States
| |
Collapse
|
17
|
DGEMRIC in the Assessment of Pre-Morphological Cartilage Degeneration in Rheumatic Disease: Rheumatoid Arthritis vs. Psoriatic Arthritis. Diagnostics (Basel) 2021; 11:diagnostics11020147. [PMID: 33498217 PMCID: PMC7908973 DOI: 10.3390/diagnostics11020147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Even though cartilage loss is a known feature of psoriatic (PsA) and rheumatoid arthritis (RA), research is sparse on its role in the pathogenesis of PsA, its potential use for disease monitoring and for differentiation from RA. We therefore assessed the use of delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) to evaluate biochemical cartilage changes in metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints in PsA patients and compared these to RA patients. Materials and Methods: A total of 17 patients with active PsA and 20 patients with active RA were evaluated by high-resolution 3 Tesla dGEMRIC using a dedicated 16-channel hand coil. Images were analyzed by two independent raters for dGEMRIC indices and joint space width (JSW) at MCP and PIP joint levels. Results: No significant differences of dGEMRIC values could be found between both study populations (PsA 472.25 ms, RA 461.11 ms; p = 0.763). In all RA and most PsA patients, PIP joints showed significantly lower dGEMRIC indices than MCP joints (RA: D2: p = 0.009, D3: p = 0.008, D4: p = 0.002, D5: p = 0.002; PsA: D3: p = 0.001, D4: p = 0.004). Most joint spaces had similar widths in both disease entities and no significant differences were found. Conclusions: As evaluated by dGEMRIC, the molecular composition of the MCP and PIP joint cartilage of PsA patients is similar to that of RA patients, demonstrating the scientific and clinical feasibility of compositional magnetic resonance (MR) imaging in these disease entities. Patterns and severity of compositional cartilage degradation of the finger joints may therefore be assessed beyond mere morphology in PsA and RA patients.
Collapse
|
18
|
Grondin MM, Liu F, Vignos MF, Samsonov A, Li WJ, Kijowski R, Henak CR. Bi-component T2 mapping correlates with articular cartilage material properties. J Biomech 2020; 116:110215. [PMID: 33482593 DOI: 10.1016/j.jbiomech.2020.110215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/20/2020] [Accepted: 12/25/2020] [Indexed: 11/19/2022]
Abstract
Non-invasive estimation of cartilage material properties is useful for understanding cartilage health and creating subject-specific computational models. Bi-component T2 mapping measured using Multi-Component Driven Equilibrium Single Shot Observation of T1 and T2 (mcDESPOT) is sensitive for detecting cartilage degeneration within the human knee joint, but has not been correlated with cartilage composition and mechanical properties. Therefore, the purpose of this study was to investigate the relationship between bi-component T2 parameters measured using mcDESPOT at 3.0 T and cartilage composition and mechanical properties. Ex-vivo patellar cartilage specimens harvested from five human cadaveric knees were imaged using mcDESPOT at 3.0 T. Cartilage samples were removed from the patellae, mechanically tested to determine linear modulus and dissipated energy, and chemically tested to determine proteoglycan and collagen content. Parameter maps of single-component T2 relaxation time (T2), the T2 relaxation times of the fast relaxing macromolecular bound water component (T2F) and slow relaxing bulk water component (T2S), and the fraction of the fast relaxing macromolecular bound water component (FF) were compared to mechanical and chemical measures using linear regression. FF was significantly (p < 0.05) correlated with energy dissipation and linear modulus. T2 was significantly (p ≤ 0.05) correlated with elastic modulus at 1 Hz and energy dissipated at all frequencies. There were no other significant (p = 0.13-0.97) correlations between mcDESPOT parameters and mechanical properties. FF was significantly (p = 0.04) correlated with proteoglycan content. There were no other significant (p = 0.19-0.92) correlations between mcDESPOT parameters and proteoglycan or collagen content. This study suggests that FF measured using mcDESPOT at 3.0 T could be used to non-invasively estimate cartilage proteoglycan content, elastic modulus, and energy dissipation.
Collapse
Affiliation(s)
- Matthew M Grondin
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Fang Liu
- Department of Radiology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Michael F Vignos
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexey Samsonov
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard Kijowski
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
19
|
MacKay JW, Roemer FW, Kogan F. Standardized multi-vendor compositional MRI of knee cartilage: a key step towards clinical translation? Osteoarthritis Cartilage 2020; 28:1497-1500. [PMID: 32882389 DOI: 10.1016/j.joca.2020.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 02/02/2023]
Affiliation(s)
- J W MacKay
- Norwich Medical School, University of East Anglia, Norwich, UK; Department of Radiology, University of Cambridge, Cambridge, UK.
| | - F W Roemer
- Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg & Universitätsklinikum Erlangen, Erlangen, Germany; Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, MA, USA
| | - F Kogan
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
20
|
Neuman P, Larsson S, Lohmander LS, Struglics A. Higher aggrecan 1-F21 epitope concentration in synovial fluid early after anterior cruciate ligament injury is associated with worse knee cartilage quality assessed by gadolinium enhanced magnetic resonance imaging 20 years later. BMC Musculoskelet Disord 2020; 21:798. [PMID: 33261598 PMCID: PMC7709245 DOI: 10.1186/s12891-020-03819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/22/2020] [Indexed: 11/23/2022] Open
Abstract
Background To investigate if cartilage related biomarkers in synovial fluid are associated with knee cartilage status 20 years after an anterior cruciate ligament (ACL) injury. Methods We studied 25 patients with a complete ACL rupture without subsequent ACL reconstruction or radiographic knee OA. All had a delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) 20 years after the ACL injury, using the T1 transverse relaxation time in the presence of gadolinium (T1Gd) which estimates the concentration of glycosaminoglycans in hyaline cartilage. Synovial fluid samples were aspirated acutely (between 0 and 18 days) and during 1 to 5 follow up visits between 0.5 and 7.5 years after injury. We quantified synovial fluid concentrations of aggrecan (epitopes 1-F21 and ARGS), cartilage oligomeric matrix protein, matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 by immunoassays, and sulfated glycosaminoglycans by Alcian blue precipitation. Western blot was used for qualitative analyses of aggrecan fragments in synovial fluid and cartilage samples. Results Western blot indicated that the 1-F21 epitope was located within the chondroitin sulfate 2 region of aggrecan. Linear regression analyses (adjusted for age, sex, body mass index and time between injury and sampling) showed that acute higher synovial fluid 1-F21-aggrecan concentrations were associated with shorter T1Gd values 20 years after injury, i.e. inferior cartilage quality (standardized effects between − 0.67 and − 1.0). No other statistically significant association was found between molecular biomarkers and T1Gd values. Conclusion Higher acute synovial fluid 1-F21-aggrecan concentrations in ACL injured patients, who managed to cope without ACL reconstruction and were without radiographic knee OA, were associated with inferior knee cartilage quality assessed by dGEMRIC 20 years after injury. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-020-03819-9.
Collapse
Affiliation(s)
- Paul Neuman
- Orthopedics, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Staffan Larsson
- Orthopedics, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - L Stefan Lohmander
- Orthopedics, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - André Struglics
- Orthopedics, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
21
|
Hafner T, Post M, Said O, Schad P, Schock J, Abrar DB, Knobe M, Kuhl C, Truhn D, Nebelung S. Identifying the imaging correlates of cartilage functionality based on quantitative MRI mapping - The collagenase exposure model. Acta Biomater 2020; 117:310-321. [PMID: 32980541 DOI: 10.1016/j.actbio.2020.09.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/05/2023]
Abstract
Cartilage functionality is determined by tissue structure and composition. If altered, cartilage is predisposed to premature degeneration. This pathomimetical study of early osteoarthritis evaluated the dose-dependant effects of collagenase-induced collagen disintegration and proteoglycan depletion on cartilage functionality as assessed by serial T1, T1ρ, T2, and T2* mapping under loading. 30 human femoral osteochondral samples underwent imaging on a clinical 3.0 T MRI scanner (Achieva, Philips) in the unloaded reference configuration (δ0) and under pressure-controlled quasi-static indentation loading to 15.1 N (δ1) and to 28.6 N (δ2). Imaging was performed before and after exposure to low (LC, 0.5 mg/mL; n = 10) or high concentration (HC, 1.5 mg/mL; n = 10) of collagenase. Untreated samples served as controls (n = 10). Loading responses were determined for the entire sample and the directly loaded (i.e. sub-pistonal) and bilaterally adjacent (i.e. peri‑pistonal) regions, referenced histologically, quantified as relative changes, and analysed using adequate parametric and non-parametric statistical tests. Dose-dependant surface disintegration and tissue loss were reflected by distinctly different pre- and post-exposure response-to-loading patterns. While T1 generally decreased with loading, regardless of collagenase exposure, T1ρ increased significantly after HC exposure (p = 0.008). Loading-induced decreases in T2 were significant after LC exposure (p = 0.006), while changes in T2* were ambiguous. In conclusion, aberrant loading-induced changes in T2 and T1ρ reflect moderate and severe matrix changes, respectively, and indicate the close interrelatedness of matrix changes and functionality in cartilage.
