1
|
Lecouvet FE, Chabot C, Taihi L, Kirchgesner T, Triqueneaux P, Malghem J. Present and future of whole-body MRI in metastatic disease and myeloma: how and why you will do it. Skeletal Radiol 2024; 53:1815-1831. [PMID: 39007948 PMCID: PMC11303436 DOI: 10.1007/s00256-024-04723-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024]
Abstract
Metastatic disease and myeloma present unique diagnostic challenges due to their multifocal nature. Accurate detection and staging are critical for determining appropriate treatment. Bone scintigraphy, skeletal radiographs and CT have long been the mainstay for the assessment of these diseases, but have limitations, including reduced sensitivity and radiation exposure. Whole-body MRI has emerged as a highly sensitive and radiation-free alternative imaging modality. Initially developed for skeletal screening, it has extended tumor screening to all organs, providing morphological and physiological information on tumor tissue. Along with PET/CT, whole-body MRI is now accepted for staging and response assessment in many malignancies. It is the first choice in an ever increasing number of cancers (such as myeloma, lobular breast cancer, advanced prostate cancer, myxoid liposarcoma, bone sarcoma, …). It has also been validated as the method of choice for cancer screening in patients with a predisposition to cancer and for staging cancers observed during pregnancy. The current and future challenges for WB-MRI are its availability facing this number of indications, and its acceptance by patients, radiologists and health authorities. Guidelines have been developed to optimize image acquisition and reading, assessment of lesion response to treatment, and to adapt examination designs to specific cancers. The implementation of 3D acquisition, Dixon method, and deep learning-based image optimization further improve the diagnostic performance of the technique and reduce examination durations. Whole-body MRI screening is feasible in less than 30 min. This article reviews validated indications, recent developments, growing acceptance, and future perspectives of whole-body MRI.
Collapse
Affiliation(s)
- Frederic E Lecouvet
- Department of Medical Imaging, Institut de Recherche Expérimentale et Clinique (IREC), Institut du Cancer Roi Albert II, Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCL), Avenue Hippocrate, 10, B-1200, Brussels, Belgium.
| | - Caroline Chabot
- Department of Medical Imaging, Institut de Recherche Expérimentale et Clinique (IREC), Institut du Cancer Roi Albert II, Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCL), Avenue Hippocrate, 10, B-1200, Brussels, Belgium
| | - Lokmane Taihi
- Department of Medical Imaging, Institut de Recherche Expérimentale et Clinique (IREC), Institut du Cancer Roi Albert II, Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCL), Avenue Hippocrate, 10, B-1200, Brussels, Belgium
| | - Thomas Kirchgesner
- Department of Medical Imaging, Institut de Recherche Expérimentale et Clinique (IREC), Institut du Cancer Roi Albert II, Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCL), Avenue Hippocrate, 10, B-1200, Brussels, Belgium
| | - Perrine Triqueneaux
- Department of Medical Imaging, Institut de Recherche Expérimentale et Clinique (IREC), Institut du Cancer Roi Albert II, Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCL), Avenue Hippocrate, 10, B-1200, Brussels, Belgium
| | - Jacques Malghem
- Department of Medical Imaging, Institut de Recherche Expérimentale et Clinique (IREC), Institut du Cancer Roi Albert II, Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCL), Avenue Hippocrate, 10, B-1200, Brussels, Belgium
| |
Collapse
|
2
|
El Khalfi R, Maupoint E, Chiavassa-Gandois H, Goumarre C, Filliole A, Lapègue F, Fabry V, Acket B, Laforet A, Sans N, Cintas P, Faruch-Bilfeld M. Assessment of whole-body muscle MRI for the early diagnosis of Amyotrophic Lateral Sclerosis. Eur J Radiol 2024; 176:111481. [PMID: 38703513 DOI: 10.1016/j.ejrad.2024.111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/01/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVES To evaluate muscle signal abnormalities on whole-body muscle MRI with T2 and diffusion-weighted imaging in early ALS stages. METHODS 101 muscles were analyzed in newly diagnosed ALS patients and healthy controls on a whole-body MRI protocol including four-point T2-Dixon imaging and diffusion-weighted imaging (b0 and b800). Sensitivity and inter-observer agreement were assessed. RESULTS 15 patients (mean age, 64 +/- 12 [SD], 9 men) who met the Awaji-Shima criteria for definite, probable or possible ALS and 9 healthy controls were assessed (mean age, 53 +/- 13 [SD], 2 men). 61 % of the muscles assessed in ALS patients (62/101) showed signal hyperintensities on T2-weighted imaging, mainly in the upper and lower extremities (legs, hands and feet). ALS patients had a significantly higher number of involved muscles compared to healthy controls (p = 0,006). Diffusion-weighted imaging allowed for the detection of additional involvement in 22 muscles, thus improving the sensitivity of whole-body MRI from 60 % (using T2-weighted imaging only) up to 80 % (with the combination of T2-weighted and diffusion-weighted imaging). CONCLUSIONS ALS patients exhibited significant muscle signal abnormalities on T2-weighted and diffusion-weighted imaging in early disease stages. Whole-body MRI could be used for pre-EMG mapping of muscle involvement in order to choose suitable targets, thus improving early diagnosis.