Collapse
Affiliation(s)
- Tobias Hafner
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology,D-52074 Aachen, Germany
| | - Manuel Post
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology,D-52074 Aachen, Germany
| | - Oliver Said
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology,D-52074 Aachen, Germany
| | - Philipp Schad
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology,D-52074 Aachen, Germany
| | - Justus Schock
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany; Institute of Computer Vision and Imaging, RWTH University Aachen, D-52074 Aachen, Germany
| | - Daniel Benjamin Abrar
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany
| | - Matthias Knobe
- Clinic for Orthopaedic and Trauma Surgery, Cantonal Hospital Luzern, CH-6004 Luzern, Switzerland
| | - Christiane Kuhl
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology,D-52074 Aachen, Germany
| | - Daniel Truhn
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology,D-52074 Aachen, Germany
| | - Sven Nebelung
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany.
| |
Collapse
|
22
|
Abrar DB, Schleich C, Müller-Lutz A, Frenken M, Radke KL, Vordenbäumen S, Schneider M, Ostendorf B, Sewerin P. Cartilage Degradation in Psoriatic Arthritis Is Associated With Increased Synovial Perfusion as Detected by Magnetic Resonance Imaging. Front Med (Lausanne) 2020; 7:539870. [PMID: 33102496 PMCID: PMC7546830 DOI: 10.3389/fmed.2020.539870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/21/2020] [Indexed: 01/27/2023] Open
Abstract
Objective: Even though cartilage loss is a known feature of psoriatic arthritis (PsA), research is sparse on its role in the pathogenesis of PsA and its potential use for disease detection and monitoring. Using delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and dynamic contrast-enhanced MRI (DCE MRI), research has shown that early cartilage loss is strongly associated with synovial inflammation in rheumatoid arthritis (RA). The aim of this study was to determine if acute inflammation is associated with early cartilage loss in small finger joints of patients with PsA. Methods: Metacarpophalangeal (MCP), proximal interphalangeal (PIP), and distal interphalangeal (DIP) joints of 17 patients with active PsA were evaluated by high-resolution 3 Tesla dGEMRIC and DCE MRI using a dedicated 16-channel hand coil. Semi-quantitative and quantitative perfusion parameters were calculated. Images were analyzed by two independent raters for dGEMRIC indices, PsA MRI scores (PsAMRIS), total cartilage thickness (TCT), and joint space width (JSW). Results: We found significant negative correlations between perfusion parameters (except Kep) and dGEMRIC indices, with the highest value at the MCP joints (KTrans: τ = −0.54, p = 0.01; Kep: τ = −0.02, p = 0.90; IAUC: τ = −0.51, p = 0.015; Initial Slope: τ = −0.54, p = 0.01; Peak: τ = −0.67, p = 0.002). Heterogeneous correlations were detected between perfusion parameters and both, total PsAMRIS and PsAMRIS synovitis sub-scores. No significant correlation was seen between any perfusion parameter and JSW and/or TCT. Conclusion: As examined by DCE MRI and dGEMRIC, there is a potential association between early cartilage loss and acute synovial inflammation in small finger joints of PsA patients.
Collapse
Affiliation(s)
- Daniel B Abrar
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Düsseldorf, Germany
| | - Christoph Schleich
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Düsseldorf, Germany
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Düsseldorf, Germany
| | - Miriam Frenken
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Düsseldorf, Germany
| | - K Ludger Radke
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Düsseldorf, Germany
| | - Stefan Vordenbäumen
- Department and Hiller Research Unit for Rheumatology, UKD, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Matthias Schneider
- Department and Hiller Research Unit for Rheumatology, UKD, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Benedikt Ostendorf
- Department and Hiller Research Unit for Rheumatology, UKD, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Sewerin
- Department and Hiller Research Unit for Rheumatology, UKD, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
23
|
Hafner T, Schock J, Post M, Abrar DB, Sewerin P, Linka K, Knobe M, Kuhl C, Truhn D, Nebelung S. A serial multiparametric quantitative magnetic resonance imaging study to assess proteoglycan depletion of human articular cartilage and its effects on functionality. Sci Rep 2020; 10:15106. [PMID: 32934341 PMCID: PMC7492285 DOI: 10.1038/s41598-020-72208-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Water, collagen, and proteoglycans determine articular cartilage functionality. If altered, susceptibility to premature degeneration is increased. This study investigated the effects of enzymatic proteoglycan depletion on cartilage functionality as assessed by advanced Magnetic Resonance Imaging (MRI) techniques under standardized loading. Lateral femoral condylar cartilage-bone samples from patients undergoing knee replacement (n = 29) were serially imaged by Proton Density-weighted and T1, T1ρ, T2, and T2* mapping sequences on a clinical 3.0 T MRI scanner (Achieva, Philips). Using pressure-controlled indentation loading, samples were imaged unloaded and quasi-statically loaded to 15.1 N and 28.6 N, and both before and after exposure to low-concentrated (LT, 0.1 mg/mL, n = 10) or high-concentrated trypsin (HT, 1.0 mg/mL, n = 10). Controls were not treated (n = 9). Responses to loading were assessed for the entire sample and regionally, i.e. sub- and peri-pistonally, and zonally, i.e. upper and lower sample halves. Trypsin effects were quantified as relative changes (Δ), analysed using appropriate statistical tests, and referenced histologically. Histological proteoglycan depletion was reflected by significant sub-pistonal decreases in T1 (p = 0.003) and T2 (p = 0.008) after HT exposure. Loading-induced changes in T1ρ and T2* were not related. In conclusion, proteoglycan depletion alters cartilage functionality and may be assessed using serial T1 and T2 mapping under loading.
Collapse
Affiliation(s)
- Tobias Hafner
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Justus Schock
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstraße 5, 40225, Dusseldorf, Germany.,Institute of Computer Vision and Imaging, RWTH University Aachen, Aachen, Germany
| | - Manuel Post
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Daniel Benjamin Abrar
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstraße 5, 40225, Dusseldorf, Germany
| | - Philipp Sewerin
- Medical Faculty, Department and Hiller-Research-Unit for Rheumatology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Kevin Linka
- Department of Continuum and Materials Mechanics, Hamburg University of Technology, Hamburg, Germany
| | - Matthias Knobe
- Clinic for Orthopaedic and Trauma Surgery, Cantonal Hospital Luzern, Luzern, Switzerland
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Sven Nebelung
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Moorenstraße 5, 40225, Dusseldorf, Germany.
| |
Collapse
|
24
|
Zelenski N, Falk DP, D'Aquilla K, Borthakur A, Bannister E, Kneeland B, Reddy R, Zgonis M. Zone- and layer-specific differences in proteoglycan content in patellofemoral pain syndrome are detectable on T1ρ MRI. Skeletal Radiol 2020; 49:1397-1402. [PMID: 32253471 DOI: 10.1007/s00256-020-03418-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Determine if differences in T1ρ would be detected in specific regions or layers of patellofemoral cartilage between patients with symptomatic patellofemoral pain syndrome and asymptomatic control subjects. MATERIALS AND METHODS Ten subjects diagnosed with patellofemoral pain syndrome were compared with ten age-, gender-, and BMI-matched control subjects with no knee pain or prior trauma. Conventional turbo (fast) spin echo sequences and T1ρ-weighted imaging were performed on the symptomatic knee in each of the ten subjects. At the patella and distal femur, cartilage regions of interest were divided into medial and lateral sub-regions, each then further sub-divided by layer (superficial, middle, or deep). Two-tailed t test and chi-squared tests were used to analyze demographic data. A mixed effect model was run for each sub-region of T1ρ imaging. Statistical significance was determined using the likelihood ratio test against reduced models without patellofemoral pain syndrome symptomatic status as a fixed effect. RESULTS There was no difference in age, sex, or BMI between symptomatic and control patients. T1ρ values were significantly higher among patellofemoral pain syndrome patients when compared with controls in the superficial zone of the lateral patella (58.43 vs. 50.83, p = 0.03) and the middle zone of the lateral patella (52.67 vs. 43.60, p = 0.03). T1ρ was also higher in the superficial zone of the medial femur (50.94 vs. 46.70, p = 0.09) with a value approaching statistical significance. CONCLUSION We report statistically significant differences in the T1ρ value in the superficial and middle zones of the lateral patella in patients with patellofemoral pain syndrome who had no abnormalities seen on conventional MRI sequences, suggesting an alteration the macromolecular structure of the cartilage in this population.
Collapse
Affiliation(s)
- Nicole Zelenski
- Department of Orthopaedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - David P Falk
- Department of Orthopaedic Surgery, University of Pennsylvania, 3737 Market Street, 6th Floor, Philadelphia, PA, 19104, USA
| | - Kevin D'Aquilla
- Center for Magnetic Resonance & Optical Imaging, 422 Curie Boulevard, B1 Stellar Chance Labs, Philadelphia, PA, 19104, USA
| | - Arijitt Borthakur
- Center for Practice Transformation, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Donner Basement, 34000 Spruce Street, Philadelphia, PA, 19104, USA
| | - Evan Bannister
- Department of Orthopaedic Surgery, University of Pennsylvania, 3737 Market Street, 6th Floor, Philadelphia, PA, 19104, USA
| | - Bruce Kneeland
- Department of Radiology, University of Pennsylvania, 3400 Civic Center Boulevard Atrium, Ground Floor, Philadelphia, PA, 19104, USA
| | - Ravinder Reddy
- Center for Magnetic Resonance & Optical Imaging, 422 Curie Boulevard, B1 Stellar Chance Labs, Philadelphia, PA, 19104, USA
| | - Miltiadis Zgonis
- Department of Orthopaedic Surgery, University of Pennsylvania, 3737 Market Street, 6th Floor, Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
de Vries BA, van der Heijden RA, Poot DHJ, van Middelkoop M, Meuffels DE, Krestin GP, Oei EHG. Quantitative DCE-MRI demonstrates increased blood perfusion in Hoffa's fat pad signal abnormalities in knee osteoarthritis, but not in patellofemoral pain. Eur Radiol 2020; 30:3401-3408. [PMID: 32064564 PMCID: PMC7248045 DOI: 10.1007/s00330-020-06671-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/19/2019] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Infrapatellar fat pad (IPFP) fat-suppressed T2 (T2FS) hyperintense regions on MRI are an important imaging feature of knee osteoarthritis (OA) and are thought to represent inflammation. These regions are also common in non-OA subjects, and may not always be linked to inflammation. Our aim was to evaluate quantitative blood perfusion parameters, as surrogate measure of inflammation, within T2FS-hyperintense regions in patients with OA, with patellofemoral pain (PFP) (supposed OA precursor), and control subjects. METHODS Twenty-two knee OA patients, 35 PFP patients and 43 healthy controls were included and underwent MRI, comprising T2 and DCE-MRI sequences. T2FS-hyperintense IPFP regions were delineated and a reference region was drawn in adjacent IPFP tissue with normal signal intensity. After fitting the extended Tofts pharmacokinetic model, quantitative DCE-MRI perfusion parameters were compared between the two regions within subjects in each subgroup, using a paired Wilcoxon signed-rank test. RESULTS T2FS-hyperintense IPFP regions were present in 16 of 22 (73%) OA patients, 13 of 35 (37%) PFP patients, and 14 of 43 (33%) controls. DCE-MRI perfusion parameters were significantly different between regions with and without a T2FS-hyperintense signal in OA patients, demonstrating higher Ktrans compared to normal IFPF tissue (0.039 min-1 versus 0.025 min-1, p = 0.017) and higher Ve (0.157 versus 0.119, p = 0.010). For PFP patients and controls no significant differences were found. CONCLUSIONS IPFP T2FS-hyperintense regions are associated with higher perfusion in knee OA patients in contrast to identically appearing regions in PFP patients and controls, pointing towards an inflammatory pathogenesis in OA only. KEY POINTS • Morphologically identical appearing T2FS-hyperintense infrapatellar fat pad regions show different perfusion in healthy subjects, subjects with patellofemoral pain, and subjects with knee osteoarthritis. • Elevated DCE-MRI perfusion parameters within T2FS-hyperintense infrapatellar fat pad regions in patients with osteoarthritis suggest an inflammatory pathogenesis in osteoarthritis, but not in patellofemoral pain and healthy subjects.
Collapse
Affiliation(s)
- Bas A de Vries
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rianne A van der Heijden
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk H J Poot
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Medical Informatics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marienke van Middelkoop
- Department of General Practice, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Duncan E Meuffels
- Department of Orthopedic Surgery, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gabriel P Krestin
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
26
|
de Vries BA, van der Heijden RA, Verschueren J, Bos PK, Poot DH, van Tiel J, Kotek G, Krestin GP, Oei EH. Quantitative subchondral bone perfusion imaging in knee osteoarthritis using dynamic contrast enhanced MRI. Semin Arthritis Rheum 2020; 50:177-182. [DOI: 10.1016/j.semarthrit.2019.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/12/2023]
|
27
|
Bonaretti S, Gold GE, Beaupre GS. pyKNEEr: An image analysis workflow for open and reproducible research on femoral knee cartilage. PLoS One 2020; 15:e0226501. [PMID: 31978052 PMCID: PMC6980400 DOI: 10.1371/journal.pone.0226501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/27/2019] [Indexed: 02/04/2023] Open
Abstract
Transparent research in musculoskeletal imaging is fundamental to reliably investigate diseases such as knee osteoarthritis (OA), a chronic disease impairing femoral knee cartilage. To study cartilage degeneration, researchers have developed algorithms to segment femoral knee cartilage from magnetic resonance (MR) images and to measure cartilage morphology and relaxometry. The majority of these algorithms are not publicly available or require advanced programming skills to be compiled and run. However, to accelerate discoveries and findings, it is crucial to have open and reproducible workflows. We present pyKNEEr, a framework for open and reproducible research on femoral knee cartilage from MR images. pyKNEEr is written in python, uses Jupyter notebook as a user interface, and is available on GitHub with a GNU GPLv3 license. It is composed of three modules: 1) image preprocessing to standardize spatial and intensity characteristics; 2) femoral knee cartilage segmentation for intersubject, multimodal, and longitudinal acquisitions; and 3) analysis of cartilage morphology and relaxometry. Each module contains one or more Jupyter notebooks with narrative, code, visualizations, and dependencies to reproduce computational environments. pyKNEEr facilitates transparent image-based research of femoral knee cartilage because of its ease of installation and use, and its versatility for publication and sharing among researchers. Finally, due to its modular structure, pyKNEEr favors code extension and algorithm comparison. We tested our reproducible workflows with experiments that also constitute an example of transparent research with pyKNEEr, and we compared pyKNEEr performances to existing algorithms in literature review visualizations. We provide links to executed notebooks and executable environments for immediate reproducibility of our findings.
Collapse
Affiliation(s)
- Serena Bonaretti
- Department of Radiology, Stanford University, Stanford, CA, United States of America
- Musculoskeletal Research Laboratory, VA Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Garry E. Gold
- Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Gary S. Beaupre
- Musculoskeletal Research Laboratory, VA Palo Alto Health Care System, Palo Alto, CA, United States of America
- Department of Bioengineering, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
28
|
Yang J, Shao H, Ma Y, Wan L, Zhang Y, Jiang J, Du J, Tang G. Quantitative ultrashort echo time magnetization transfer (UTE-MT) for diagnosis of early cartilage degeneration: comparison with UTE-T2* and T2 mapping. Quant Imaging Med Surg 2020; 10:171-183. [PMID: 31956540 DOI: 10.21037/qims.2019.12.04] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background To investigate the feasibility of using quantitative ultrashort echo time magnetization transfer (UTE-MT) technique in diagnosing early cartilage degeneration and to compare the technique's diagnostic efficacy with UTE-T2* mapping and T2 mapping. Methods Twenty human anterolateral condyle specimens with degeneration were obtained from volunteers undergoing total knee arthroplasty (TKA); they then underwent magnetic resonance (MR) scan on a clinical 3.0T scanner (GE, MR750). Seventy-two regions of interest (ROI) were manually drawn on specimens for UTE-MT, UTE-T2*, and T2 measurement, and the corresponding cartilage-bone regions were further divided into degeneration classifications of normal (n=11, Mankin scores 0-1), mild (n=28, Mankin scores 2-5), moderate (n=21, Mankin scores 6-9), and severe (n=12, Mankin scores 10-14) based on histological measures of degeneration (i.e., Mankin scores) as a reference standard. Differences among groups and correlations between quantitative MR parameters and Mankin scores were assessed using analysis of variance (ANOVA), Tamhane-T2, LSD, Kruskal-Wallis tests, and Spearman's correlation coefficient. The receiver-operating characteristic (ROC) curve was used to compare the diagnostic efficacy of different quantitative MR parameters for the detection of mild cartilage degeneration. Results The UTE magnetization transfer ratio (UTE-MTR) in the normal group was significantly different from the mild group (P=0.021), moderate group (P<0.001), and severe group (P<0.001). Significant differences were observed in the T2* values between both the normal group and the moderate group (P<0.032), and between the normal group and the severe group (P<0.001). For T2 values, the only significant difference was observed between the severe group and the normal group (P=0.011). The UTE-MTR, UTE-T2*, and T2 values were all significantly correlated with Mankin scores: UTE-MTR values were strongly (r=-0.678, P<0.001) correlated, UTE-T2* values were markedly correlated (r=-0.501, P<0.001), and T2 values were weakly correlated (r=0.337, P=0.004) correlated with Mankin scores. The diagnostic efficacy of UTE-MTR (AUC =0.828, P=0.002) was better than UTE T2* mapping and T2 mapping (AUC =0.604, P=0.318; AUC =0.644, P=0.165, respectively) for the diagnosis of early cartilage degeneration. Conclusions UTE-MTR values were strongly correlated with histological grades of cartilage degeneration, and its diagnostic efficacy was better than both UTE T2* mapping and T2 mapping in detecting early cartilage degeneration. Once the clinical potential of the technique has been confirmed, UTE-MT may provide a promising imaging biomarker with potential application in a more comprehensive diagnosis and monitoring of cartilage degeneration.