Collapse
Affiliation(s)
- Rokia El Khalfi
- Service d'Imagerie Médicale - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France.
| | - Estelle Maupoint
- Service d'Imagerie Médicale - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Hélène Chiavassa-Gandois
- Service d'Imagerie Médicale - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Céline Goumarre
- Service d'Imagerie Médicale - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Antoine Filliole
- Service d'Imagerie Médicale - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Franck Lapègue
- Service d'Imagerie Médicale - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Vincent Fabry
- Service de Neurologie - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Blandine Acket
- Service de Neurologie - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Anne Laforet
- Service de Neurologie - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Nicolas Sans
- Service d'Imagerie Médicale - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Pascal Cintas
- Service de Neurologie - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France
| | - Marie Faruch-Bilfeld
- Service d'Imagerie Médicale - Hôpital Purpan - CHU de Toulouse, Avenue du Professeur Jean Dausset, 31000 Toulouse, France.
| |
Collapse
|
3
|
Guimarães JB, da Cruz IAN, Ahlawat S, Ormond Filho AG, Nico MAC, Lederman HM, Fayad LM. The Role of Whole-Body MRI in Pediatric Musculoskeletal Oncology: Current Concepts and Clinical Applications. J Magn Reson Imaging 2024; 59:1886-1901. [PMID: 34145692 DOI: 10.1002/jmri.27787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 01/23/2023] Open
Abstract
Whole-body magnetic resonance imaging (WB-MRI) has gained importance in the field of musculoskeletal oncology over the last decades, consisting in a one-stop imaging method that allows a wide coverage assessment of both bone and soft tissue involvement. WB-MRI is valuable for diagnosis, staging, and follow-up in many oncologic diseases and is especially advantageous for the pediatric population since it avoids redundant examinations and exposure to ionizing radiation in patients who often undergo long-term surveillance. Its clinical application has been studied in many pediatric neoplasms, such as cancer predisposition syndromes, Langerhans cell histiocytosis, lymphoma, sarcomas, and neuroblastoma. The addition of diffusion-weighted sequences allows functional evaluation of neoplastic lesions, which is helpful in the assessment of viable tumor and response to treatment after neoadjuvant or adjuvant therapy. WB-MRI is an excellent alternative to fluorodeoxyglucose-positron emission tomography/computed tomography in oncologic children, with comparable accuracy and the convenience of being radiation-free, fast to perform, and available at a similar cost. The development of new techniques and protocols makes WB-MRI increasingly faster, safer, and more accessible, and it is important for referring physicians and radiologists to recognize the role of this imaging method in pediatric oncology. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Júlio Brandão Guimarães
- Diagnostic Imaging Center, Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), São Paulo, Brazil
- Department of Radiology, Fleury Group, São Paulo, Brazil
- Department of Radiology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Shivani Ahlawat
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alípio Gomes Ormond Filho
- Diagnostic Imaging Center, Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), São Paulo, Brazil
| | - Marcelo Astolfi Caetano Nico
- Diagnostic Imaging Center, Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), São Paulo, Brazil
| | - Henrique Manoel Lederman
- Diagnostic Imaging Center, Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), São Paulo, Brazil
- Department of Radiology, Federal University of São Paulo, São Paulo, Brazil
| | - Laura Marie Fayad
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Vulasala SS, Virarkar M, Karbasian N, Calimano-Ramirez LF, Daoud T, Amini B, Bhosale P, Javadi S. Whole-body MRI in oncology: A comprehensive review. Clin Imaging 2024; 108:110099. [PMID: 38401295 DOI: 10.1016/j.clinimag.2024.110099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/26/2024]
Abstract
Whole-Body Magnetic Resonance Imaging (WB-MRI) has cemented its position as a pivotal tool in oncological diagnostics. It offers unparalleled soft tissue contrast resolution and the advantage of sidestepping ionizing radiation. This review explores the diverse applications of WB-MRI in oncology. We discuss its transformative role in detecting and diagnosing a spectrum of cancers, emphasizing conditions like multiple myeloma and cancers with a proclivity for bone metastases. WB-MRI's capability to encompass the entire body in a singular scan has ushered in novel paradigms in cancer screening, especially for individuals harboring hereditary cancer syndromes or at heightened risk for metastatic disease. Additionally, its contribution to the clinical landscape, aiding in the holistic management of multifocal and systemic malignancies, is explored. The article accentuates the technical strides achieved in WB-MRI, its myriad clinical utilities, and the challenges in integration into standard oncological care. In essence, this review underscores the transformative potential of WB-MRI, emphasizing its promise as a cornerstone modality in shaping the future trajectory of cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Sai Swarupa Vulasala
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, United States.
| | - Mayur Virarkar
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, United States
| | - Niloofar Karbasian
- Department of Radiology, McGovern Medical School at University of Texas Health Houston, Houston, TX, United States
| | - Luis F Calimano-Ramirez
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, United States
| | - Taher Daoud
- Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Behrang Amini
- Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priya Bhosale
- Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sanaz Javadi
- Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
5
|
Gerevini S, Cristiano L, D'Anna G, Castellano A, Vernooij MW, Yousry T, Pichiecchio A. Neuromuscular imaging in clinical practice: an ESNR survey of 30 centers. Neuroradiology 2024; 66:179-186. [PMID: 38110540 DOI: 10.1007/s00234-023-03255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023]
Abstract
PURPOSE We assessed the current clinical imaging practice in the primary evaluation of neuromuscular disorders (NMD), with respect to standardized imaging, evaluation and reporting through a European and extra-European-wide survey. METHODS An online questionnaire was emailed to all European Society of Neuroradiology (ESNR) members (n = 1662) who had expressed their interest in NMD. The questionnaire featured 40 individual items. Information was gathered on the context of the practices, available and preferred imaging modalities, applied imaging protocols and standards for interpretation, reporting and communication. RESULTS A total of 30 unique entries from European and extra-European academic and non-academic institutions were received. Of these, 70% were neuroradiologists, 23% general radiologists and 7% musculoskeletal radiologists. Of the 30 responding institutes, 40% performed from 20 to 50 neuromuscular scans per year for suspected NMD. The principal modality used for a suspected myopathy was magnetic resonance imaging (MRI) (50%) or "mainly MRI" (47%). The primary imaging modality used for the evaluation of patients suspected of a neuropathy was MRI in 63% of all institutions and "mainly MRI" in 37%. For both muscle and nerve pathology, pelvic girdle and inferior limbs are the most scanned parts of the body (28%), followed by the thigh and leg (24%), whole body MR (24%), scapular girdle (16%), and the thigh in just 8% of institutions. Multiplanar acquisitions were performed in 50% of institutions. Convectional sequences used for muscle MRI included T2-STIR (88%), 2D T1weighted (w) (68%), T1 Dixon or equivalent (52%), T2 Dixon (40%), DWI (36%), 2D T2w (28%), T1 3D and T2 3D (20% respectively). For nerve MRI conventional sequences included T2-STIR (80%), DWI (56%), T2 3D (48%), 2D T2w (48%), T1 3D (44%), T1 Dixon or equivalent (44%), 2D T1 (36%), T2 Dixon (28%). Quantitative sequences were used regularly by 40% respondents. While only 28% of institutions utilized structured reports, a notable 88% of respondents expressed a desire for a standardized consensus structured report. Most of the respondents (93%) would be interested in a common MRI neuromuscular protocol and would like to be trained (87%) by the ESNR society with specific neuromuscular sessions in European annual meetings. CONCLUSIONS Based on the survey findings, we can conclude that the current approach to neuromuscular imaging varies considerably among European and extra-European countries, both in terms of image acquisition and post-processing. Some of the challenges identified include the translation of research achievements (related to advanced imaging) into practical applications in a clinical setting, implementation of quantitative imaging post-processing techniques, adoption of structured reporting methods, and communication with referring physicians.
Collapse
Affiliation(s)
- Simonetta Gerevini
- Head Diagnostic Imaging Department, Head Neuroradiology Unit, ASST Papa Giovanni XXIII, OMS Square, 1-24127, Bergamo, Italy
| | - Lara Cristiano
- Pediatric Neurology Unit, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, 00168, Rome, Italy.