Collapse
Affiliation(s)
- Jiawei Yang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongda Shao
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Lidi Wan
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yixuan Zhang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Junjie Jiang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
29
|
Nebelung S, Post M, Knobe M, Shah D, Schleich C, Hitpass L, Kuhl C, Thüring J, Truhn D. Human articular cartilage mechanosensitivity is related to histological degeneration - a functional MRI study. Osteoarthritis Cartilage 2019; 27:1711-1720. [PMID: 31319176 DOI: 10.1016/j.joca.2019.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate changes in response to sequential pressure-controlled loading and unloading in human articular cartilage of variable histological degeneration using serial T1ρ mapping. METHOD We obtained 42 cartilage samples of variable degeneration from the medial femoral condyles of 42 patients undergoing total knee replacement. Samples were placed in a standardized artificial knee joint within an MRI-compatible whole knee-joint compressive loading device and imaged before (δ0), during (δld1, δld2, δld3, δld4, δld5) and after (δrl1, δrl2, δrl3, δrl4, δrl5) pressure-controlled loading to 0.663 ± 0.021 kN (94% body weight) using serial T1ρ mapping (spin-lock multigradient echo sequence; 3.0T MRI system [Achieva, Philips]). Reference assessment included histology (Mankin scoring) and conventional biomechanics (Tangent stiffness). We dichotomized sample into intact (n = 21) and degenerative (n = 21) based on histology and analyzed data using Mann Whitney, Kruskal Wallis, one-way ANOVA tests and Spearman's correlation, respectively. RESULTS At δ0, we found no significant differences between intact and degenerative samples, while the response-to-loading patterns were distinctly different. In intact samples, T1ρ increases were consistent and non-significant, while in degenerative samples, T1ρ increases were significantly higher (P = 0.004, δ0 vs δld1, δ0 vs δld3), yet undulating and variable. With unloading, T1ρ increases subsided, yet were persistently elevated beyond δ0. CONCLUSION Cartilage mechanosensitivity is related to histological degeneration and assessable by serial T1ρ mapping. Unloaded, T1ρ characteristics are not significantly different in intact vs degenerative cartilage, while load bearing is organized in intact cartilage and disorganized in degenerative cartilage.
Collapse
Affiliation(s)
- S Nebelung
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - M Post
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - M Knobe
- Department of Orthopaedic Trauma, Aachen University Hospital, Aachen, Germany.
| | - D Shah
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - C Schleich
- Department of Diagnostic and Interventional Radiology, University of Düsseldorf, Düsseldorf, Germany.
| | - L Hitpass
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - C Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - J Thüring
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - D Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany; Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
30
|
Brinkhof S, Ali Haghnejad A, Ito K, Markenroth Bloch K, Klomp D. Uncompromised MRI of knee cartilage while incorporating sensitive sodium MRI. NMR IN BIOMEDICINE 2019; 32:e4173. [PMID: 31502337 PMCID: PMC6900061 DOI: 10.1002/nbm.4173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Sodium imaging is able to assess changes in ion content, linked to glycosaminoglycan content, which is important to guide orthopeadic procedures such as articular cartilage repair. Sodium imaging is ideally performed using double tuned RF coils, to combine high resolution morphological imaging with biochemical information from sodium imaging to assess ion content. The proton image quality of such coils is often harshly degraded, with up to 50% of SNR or severe acceleration loss as compared to single tuned coils. Reasons are that the number of proton receive channels often severely reduced and double tuning will degrade the intrinsic sensitivity of the RF coil on at least one of the nuclei. However, the aim of this work was to implement a double-tuned sodium/proton knee coil setup without deterioration of the proton signal whilst being able to achieve acquisition of high SNR sodium images. A double-tuned knee coil was constructed as a shielded birdcage optimized for sodium and compromised for proton. To exclude any compromise, the proton part of the birdcage is used for transmit only and interfaced to RF amplifiers that can fully mitigate the reduced efficiency. In addition, a 15 channel single tuned proton receiver coil was embedded within the double-resonant birdcage to maintain optimal SNR and acceleration for proton imaging. To validate the efficiency of our coil, the designed coil was compared with the state-of-the-art single-tuned alternative at 7 T. B1+ corrected SNR maps were used to compare both coils on proton performance and g-factor maps were used to compare both coils on acceleration possibilities. The newly constructed double-tuned coil was shown to have comparable proton quality and acceleration possibilities to the single-tuned alternative while also being able to acquire high SNR sodium images.
Collapse
Affiliation(s)
- S. Brinkhof
- Department of RadiologyUniversity Medical Center UtrechtUtrechtNetherlands
| | | | - K. Ito
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenNetherlands
| | | | - D.W.J. Klomp
- Department of RadiologyUniversity Medical Center UtrechtUtrechtNetherlands
| |
Collapse
|
31
|
Gersing AS, Schwaiger BJ, Wörtler K, Jungmann PM. [Advanced cartilage imaging for detection of cartilage injuries and osteochondral lesions]. Radiologe 2019; 58:422-432. [PMID: 29374314 DOI: 10.1007/s00117-017-0348-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Osteochondral defects represent a main risk factor for osteoarthritis of the ankle. OBJECTIVES The aim of this article is to provide an overview of current optimal clinical cartilage imaging techniques of the foot and ankle and to show typical osteochondral injuries on imaging. MATERIALS AND METHODS A thorough literature search was performed and was supported by personal experience. RESULTS Cartilage imaging of the foot and ankle remains challenging. However, advanced morphological and quantitative magnetic resonance (MR) imaging techniques may provide useful clinical information, for example, concerning cartilage repair surgery. Compared to MRI, MR arthrography (MR-A) and CT arthrography (CT-A) have higher sensitivity with respect to detection of osteochondral defects. Regarding smaller joints of the foot, mainly advanced osteoarthritic changes are detected on conventional radiography; only in rare cases, MR and CT imaging of these smaller joints is of relevance. CONCLUSIONS While at the smaller joints of the foot cartilage imaging only plays a minor role, at the ankle joint cross-sectional cartilage imaging using CT and MRI becomes more and more important for clinicians due to emerging therapeutic options, such as different osteochondral repair techniques.
Collapse
Affiliation(s)
- A S Gersing
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland
| | - B J Schwaiger
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland
| | - K Wörtler
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland
| | - P M Jungmann
- Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland. .,Klinik für Neuroradiologie, UniversitätsSpital Zürich, Universität Zürich, Frauenklinikstrasse 10, 8091, Zürich, Schweiz.
| |
Collapse
|
32
|
Differentiation of human cartilage degeneration by functional MRI mapping—an ex vivo study. Eur Radiol 2019; 29:6671-6681. [DOI: 10.1007/s00330-019-06283-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/25/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022]
|
33
|
Towards Patient-Specific Computational Modelling of Articular Cartilage on the Basis of Advanced Multiparametric MRI Techniques. Sci Rep 2019; 9:7172. [PMID: 31073178 PMCID: PMC6509121 DOI: 10.1038/s41598-019-43389-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Cartilage degeneration is associated with tissue softening and represents the hallmark change of osteoarthritis. Advanced quantitative Magnetic Resonance Imaging (qMRI) techniques allow the assessment of subtle tissue changes not only of structure and morphology but also of composition. Yet, the relation between qMRI parameters on the one hand and microstructure, composition and the resulting functional tissue properties on the other hand remain to be defined. To this end, a Finite-Element framework was developed based on an anisotropic constitutive model of cartilage informed by sample-specific multiparametric qMRI maps, obtained for eight osteochondral samples on a clinical 3.0 T MRI scanner. For reference, the same samples were subjected to confined compression tests to evaluate stiffness and compressibility. Moreover, the Mankin score as an indicator of histological tissue degeneration was determined. The constitutive model was optimized against the resulting stress responses and informed solely by the sample-specific qMRI parameter maps. Thereby, the biomechanical properties of individual samples could be captured with good-to-excellent accuracy (mean R2 [square of Pearson's correlation coefficient]: 0.966, range [min, max]: 0.904, 0.993; mean Ω [relative approximated error]: 33%, range [min, max]: 20%, 47%). Thus, advanced qMRI techniques may be complemented by the developed computational model of cartilage to comprehensively evaluate the functional dimension of non-invasively obtained imaging biomarkers. Thereby, cartilage degeneration can be perspectively evaluated in the context of imaging and biomechanics.