| | - Gennaro D'Anna
- Neuroimaging Unit, ASST Ovest Milanese, Legnano, Milan, Italy
| | - Antonella Castellano
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele Vita-Salute San Raffaele University, Milan, Italy
| | - Meike W Vernooij
- Department of Radiology & Nuclear Medicine Department of Epidemiology, Office ND-544, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Tarek Yousry
- BRR Department, UCL IoN, NHNN, Clinical Research Centre, UCLH, Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Anna Pichiecchio
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
6
|
Ceranka J, Wuts J, Chiabai O, Lecouvet F, Vandemeulebroucke J. Computer-aided diagnosis of skeletal metastases in multi-parametric whole-body MRI. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107811. [PMID: 37742486 DOI: 10.1016/j.cmpb.2023.107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
The confident detection of metastatic bone disease is essential to improve patients' comfort and increase life expectancy. Multi-parametric magnetic resonance imaging (MRI) has been successfully used for monitoring of metastatic bone disease, allowing for comprehensive and holistic evaluation of the total tumour volume and treatment response assessment. The major challenges of radiological reading of whole-body MRI come from the amount of data to be reviewed and the scattered distribution of metastases, often of complex shapes. This makes bone lesion detection and quantification demanding for a radiologist and prone to error. Additionally, whole-body MRI are often corrupted with multiple spatial and intensity distortions, which further degrade the performance of image reading and image processing algorithms. In this work we propose a fully automated computer-aided diagnosis system for the detection and segmentation of metastatic bone disease using whole-body multi-parametric MRI. The system consists of an extensive image preprocessing pipeline aiming at enhancing the image quality, followed by a deep learning framework for detection and segmentation of metastatic bone disease. The system outperformed state-of-the-art methodologies, achieving a detection sensitivity of 63% with a mean of 6.44 false positives per image, and an average lesion Dice coefficient of 0.53. A provided ablation study performed to investigate the relative importance of image preprocessing shows that introduction of region of interest mask and spatial registration have a significant impact on detection and segmentation performance in whole-body MRI. The proposed computer-aided diagnosis system allows for automatic quantification of disease infiltration and could provide a valuable tool during radiological examination of whole-body MRI.
Collapse
Affiliation(s)
- Jakub Ceranka
- Vrije Universiteit Brussel, Department of Electronics and Informatics, Pleinlaan 2, Brussels, 1050, Belgium; imec, Kapeldreef 75, Leuven, B-3001, Belgium.
| | - Joris Wuts
- Vrije Universiteit Brussel, Department of Electronics and Informatics, Pleinlaan 2, Brussels, 1050, Belgium; imec, Kapeldreef 75, Leuven, B-3001, Belgium; Cliniques universitaires Saint Luc, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Avenue Hippocrate 10, Brussels, 1200, Belgium.
| | - Ophélye Chiabai
- Cliniques universitaires Saint Luc, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Avenue Hippocrate 10, Brussels, 1200, Belgium
| | - Frédéric Lecouvet
- Cliniques universitaires Saint Luc, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Avenue Hippocrate 10, Brussels, 1200, Belgium
| | - Jef Vandemeulebroucke
- Vrije Universiteit Brussel, Department of Electronics and Informatics, Pleinlaan 2, Brussels, 1050, Belgium; imec, Kapeldreef 75, Leuven, B-3001, Belgium; Universitair Ziekenhuis Brussel, Department of Radiology, Laarbeeklaan 101, Brussels, 1090, Belgium
| |
Collapse
|
7
|
Pace M, Cannella R, Di Stefano V, Lupica A, Alonge P, Morici G, Brighina F, Brancato F, Midiri F, Galia M. Usefulness and Clinical Impact of Whole-Body MRI in Detecting Autoimmune Neuromuscular Disorders. Brain Sci 2023; 13:1500. [PMID: 37891867 PMCID: PMC10605918 DOI: 10.3390/brainsci13101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Autoimmune neuromuscular diseases are a group of heterogenous pathologies secondary to the activation of the immune system that damage the structures of the peripheric nerve, the neuromuscular junction, or the skeleton muscle. The diagnosis of autoimmune neuromuscular disorders comprises a combination of data from clinical, laboratory, electromyography, imaging exam, and biopsy. Particularly, the whole-body MRI examination in the last two decades has been of great use in the assessment of neuromuscular disorders. MRI provides information about the structures involved and the status of activity of the disease. It can also be used as a biomarker, detect the pattern of specific muscle involvement, and is a useful tool for targeting the optimal muscle site for biopsy. In this work, we summarized the most used technical protocol of whole-body MRI and the role of this imaging technique in autoimmune neuromuscular disorders.
Collapse
Affiliation(s)
- Mario Pace
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University Hospital “Paolo Giaccone”, Via del Vespro 129, 90127 Palermo, Italy; (M.P.); (R.C.); (G.M.)
| | - Roberto Cannella
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University Hospital “Paolo Giaccone”, Via del Vespro 129, 90127 Palermo, Italy; (M.P.); (R.C.); (G.M.)
| | - Vincenzo Di Stefano
- Section of Neurology, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, 90127 Palermo, Italy; (V.D.S.); (A.L.); (P.A.); (F.B.)
| | - Antonino Lupica
- Section of Neurology, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, 90127 Palermo, Italy; (V.D.S.); (A.L.); (P.A.); (F.B.)
| | - Paolo Alonge
- Section of Neurology, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, 90127 Palermo, Italy; (V.D.S.); (A.L.); (P.A.); (F.B.)
| | - Giulio Morici
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University Hospital “Paolo Giaccone”, Via del Vespro 129, 90127 Palermo, Italy; (M.P.); (R.C.); (G.M.)
| | - Filippo Brighina
- Section of Neurology, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, 90127 Palermo, Italy; (V.D.S.); (A.L.); (P.A.); (F.B.)
| | - Federica Brancato
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), University of Palermo, 90133 Palermo, Italy;
| | - Federico Midiri
- IRCCS Ospedale Galeazzi-Sant’Ambrogio, Via Cristina Belgioioso 173, 20161 Milano, Italy;
| | - Massimo Galia
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University Hospital “Paolo Giaccone”, Via del Vespro 129, 90127 Palermo, Italy; (M.P.); (R.C.); (G.M.)
| |
Collapse
|
8
|
Wang X, Zhou D, Kong Y, Cheng N, Gao M, Zhang G, Ma J, Chen Y, Ge S. Value of 18F-FDG-PET/CT radiomics combined with clinical variables in the differential diagnosis of malignant and benign vertebral compression fractures. EJNMMI Res 2023; 13:89. [PMID: 37819414 PMCID: PMC10567613 DOI: 10.1186/s13550-023-01038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Vertebral compression fractures (VCFs) are common clinical problems that arise from various reasons. The differential diagnosis of benign and malignant VCFs is challenging. This study was designed to develop and validate a radiomics model to predict benign and malignant VCFs with 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG-PET/CT). RESULTS Twenty-six features (9 PET features and 17 CT features) and eight clinical variables (age, SUVmax, SUVpeak, SULmax, SULpeak, osteolytic destruction, fracture line, and appendices/posterior vertebrae involvement) were ultimately selected. The area under the curve (AUCs) of the radiomics and clinical-radiomics models were significantly different from that of the clinical model in both the training group (0.986, 0.987 vs. 0.884, p < 0.05) and test group (0.962, 0.948 vs. 0.858, p < 0.05), while there was no significant difference between the radiomics model and clinical-radiomics model (p > 0.05). The accuracies of the radiomics and clinical-radiomics models were 94.0% and 95.0% in the training group and 93.2% and 93.2% in the test group, respectively. The three models all showed good calibration (Hosmer-Lemeshow test, p > 0.05). According to the decision curve analysis (DCA), the radiomics model and clinical-radiomics model exhibited higher overall net benefit than the clinical model. CONCLUSIONS The PET/CT-based radiomics and clinical-radiomics models showed good performance in distinguishing between malignant and benign VCFs. The radiomics method may be valuable for treatment decision-making.
Collapse
Affiliation(s)
- Xun Wang
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China
| | - Dandan Zhou
- Big Data and Artificial Intelligence, Jining Polytechnic, Jinyu Road, Jining, Shandong, China
| | - Yu Kong
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China
| | - Nan Cheng
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China
| | - Ming Gao
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China
| | - Guqing Zhang
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China
| | - Junli Ma
- Department of Radiation Oncology, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China
| | - Yueqin Chen
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China.
| | - Shuang Ge
- Department of Radiation Oncology, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China.
| |
Collapse
|
9
|
Amini B, Chenglei L, Duran-Sierra E, Wang WL, Canjirathinkal MA, Moradi H, Green WN, Madewell JE, Costelloe CM, Murphy WA, Valenzuela RF. Role of Apparent Diffusion Coefficient Map-Based First- and High-Order Radiomic Features for the Discrimination of Sacral Chordomas and Chondrosarcomas With Overlapping Conventional Imaging Features. JCO Precis Oncol 2023; 7:e2300243. [PMID: 38127828 DOI: 10.1200/po.23.00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 12/23/2023] Open
Abstract
PURPOSE Chondrosarcomas arise from the lateral pelvis; however, midline chondrosarcomas (10%) display similar imaging features to chordoma, causing a diagnostic challenge. This study aims to determine the diagnostic accuracy of apparent diffusion coefficient (ADC)-based radiomic features and two novel diffusion indices for differentiating sacral chordomas and chondrosarcomas. METHODS A retrospective, multireader review was performed of 82 pelvic MRIs (42 chordomas and 40 chondrosarcomas) between December 2014 and September 2021, split into training (n = 69) and validation (n = 13) data sets. Lesions were segmented on a single slice from ADC maps. Eight first-order features (minimum, mean, median, and maximum ADC, standard deviation, skewness, kurtosis, and entropy) and two novel indices: restriction index (RI, proportion of lesions with restricted diffusion) and facilitation index (FI, proportion of lesions with facilitated diffusion) were estimated. One hundred seven radiomic features comparing patients with chondrosarcoma versus chordoma were sorted based on mean group differences. RESULTS There was good to excellent interobserver reliability for eight of the 10 ADC metrics on the training data set. Significant differences were observed (P < .005) for RI, FI, median, mean, and skewness using the training data set. Optimal cutpoints for diagnosis of chordoma were RI > 0.015; FI < 0.25; mean ADC < 1.7 × 10-3 mm2/s; and skewness >0.177. The optimal decision tree relied on FI. In a secondary analysis, significant differences (P < .00047) in chondrosarcoma versus chordoma were found in 18 of 107 radiomic features, including six first-order and 12 high-order features. CONCLUSION The novel ADC index, FI, in addition to ADC mean, skewness, and 12 high-order radiomic features, could help differentiate sacral chordomas from chondrosarcomas.