Collapse
|
34
|
Atkinson HF, Birmingham TB, Moyer RF, Yacoub D, Kanko LE, Bryant DM, Thiessen JD, Thompson RT. MRI T2 and T1ρ relaxation in patients at risk for knee osteoarthritis: a systematic review and meta-analysis. BMC Musculoskelet Disord 2019; 20:182. [PMID: 31039785 PMCID: PMC6492327 DOI: 10.1186/s12891-019-2547-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022] Open
Abstract
Background Magnetic resonance imaging (MRI) T2 and T1ρ relaxation are increasingly being proposed as imaging biomarkers potentially capable of detecting biochemical changes in articular cartilage before structural changes are evident. We aimed to: 1) summarize MRI methods of published studies investigating T2 and T1ρ relaxation time in participants at risk for but without radiographic knee OA; and 2) compare T2 and T1ρ relaxation between participants at-risk for knee OA and healthy controls. Methods We conducted a systematic review of studies reporting T2 and T1ρ relaxation data that included both participants at risk for knee OA and healthy controls. Participant characteristics, MRI methodology, and T1ρ and T2 relaxation data were extracted. Standardized mean differences (SMDs) were calculated within each study. Pooled effect sizes were then calculated for six commonly segmented knee compartments. Results 55 articles met eligibility criteria. There was considerable variability between scanners, coils, software, scanning protocols, pulse sequences, and post-processing. Moderate risk of bias due to lack of blinding was common. Pooled effect sizes indicated participants at risk for knee OA had lengthened T2 relaxation time in all compartments (SMDs from 0.33 to 0.74; p < 0.01) and lengthened T1ρ relaxation time in the femoral compartments (SMD from 0.35 to 0.40; p < 0.001). Conclusions T2 and T1ρ relaxation distinguish participants at risk for knee OA from healthy controls. Greater standardization of MRI methods is both warranted and required for progress towards biomarker validation. Electronic supplementary material The online version of this article (10.1186/s12891-019-2547-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hayden F Atkinson
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada.,Wolf Orthopaedic Biomechanics Laboratory, Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada.,Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
| | - Trevor B Birmingham
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada. .,Wolf Orthopaedic Biomechanics Laboratory, Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada. .,Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada. .,Musculoskeletal Rehabilitation, Elborn College, University of Western Ontario, London, Ontario, N6G 1H1, Canada.
| | - Rebecca F Moyer
- Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada.,School of Physiotherapy, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Yacoub
- Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Lauren E Kanko
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada.,Wolf Orthopaedic Biomechanics Laboratory, Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada.,Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
| | - Dianne M Bryant
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada.,Wolf Orthopaedic Biomechanics Laboratory, Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada.,Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
| | - Jonathan D Thiessen
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
| | - R Terry Thompson
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
35
|
Nebelung S, Post M, Knobe M, Tingart M, Emans P, Thüring J, Kuhl C, Truhn D. Detection of Early-Stage Degeneration in Human Articular Cartilage by Multiparametric MR Imaging Mapping of Tissue Functionality. Sci Rep 2019; 9:5895. [PMID: 30976065 PMCID: PMC6459828 DOI: 10.1038/s41598-019-42543-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
To assess human articular cartilage tissue functionality by serial multiparametric quantitative MRI (qMRI) mapping as a function of histological degeneration. Forty-nine cartilage samples obtained during total knee replacement surgeries were placed in a standardized artificial knee joint within an MRI-compatible compressive loading device and imaged in situ and at three loading positions, i.e. unloaded, at 2.5 mm displacement (20% body weight [BW]) and at 5 mm displacement (110% BW). Using a clinical 3.0 T MRI system (Achieva, Philips), serial T1, T1ρ, T2 and T2* maps were generated for each sample and loading position. Histology (Mankin scoring) and biomechanics (Young’s modulus) served as references. Samples were dichotomized as intact (int, n = 27) or early degenerative (deg, n = 22) based on histology and analyzed using repeated-measures ANOVA and unpaired Student’s t-tests after log-transformation. For T1ρ, T2 and T2*, significant loading-induced differences were found in deg (in contrast to int) samples, while for T1 significant decreases in all zones were observed, irrespective of degeneration. In conclusion, cartilage functionality may be visualized using serial qMRI parameter mapping and the response-to-loading patterns are associated with histological degeneration. Hence, loading-induced changes in qMRI parameter maps provide promising surrogate parameters of tissue functionality and status in health and disease.
Collapse
Affiliation(s)
- Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - Manuel Post
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Matthias Knobe
- Department of Trauma Surgery, Aachen University Hospital, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedics, Aachen University Hospital, Aachen, Germany
| | - Pieter Emans
- Department of Orthopaedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Johannes Thüring
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.,Institute of Imaging and Computer Vision, RWTH Aachen, Aachen, Germany
| |
Collapse
|
36
|
Eijgenraam SM, Bovendeert FAT, Verschueren J, van Tiel J, Bastiaansen-Jenniskens YM, Wesdorp MA, Nasserinejad K, Meuffels DE, Guenoun J, Klein S, Reijman M, Oei EHG. T 2 mapping of the meniscus is a biomarker for early osteoarthritis. Eur Radiol 2019; 29:5664-5672. [PMID: 30888480 PMCID: PMC6719322 DOI: 10.1007/s00330-019-06091-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/30/2019] [Accepted: 02/08/2019] [Indexed: 12/24/2022]
Abstract
Purpose To evaluate in vivo T2 mapping as quantitative, imaging-based biomarker for meniscal degeneration in humans, by studying the correlation between T2 relaxation time and degree of histological degeneration as reference standard. Methods In this prospective validation study, 13 menisci from seven patients with radiographic knee osteoarthritis (median age 67 years, three males) were included. Menisci were obtained during total knee replacement surgery. All patients underwent pre-operative magnetic resonance imaging using a 3-T MR scanner which included a T2 mapping pulse sequence with multiple echoes. Histological analysis of the collected menisci was performed using the Pauli score, involving surface integrity, cellularity, matrix organization, and staining intensity. Mean T2 relaxation times were calculated in meniscal regions of interest corresponding with the areas scored histologically, using a multi-slice multi-echo postprocessing algorithm. Correlation between T2 mapping and histology was assessed using a generalized least squares model fit by maximum likelihood. Results The mean T2 relaxation time was 22.4 ± 2.7 ms (range 18.5–27). The median histological score was 10, IQR 7–11 (range 4–13). A strong correlation between T2 relaxation time and histological score was found (rs = 0.84, CI 95% 0.64–0.93). Conclusion In vivo T2 mapping of the human meniscus correlates strongly with histological degeneration, suggesting that T2 mapping enables the detection and quantification of early compositional changes of the meniscus in knee OA. Key Points • Prospective histology-based study showed that in vivo T2mapping of the human meniscus correlates strongly with histological degeneration. • Meniscal T2mapping allows detection and quantifying of compositional changes, without need for contrast or special MRI hardware. • Meniscal T2mapping provides a biomarker for early OA, potentially allowing early treatment strategies and prevention of OA progression. Electronic supplementary material The online version of this article (10.1007/s00330-019-06091-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne M Eijgenraam
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, room Nd-547, 3015 GD, Rotterdam, The Netherlands.,Department of Orthopedic Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Frans A T Bovendeert
- Department of Orthopedic Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Orthopedic Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Joost Verschueren
- Department of Orthopedic Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jasper van Tiel
- Department of Orthopedic Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Marinus A Wesdorp
- Department of Orthopedic Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Kazem Nasserinejad
- Department of Hematology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Duncan E Meuffels
- Department of Orthopedic Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jamal Guenoun
- Department of Radiology, Cambridge University Hospitals, Cambridge, UK
| | - Stefan Klein
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, room Nd-547, 3015 GD, Rotterdam, The Netherlands.,Department of Medical Informatics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Max Reijman
- Department of Orthopedic Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, room Nd-547, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
37
|
Pang Y, Palmieri-Smith RM, Malyarenko DI, Swanson SD, Chenevert TL. A unique anisotropic R 2 of collagen degeneration (ARCADE) mapping as an efficient alternative to composite relaxation metric (R 2 -R 1 ρ ) in human knee cartilage study. Magn Reson Med 2019; 81:3763-3774. [PMID: 30793790 DOI: 10.1002/mrm.27621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/11/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Anisotropic transverse R2 (1/T2 ) relaxation of water proton is sensitive to cartilage degenerative changes. The purpose is to develop an efficient method to extract this relaxation metric in clinical studies. METHODS Anisotropic R2 can be measured inefficiently by standard R2 mapping after removing an isotropic contribution obtained from R1 ρ mapping. In the proposed method, named as a unique anisotropic R2 of collagen degeneration (ARCADE) mapping, an assumed uniform isotropic R2 was estimated at magic angle locations in the deep cartilage, and an anisotropic R2 was thus isolated in a single T2W sagittal image. Five human knees from 4 volunteers were studied with standard R2 and R1 ρ mappings at 3T, and anisotropic R2 derived from ARCADE on the T2W (TE = 48.8 ms) image from R2 mapping was compared with the composite relaxation (R2 - R1 ρ ) using statistical analysis including Student's t-test and Pearson's correlation coefficient. RESULTS Anisotropic R2 (1/s) from ARCADE was highly positively correlated with but not significantly different from standard R2 - R1 ρ (1/s) in the segmented deep (r = 0.83 ± 0.06; 8.3 ± 2.9 vs. 7.3 ± 1.9, P = .50) and the superficial (r = 0.82 ± 0.05; 3.5 ± 2.4 vs. 4.5 ± 1.6, P = .39) zones. However, after eliminating systematic errors by the normalization in terms of zonal contrast, anisotropic R2 was significantly higher (60.2 ± 18.5% vs. 38.4 ± 16.6%, P < .01) than R2 - R1 ρ as predicted. CONCLUSION The proposed anisotropic R2 mapping could be an efficient alternative to the conventional approach, holding great promise in providing both high-resolution morphological and more sensitive transverse relaxation imaging from a single T2W scan in a clinical setting.
Collapse
Affiliation(s)
- Yuxi Pang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Riann M Palmieri-Smith
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan.,Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Scott D Swanson
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
38
|
Tsai PH, Wong CC, Chan WP, Lu TW. The value of MR T2* measurements in normal and osteoarthritic knee cartilage: effects of age, sex, and location. Eur Radiol 2019; 29:4514-4522. [DOI: 10.1007/s00330-018-5826-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/24/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023]
|
39
|
Hayashi D, Roemer FW, Guermazi A. Imaging of Osteoarthritis by Conventional Radiography, MR Imaging, PET–Computed Tomography, and PET–MR Imaging. PET Clin 2019; 14:17-29. [DOI: 10.1016/j.cpet.2018.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Goncars V, Kalnberzs K, Jakobsons E, Enģele I, Briede I, Blums K, Erglis K, Erglis M, Patetko L, Muiznieks I, Erglis A. Treatment of Knee Osteoarthritis with Bone Marrow-Derived Mononuclear Cell Injection: 12-Month Follow-up. Cartilage 2019; 10:26-35. [PMID: 29373926 PMCID: PMC6376566 DOI: 10.1177/1947603517746721] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To evaluate the main symptoms of knee osteoarthritis (OA) and tissue structure changes after a single dose bone marrow-derived mononuclear cell (BM MNC) intra articular injection. Case series study. Patients with knee OA Kellgren Lawrence (K-L) grade II and III received 1 injection of BM MNC. The clinical results were analyzed with the Knee injury and Osteoarthritis Outcome Score (KOOS) and Knee Society Score (KSS) before, 3, 6, and 12 months after injection. Radiological evaluation was performed with a calibrated x-ray and the magnetic resonance (MR) imaging before and 6 to 7 months postinjection. RESULTS A total of 34 knees were treated with BM MNC injections. Mean (±SD) age of patient group was 53.96 ± 14.15 years; there were 16 males, 16 females, KL grade II, 16; KL grade III, 18. The average injected count of BM MNCs was 45.56 ± 34.94 × 106 cells. At the endpoint of 12 months 65% of patients still had minimal perceptible clinical improvement of the KOOS total score. The mean improvement of KOOS total score was +15.3 and of the KSS knee score was +21.45 and the function subscale +27.08 ( P < 0.05) points. The Whole Organ Magnetic Resonance Imaging Score (WORMS) improved from 44.31 to 42.93 points ( P < 0.05). No adverse effects after the BM-MNC injection were observed. CONCLUSIONS The single dose BM MNC partially reduces clinical signs of the knee osteoarthritis stage II/III and in some cases, decreases degenerative changes in the joint building tissue over 12-month period.
Collapse
Affiliation(s)
- Valdis Goncars
- Latvian State Hospital for Traumatology and Orthopaedics, University of Latvia, Riga, Latvia,Valdis Goncars, Kreslinu iela 3, Marupes nov., Mārupe LV 2167, Latvia.
| | - Konstantins Kalnberzs
- Latvian State Hospital for Traumatology and Orthopaedics, University of Latvia, Riga, Latvia
| | - Eriks Jakobsons
- Pauls Stradins Clinical University Hospital, Cell Transplantation Centre, Institute of Cardiology, University of Latvia, Riga, Latvia
| | - Ilze Enģele
- Riga East University Hospital, Radiologist, Riga, Latvia
| | - Ieva Briede
- Pauls Stradins Clinical University Hospital, Cell Transplantation Centre, Institute of Cardiology, University of Latvia, Riga, Latvia
| | - Kristaps Blums
- Riga East university Hospital, University of Latvia, Latvia
| | - Kristaps Erglis
- Pauls Stradins Clinical University Hospital, Cell Transplantation Centre, Institute of Cardiology, University of Latvia, Riga, Latvia
| | - Martins Erglis
- Pauls Stradins Clinical University Hospital, Cell Transplantation Centre, Institute of Cardiology, University of Latvia, Riga, Latvia
| | - Liene Patetko
- Pauls Stradins Clinical University Hospital, Cell Transplantation Centre, Institute of Cardiology, University of Latvia, Riga, Latvia
| | - Indrikis Muiznieks
- Division of Microbiology and Biotechnology, Department of Biology, University of Latvia, Riga, Latvia
| | - Andrejs Erglis
- Pauls Stradins Clinical University Hospital, Cell Transplantation Centre, Institute of Cardiology, University of Latvia, Riga, Latvia
| |
Collapse
|
41
|
MacKay JW, Low SBL, Smith TO, Toms AP, McCaskie AW, Gilbert FJ. Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis. Osteoarthritis Cartilage 2018; 26:1140-1152. [PMID: 29550400 DOI: 10.1016/j.joca.2017.11.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/16/2017] [Accepted: 11/14/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To assess reliability and discriminative validity of cartilage compositional magnetic resonance imaging (MRI) in knee osteoarthritis (OA). DESIGN The study was carried out per PRISMA recommendations. We searched MEDLINE and EMBASE (1974 - present) for eligible studies. We performed qualitative synthesis of reliability data. Where data from at least two discrimination studies were available, we estimated pooled standardized mean difference (SMD) between subjects with and without OA. Discrimination analyses compared controls and subjects with mild OA (Kellgren-Lawrence (KL) grade 1-2), severe OA (KL grade 3-4) and OA not otherwise specified (NOS) where not possible to stratify. We assessed quality of the evidence using Quality Appraisal of Diagnostic Reliability (QAREL) and Quality Assessment of Diagnostic Accuracy (QUADAS-2) tools. RESULTS Fifty-eight studies were included in the reliability analysis and 26 studies were included in the discrimination analysis, with data from a total of 2,007 knees. Intra-observer, inter-observer and test-retest reliability of compositional techniques were excellent with most intraclass correlation coefficients >0.8 and coefficients of variation <10%. T1rho and T2 relaxometry were significant discriminators between subjects with mild OA and controls, and between subjects with OA (NOS) and controls (P < 0.001). T1rho showed best discrimination for mild OA (SMD [95% CI] = 0.73 [0.40 to 1.06], P < 0.001) and OA (NOS) (0.60 [0.41 to 0.80], P < 0.001). Quality of evidence was moderate for both parts of the review. CONCLUSIONS Cartilage compositional MRI techniques are reliable and, in the case of T1rho and T2 relaxometry, can discriminate between subjects with OA and controls.