Collapse
Affiliation(s)
- Behrang Amini
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Liu Chenglei
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Wei-Lien Wang
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Heerod Moradi
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | |
Collapse
|
10
|
Chiari-Correia NS, Nogueira-Barbosa MH, Chiari-Correia RD, Azevedo-Marques PM. A 3D Radiomics-Based Artificial Neural Network Model for Benign Versus Malignant Vertebral Compression Fracture Classification in MRI. J Digit Imaging 2023; 36:1565-1577. [PMID: 37253895 PMCID: PMC10406770 DOI: 10.1007/s10278-023-00847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
To train an artificial neural network model using 3D radiomic features to differentiate benign from malignant vertebral compression fractures (VCFs) on MRI. This retrospective study analyzed sagittal T1-weighted lumbar spine MRIs from 91 patients (average age of 64.24 ± 11.75 years) diagnosed with benign or malignant VCFs from 2010 to 2019, of them 47 (51.6%) had benign VCFs and 44 (48.4%) had malignant VCFs. The lumbar fractures were three-dimensionally segmented and had their radiomic features extracted and selected with the wrapper method. The training set consisted of 100 fractured vertebral bodies from 61 patients (average age of 63.2 ± 12.5 years), and the test set was comprised of 30 fractured vertebral bodies from 30 patients (average age of 66.4 ± 9.9 years). Classification was performed with the multilayer perceptron neural network with a back-propagation algorithm. To validate the model, the tenfold cross-validation technique and an independent test set (holdout) were used. The performance of the model was evaluated using the average with a 95% confidence interval for the ROC AUC, accuracy, sensitivity, and specificity (considering the threshold = 0.5). In the internal validation test, the best model reached a ROC AUC of 0.98, an accuracy of 95% (95/100), a sensitivity of 93.5% (43/46), and specificity of 96.3% (52/54). In the validation with independent test set, the model achieved a ROC AUC of 0.97, an accuracy of 93.3% (28/30), a sensitivity of 93.3% (14/15), and a specificity of 93.3% (14/15). The model proposed in this study using radiomic features could differentiate benign from malignant vertebral compression fractures with excellent performance and is promising as an aid to radiologists in the characterization of VCFs.
Collapse
Affiliation(s)
- Natália S Chiari-Correia
- Medical Artificial Intelligence Laboratory of the Ribeirão, Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.
| | - Marcello H Nogueira-Barbosa
- Medical Artificial Intelligence Laboratory of the Ribeirão, Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Medical Imaging, Hematology and Oncology of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Orthopedic Surgery, University of Missouri Health Care, Columbia, MO, USA
| | - Rodolfo Dias Chiari-Correia
- Department of Physics, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paulo M Azevedo-Marques
- Medical Artificial Intelligence Laboratory of the Ribeirão, Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Medical Imaging, Hematology and Oncology of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
11
|
Abd elsalam SM, ELbadawi MA, Diab WA, Said AHM, Gomaa MI. Diagnostic value of whole -body diffusion weighted imaging added to bone scan in early diagnosis of bone metastases in breast cancer patients. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2023; 54:102. [DOI: 10.1186/s43055-023-01050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/25/2023] [Indexed: 09/01/2023] Open
Abstract
Abstract
Background
Metastases to the bones are a frequent location of metastasis in advanced breast cancer and are responsible for substantial morbidity and healthcare expenses. Imaging has been crucial in directing patient therapy for decades, contributing to the staging and response evaluation of the skeleton. This research aimed to assess the diagnostic value of whole-body magnetic resonance imaging with diffusion-weighted imaging added to radionuclide bone scans for early diagnosis of bone metastases in breast cancer patients.
Results
The study was a prospective observational cohort study performed on 20 patients with breast cancer and suspected bone metastases. The patients were evaluated first by obtaining a detailed personal history. Laboratory tests, including CBC, liver, and kidney function tests were assessed. All patients were examined by diffusion-weighted whole-body MRI (DWIBS; diffusion-weighted imaging with background body signal suppression) images and bone scintigraphy after intravenous injection of 20 mci of technetium-99m (99mTc) methylene diphosphonate using a dual head gamma camera. The total number of lesions detected by bone scan was 74, and 75 lesions were seen by DWIBS. Twenty-four lesions were missed by bone scan and detected by DWIBS. Fourteen lesions were detected by bone scan and found free by DWIBS examination in the spine and pelvic bones.
Conclusions
Whole body DWIBS seems to be a promising method of imaging in detecting bone metastases from breast cancer that could be used complementary to the traditional bone scan for more accurate diagnosis and staging of the tumor, helping to determine the most appropriate protocol of management.
Collapse
|
12
|
Alawneh I, Stosic A, Gonorazky H. Muscle MRI patterns for limb girdle muscle dystrophies: systematic review. J Neurol 2023:10.1007/s00415-023-11722-1. [PMID: 37129643 DOI: 10.1007/s00415-023-11722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Limb girdle muscle dystrophies (LGMDs) are a group of inherited neuromuscular disorders comprising more than 20 genes. There have been increasing efforts to characterize this group with Muscle MRI. However, due to the complexity and similarities, the interpretation of the MRI patterns is usually done by experts in the field. Here, we proposed a step-by-step image interpretation of Muscle MRI in LGDM by evaluating the variability of muscle pattern involvement reported in the literature. A systematic review with an open start date to November 2022 was conducted to describe all LGMDs' muscle MRI patterns. Eighty-eight studies were included in the final review. Data were found to describe muscle MRI patterns for 15 out of 17 LGMDs types. Although the diagnosis of LGMDs is challenging despite the advanced genetic testing and other diagnostic modalities, muscle MRI is shown to help in the diagnosis of LGMDs. To further increase the yield for muscle MRI in the neuromuscular field, larger cohorts of patients need to be conducted.
Collapse
Affiliation(s)
- Issa Alawneh
- Department of Neurology, The Hospital for Sick Children, Toronto, Canada
| | - Ana Stosic
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Hernan Gonorazky
- Department of Neurology, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
13
|
Cruz IAN, Fayad LM, Ahlawat S, Lederman HM, Nico MAC, Ormond Filho AG, Guimarães JB. Whole-Body MRI in Musculoskeletal Oncology: A Comprehensive Review with Recommendations. Radiol Imaging Cancer 2023; 5:e220107. [PMID: 37144975 DOI: 10.1148/rycan.220107] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Whole-body (WB) MRI has emerged as an attractive method for oncologic evaluation, potentially replacing conventional imaging modalities and providing a one-step wide-coverage assessment of both the skeleton and soft tissues. In addition to providing anatomic information, WB MRI may also yield a functional analysis with the inclusion of diffusion-weighted imaging (DWI). DWI translates microstructural changes, resulting in an excellent alternative to fluorodeoxyglucose PET/CT. WB MRI (with DWI) offers comparable accuracy to PET/CT and has the advantage of avoiding ionizing radiation. Technological advances and the development of faster protocols have prompted greater accessibility of WB MRI, with growing applications in routine practice for the diagnosis, staging, and follow-up of cancer. This review discusses the technical considerations, clinical applications, and accuracy of WB MRI in musculoskeletal oncology. Keywords: Pediatrics, MR Imaging, Skeletal-Axial, Skeletal-Appendicular, Soft Tissues/Skin, Bone Marrow, Extremities, Oncology, Musculoskeletal Imaging © RSNA, 2023.
Collapse
Affiliation(s)
- Isabela A N Cruz
- From the Department of Musculoskeletal Radiology, Fleury Medicina e Saúde Higienópolis, R. Mato Grosso 306, Higienópolis, SP, Brazil 01239-040 (I.A.N.C., M.A.C.N., A.G.O.F., J.B.G.); Department of Radiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil (I.A.N.C., H.M.L., J.B.G.); The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins School of Medicine, Baltimore, Md (L.M.F., S.A.); and Department of Radiology, Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), São Paulo, Brazil (H.M.L., J.B.G.)
| | - Laura M Fayad
- From the Department of Musculoskeletal Radiology, Fleury Medicina e Saúde Higienópolis, R. Mato Grosso 306, Higienópolis, SP, Brazil 01239-040 (I.A.N.C., M.A.C.N., A.G.O.F., J.B.G.); Department of Radiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil (I.A.N.C., H.M.L., J.B.G.); The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins School of Medicine, Baltimore, Md (L.M.F., S.A.); and Department of Radiology, Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), São Paulo, Brazil (H.M.L., J.B.G.)
| | - Shivani Ahlawat
- From the Department of Musculoskeletal Radiology, Fleury Medicina e Saúde Higienópolis, R. Mato Grosso 306, Higienópolis, SP, Brazil 01239-040 (I.A.N.C., M.A.C.N., A.G.O.F., J.B.G.); Department of Radiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil (I.A.N.C., H.M.L., J.B.G.); The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins School of Medicine, Baltimore, Md (L.M.F., S.A.); and Department of Radiology, Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), São Paulo, Brazil (H.M.L., J.B.G.)