Collapse
Affiliation(s)
- J W MacKay
- Department of Radiology, University of Cambridge, Cambridge, UK.
| | - S B L Low
- Department of Radiology, Norfolk & Norwich University Hospital, Norwich, UK.
| | - T O Smith
- School of Health Sciences, University of East Anglia, Norwich, UK.
| | - A P Toms
- Department of Radiology, Norfolk & Norwich University Hospital, Norwich, UK.
| | - A W McCaskie
- Division of Trauma & Orthopaedics, Department of Surgery, University of Cambridge, Cambridge UK.
| | - F J Gilbert
- Department of Radiology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
42
|
Link TM, Li X. Establishing compositional MRI of cartilage as a biomarker for clinical practice. Osteoarthritis Cartilage 2018; 26:1137-1139. [PMID: 29550402 DOI: 10.1016/j.joca.2018.02.902] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/16/2018] [Accepted: 02/27/2018] [Indexed: 02/02/2023]
Affiliation(s)
- T M Link
- Department of Radiology of Biomedical Imaging, University of California, San Francisco, USA.
| | - X Li
- Department of Biomedical Engineering, Cleveland Clinic, USA
| |
Collapse
|
43
|
Chen L, Ji Y, Hu X, Cui C, Liu H, Tang Y, Qi B, Niu Y, Hu X, Yu A, Fan Q. Cationic poly-l-lysine-encapsulated melanin nanoparticles as efficient photoacoustic agents targeting to glycosaminoglycans for the early diagnosis of articular cartilage degeneration in osteoarthritis. NANOSCALE 2018; 10:13471-13484. [PMID: 29972184 DOI: 10.1039/c8nr03791d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cartilage degeneration is the hallmark of osteoarthritis (OA) and its early diagnosis is essential for effective cartilage repair. However, until now, there was still a lack of imaging modalities that can accurately detect and evaluate cartilage degeneration in its early stage. Herein, we introduce endogenous melanin nanoparticles (MNPs) encapsulated by poly-l-lysine (PLL) as positively charged contrast agents for the accurate photoacoustic (PA) imaging of cartilage degeneration through its strong electrostatic interaction with anionic glycosaminoglycans (GAGs) in the cartilage. PLL-MNPs presented high PA intensity, photostability and biocompatibility. In vitro PAI studies showed that PLL-MNPs with a zeta potential of +32.5 ± 9.3 mV had more cartilage uptake and longer retention time than anionic MNPs, and generated a positive relationship with the GAG content in the cartilage. After administration via intra-articular injection in living mouse models, PLL-MNPs exhibited about a two-fold stronger PA signal in a normal joint (with high GAG content) than an OA joint (with low GAG content). Furthermore, the obtained PAI results provided accurate information of the GAG content distribution in the OA knee joint. Consequently, by detecting and analyzing the changes of the GAG content in OA cartilage using PAI, we can clearly distinguish early OA from late OA and monitor the therapeutic efficacy in OA after drug treatment. All PAI results were examined histologically.
Collapse
Affiliation(s)
- Liang Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Multiparametric MRI and Computational Modelling in the Assessment of Human Articular Cartilage Properties: A Comprehensive Approach. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9460456. [PMID: 29862300 PMCID: PMC5976938 DOI: 10.1155/2018/9460456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 04/08/2018] [Indexed: 12/26/2022]
Abstract
Quantitative magnetic resonance imaging (qMRI) is a promising approach to detect early cartilage degeneration. However, there is no consensus on which cartilage component contributes to the tissue's qMRI signal properties. T1, T1ρ, and T2⁎ maps of cartilage samples (n = 8) were generated on a clinical 3.0-T MRI system. All samples underwent histological assessment to ensure structural integrity. For cross-referencing, a discretized numerical model capturing distinct compositional and structural tissue properties, that is, fluid fraction (FF), proteoglycan (PG) and collagen (CO) content and collagen fiber orientation (CFO), was implemented. In a pixel-wise and region-specific manner (central versus peripheral region), qMRI parameter values and modelled tissue parameters were correlated and quantified in terms of Spearman's correlation coefficient ρs. Significant correlations were found between modelled compositional parameters and T1 and T2⁎, in particular in the central region (T1: ρs ≥ 0.7 [FF, CFO], ρs ≤ −0.8 [CO, PG]; T2⁎: ρs ≥ 0.67 [FF, CFO], ρs ≤ −0.71 [CO, PG]). For T1ρ, correlations were considerably weaker and fewer (0.16 ≤ ρs ≤ −0.15). QMRI parameters are characterized in their biophysical properties and their sensitivity and specificity profiles in a basic scientific context. Although none of these is specific towards any particular cartilage constituent, T1 and T2⁎ reflect actual tissue compositional features more closely than T1ρ.
Collapse
|
45
|
Ostrowska M, Maśliński W, Prochorec-Sobieszek M, Nieciecki M, Sudoł-Szopińska I. Cartilage and bone damage in rheumatoid arthritis. Reumatologia 2018; 56:111-120. [PMID: 29853727 PMCID: PMC5974634 DOI: 10.5114/reum.2018.75523] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/13/2018] [Indexed: 01/19/2023] Open
Abstract
Rheumatoid arthritis (RA), which is a chronic inflammatory disease with a multifactorial aetiology, leads to partial or permanent disability in the majority of patients. It is characterised by persistent synovitis and formation of pannus, i.e. invasive synovial tissue, which ultimately leads to destruction of the cartilage, subchondral bone, and soft tissues of the affected joint. Moreover, inflammatory infiltrates in the subchondral bone, which can lead to inflammatory cysts and later erosions, play an important role in the pathogenesis of RA. These inflammatory infiltrates can be seen in magnetic resonance imaging (MRI) as bone marrow oedema (BME). BME is observed in 68-75% of patients in early stages of RA and is considered a precursor of rapid disease progression. The clinical significance of synovitis and bone marrow oedema as precursors of erosions is well established in daily practice, and synovitis, BME, cysts, hyaline cartilage defects and bone erosions can be detected by ultrasonography (US) and MRI. A less explored subject is the inflammatory and destructive potential of intra- and extra-articular fat tissue, which can also be evaluated in US and MRI. Finally, according to certain hypotheses, hyaline cartilage damage may trigger synovitis and lead to irreversible joint damage, and MRI may be used for preclinical detection of cartilage biochemical abnormalities. This review discusses the pathomechanisms that lead to articular cartilage and bone damage in RA, including erosion precursors such as synovitis and osteitis and panniculitis, as well as the role of imaging techniques employed to detect early cartilage damage and bone erosions.
Collapse
Affiliation(s)
- Monika Ostrowska
- Department of Radiology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Włodzimierz Maśliński
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Monika Prochorec-Sobieszek
- Diagnostic Haematology Department, Institute of Haematology and Transfusion Medicine, Warsaw, Poland
- Department of Pathomorphology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Michał Nieciecki
- Department of Diagnostic Imaging, Medical University of Warsaw, Poland
- Department of Nuclear Medicine, Medical University of Warsaw, Poland
| | - Iwona Sudoł-Szopińska
- Department of Radiology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Department of Diagnostic Imaging, Medical University of Warsaw, Poland
| |
Collapse
|
46
|
Persisting CAM deformity is associated with early cartilage degeneration after Slipped Capital Femoral Epiphysis: 11-year follow-up including dGEMRIC. Osteoarthritis Cartilage 2018; 26:557-563. [PMID: 29426010 DOI: 10.1016/j.joca.2018.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/03/2018] [Accepted: 01/18/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Slipped capital femoral epiphysis (SCFE) in adolescence is associated with increased risk of future osteoarthritis (OA). The purpose of this study was to study clinical and radiographic risk factors for early cartilage degeneration after SCFE. DESIGN 22 patients (44 hips) (mean age 24 years, range 18-27) treated with in situ fixation (The Hansson hook-pin) for stable SCFE on average 11 years previously were investigated. Cartilage status was assessed with delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC). The alpha angle, reflecting femoroacetabular impingement (FAI), and the original slip angle were measured. Clinical outcome was assessed with the Copenhagen hip and groin outcome score (HAGOS) and clinical examination. RESULTS The dGEMRIC index was lower in SCFE hips than unaffected hips 456 ms (CI 419-493) vs 521 ms (CI 476-567) (P = 0.03). The difference was larger (mean 21 ms) in anterior than posterior regions of the hip (P = 0.038). The alpha angle was higher in SCFE hips, 61.5° (CI 53.9-69.1) vs 45.6° (CI 43.6-47.6), (P < 0.001). The alpha angle, but not the original slip angle, correlated negatively with the dGEMRIC index (R = -0.40, P = 0.046). There was a positive correlation between HAGOS and the dGEMRIC-index (R = 0.41, P = 0.012). CONCLUSIONS Early cartilage degeneration after SCFE seems related to persisting FAI in adulthood, rather than the initial slip severity. The correlation between dGEMRIC and HAGOS indicates a clinical relevance of the MRI findings. Our results suggest that FAI after SCFE should be evaluated already after physeal closure in order to predict and possibly prevent future OA development.
Collapse
|
47
|
Helgesson L, Johansson PK, Aurell Y, Tiderius CJ, Kärrholm J, Riad J. Early osteoarthritis after slipped capital femoral epiphysis. Acta Orthop 2018; 89:222-228. [PMID: 29172934 PMCID: PMC5901522 DOI: 10.1080/17453674.2017.1407055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background and purpose - Slipped capital femoral epiphysis (SCFE) results in a more or less pronounced deformity of the proximal femur, sometimes causing impingement and early osteoarthritis. We studied early osteoarthritis after SCFE and the association with deformity and self-reported hip function, pain, and quality of life. Patients and methods - 9 women and 16 men, mean age 32 (21-50) years, 19 with unilateral and 6 with bilateral SCFE, participated. All patients had primarily been operated by pin or screw with no attempt at reposition of the slip. Hips were examined by delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC), which quantifies and locates cartilage degeneration. Plain radiographs were used to measure deformity as determined by the alpha angle. Outcome was assessed by Oxford hip score, Hip Groin Outcome score and EQ-5D-Visual scale. Results - In the 19 unilateral SCFE, on the slip side dGEMRIC mean value was 533 ms (SD 112, range 357-649) versus mean 589 ms (SD 125, range 320-788) on the non-slip side, (p = 0.01). The dGEMRIC correlated negatively to the alpha angle, correlation coefficient (CC) = -0.60, (p = 0.002). Oxford hip score, pain, and EQ-5D-Visual scale correlated to dGEMRIC CC =0.43 (p = 0.03), CC =0.40 (p = 0.05), and CC =0.49 (p = 0.01) respectively. Interpretation - After SCFE, even relatively mild residual hip deformity can be associated with cartilage degeneration. A high alpha angle was associated with worse cartilage status. The Oxford hip score identified symptoms even though our patients had not previously sought medical care after the index operation. Quality of life showed strong inverse correlation with cartilage degeneration. Objective assessment of early cartilage degeneration may be useful for treatment decisions and follow-up.
Collapse
Affiliation(s)
| | | | - Ylva Aurell
- Department of Radiology, Mölndal Hospital, Sahlgrenska
| | | | - Johan Kärrholm
- Department of Orthopaedics, Mölndal Hospital, Sahlgrenska, Sweden
| | - Jacques Riad
- Department of Orthopaedics, Skaraborgs Hospital, Skövde,Correspondence:
| |
Collapse
|
48
|
Hafezi-Nejad N, Demehri S, Guermazi A, Carrino JA. Osteoarthritis year in review 2017: updates on imaging advancements. Osteoarthritis Cartilage 2018; 26:341-349. [PMID: 29330100 DOI: 10.1016/j.joca.2018.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/24/2017] [Accepted: 01/03/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This narrative review covers original research publications related to imaging advancements in osteoarthritis (OA) published in the English language between 1st April 2016 and 30th April 2017. METHODS Relevant human studies (excluding pre-clinical and in vitro studies), were searched and selected from PubMed database using the search terms of "osteoarthritis (OA)" in combination with "radiography", "magnetic resonance imaging (MRI)", "computed tomography (CT)", "ultrasound", "positron emission tomography (PET)," "single-photon emission computed tomography (SPECT)," and "scintigraphy". The included studies were sorted according to their relevance, novelty, and impact. Original research articles with both imaging advancements and novel clinical information were discussed in this review. RESULTS A large portion of the published studies were focused on MRI-based semi-quantitative and quantitative (morphological and structural) metrics of the knee joint to assess OA-related structural damages. New imaging technologies, such as PET, have been investigated for OA diagnosis and characterization, the delineation of predictive factors for OA progression, and to monitor the treatment responses. CONCLUSION Advanced imaging modalities play a pivotal role in OA research, and make a significant contribution to our understanding of OA diagnosis, pathogenesis, risk stratification, and prognosis.
Collapse
Affiliation(s)
- N Hafezi-Nejad
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - S Demehri
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - A Guermazi
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, MA, India
| | - J A Carrino
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
49
|
Stem Cells for Cartilage Repair: Preclinical Studies and Insights in Translational Animal Models and Outcome Measures. Stem Cells Int 2018. [PMID: 29535784 PMCID: PMC5832141 DOI: 10.1155/2018/9079538] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Due to the restricted intrinsic capacity of resident chondrocytes to regenerate the lost cartilage postinjury, stem cell-based therapies have been proposed as a novel therapeutic approach for cartilage repair. Moreover, stem cell-based therapies using mesenchymal stem cells (MSCs) or induced pluripotent stem cells (iPSCs) have been used successfully in preclinical and clinical settings. Despite these promising reports, the exact mechanisms underlying stem cell-mediated cartilage repair remain uncertain. Stem cells can contribute to cartilage repair via chondrogenic differentiation, via immunomodulation, or by the production of paracrine factors and extracellular vesicles. But before novel cell-based therapies for cartilage repair can be introduced into the clinic, rigorous testing in preclinical animal models is required. Preclinical models used in regenerative cartilage studies include murine, lapine, caprine, ovine, porcine, canine, and equine models, each associated with its specific advantages and limitations. This review presents a summary of recent in vitro data and from in vivo preclinical studies justifying the use of MSCs and iPSCs in cartilage tissue engineering. Moreover, the advantages and disadvantages of utilizing small and large animals will be discussed, while also describing suitable outcome measures for evaluating cartilage repair.
Collapse
|
50
|
Nebelung S, Sondern B, Jahr H, Tingart M, Knobe M, Thüring J, Kuhl C, Truhn D. Non-invasive T1ρ mapping of the human cartilage response to loading and unloading. Osteoarthritis Cartilage 2018; 26:236-244. [PMID: 29175373 DOI: 10.1016/j.joca.2017.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 09/21/2017] [Accepted: 11/13/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To define the physiological response to sequential loading and unloading in histologically intact human articular cartilage using serial T1ρ mapping, as T1ρ is considered to indicate the tissue's macromolecular content. METHOD 18 macroscopically intact cartilage-bone samples were obtained from the central lateral femoral condyles of 18 patients undergoing total knee replacement. Serial T1ρ mapping was performed on a clinical 3.0-T MRI system using a modified prostate coil. Spin-lock multiple gradient-echo sequences prior to, during and after standardized indentation loading (displacement controlled, strain 20%) were used to obtain seven serial T1ρ maps: unloaded (δ0), quasi-statically loaded (indentation1-indentation3) and under subsequent relaxation (relaxation1-relaxation3). After manual segmentation, zonal and regional regions-of-interest were defined. ROI-specific relative changes were calculated and statistically assessed using paired t-tests. Histological (Mankin classification) and biomechanical (unconfined compression) evaluations served as references. RESULTS All samples were histologically and biomechanically grossly intact (Mankin sum: 1.8 ± 1.2; Young's Modulus: 0.7 ± 0.4 MPa). Upon loading, T1ρ consistently increased throughout the entire sample thickness, primarily subpistonally (indentation1 [M ± SD]: 9.5 ± 7.8% [sub-pistonal area, SPA] vs 4.2 ± 5.8% [peri-pistonal area, PPA]; P < 0.001). T1ρ further increased with ongoing loading (indentation3: 14.1 ± 8.1 [SPA] vs 7.7 ± 5.9% [PPA]; P < 0.001). Even upon unloading (i.e., relaxation), T1ρ persistently increased in time. CONCLUSION Serial T1ρ-mapping reveals distinct and complex zonal and regional changes in articular cartilage as a function of loading and unloading. Thereby, longitudinal adaptive processes in hyaline cartilage become evident, which may be used for the tissue's non-invasive functional characterization by T1ρ.
Collapse
Affiliation(s)
- S Nebelung
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - B Sondern
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - H Jahr
- Department of Orthopaedics, Aachen University Hospital, Aachen, Germany.
| | - M Tingart
- Department of Orthopaedics, Aachen University Hospital, Aachen, Germany.
| | - M Knobe
- Department of Orthopaedic Trauma, Aachen University Hospital, Aachen, Germany.
| | - J Thüring
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - C Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| | - D Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.
| |
Collapse
|