| | - Henrique M Lederman
- From the Department of Musculoskeletal Radiology, Fleury Medicina e Saúde Higienópolis, R. Mato Grosso 306, Higienópolis, SP, Brazil 01239-040 (I.A.N.C., M.A.C.N., A.G.O.F., J.B.G.); Department of Radiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil (I.A.N.C., H.M.L., J.B.G.); The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins School of Medicine, Baltimore, Md (L.M.F., S.A.); and Department of Radiology, Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), São Paulo, Brazil (H.M.L., J.B.G.)
| | - Marcelo A C Nico
- From the Department of Musculoskeletal Radiology, Fleury Medicina e Saúde Higienópolis, R. Mato Grosso 306, Higienópolis, SP, Brazil 01239-040 (I.A.N.C., M.A.C.N., A.G.O.F., J.B.G.); Department of Radiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil (I.A.N.C., H.M.L., J.B.G.); The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins School of Medicine, Baltimore, Md (L.M.F., S.A.); and Department of Radiology, Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), São Paulo, Brazil (H.M.L., J.B.G.)
| | - Alípio G Ormond Filho
- From the Department of Musculoskeletal Radiology, Fleury Medicina e Saúde Higienópolis, R. Mato Grosso 306, Higienópolis, SP, Brazil 01239-040 (I.A.N.C., M.A.C.N., A.G.O.F., J.B.G.); Department of Radiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil (I.A.N.C., H.M.L., J.B.G.); The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins School of Medicine, Baltimore, Md (L.M.F., S.A.); and Department of Radiology, Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), São Paulo, Brazil (H.M.L., J.B.G.)
| | - Júlio Brandão Guimarães
- From the Department of Musculoskeletal Radiology, Fleury Medicina e Saúde Higienópolis, R. Mato Grosso 306, Higienópolis, SP, Brazil 01239-040 (I.A.N.C., M.A.C.N., A.G.O.F., J.B.G.); Department of Radiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil (I.A.N.C., H.M.L., J.B.G.); The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins School of Medicine, Baltimore, Md (L.M.F., S.A.); and Department of Radiology, Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), São Paulo, Brazil (H.M.L., J.B.G.)
| |
Collapse
|
14
|
AlQahtani S, Aldisi D. Muscle Wasting among Hospitalized Children: A Narrative Review of the Feasibility and Accuracy of Diagnostic Methods. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050795. [PMID: 37238343 DOI: 10.3390/children10050795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Muscle wasting is associated with a worse quality of life and increased morbidity and mortality among hospitalized children, especially those with chronic diseases. This review was conducted to summarize the data available on the most feasible and accurate diagnostic methods for detecting muscle wasting among hospitalized children, especially to review the evidence of the accuracy and feasibility of conducting assessments using handgrip strength (HGS). Many diagnostic methods are used in hospital settings to assess muscle wasting, by evaluating either muscle mass or strength, with evidentiary support for assessing muscle mass provided using ultrasonography, magnetic resonance imaging, computed tomography, dual-energy X-ray, bioelectrical impedance analysis, and anthropometry measurements. Currently, the most common diagnostic method used to detect muscle strength loss is the handheld dynamometer. Studies support using HGS among healthy and hospitalized children to assess the overall nutritional status and especially muscle function. However, almost all of these studies have been conducted in hospital settings and recruited children with different chronic diseases using a small sample size. More longitudinal cohort studies with large sample sizes are needed to assess the accuracy and feasibility of using HGS among hospitalized children.
Collapse
Affiliation(s)
- Sheikha AlQahtani
- Department of Community Health Sciences, Collage of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Dietetics, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Dara Aldisi
- Department of Community Health Sciences, Collage of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Eltonbary HTAI, Elmashad NM, Khodair SA, Abou Khadrah RS. Suppression of background body signals in whole-body diffusion-weighted imaging for detection of bony metastases: a pilot study. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2023. [DOI: 10.1186/s43055-023-01012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
Abstract
Background
Whole-body diffusion-weighted magnetic resonance is being developed as a tool for assessing tumor spread. Patients with known primary tumors require meticulous evaluation to assess metastasis for better staging; we attempted to detect bony metastasis without radiation exposure. Our study's goal was to use whole-body diffusion-weighted imaging with background body signal suppression (WB-DWBIS) to evaluate bony metastasis in confirmed patients who have primary tumors.
Results
Our study included 90 patients with known primary cancer, 10 patients were excluded as they had no bony metastasis, from 80 patients: 36 (45.0%) having one site of metastasis, 36 (45%) having two sites of metastasis, and 8 (10.0%) having three sites of metastasis. 56 (70.0%) of the metastasis sites were bony metastasis, and 76 were mixed both bony and non-bony, including 32(40.0%) lung, 16 (20.0%) liver, and 28 (35%) lymph nodes. Sensitivity of bone scanning in detecting metastasis was as follows: 95.1% sensitivity and 92.0% accuracy, while that of whole-body diffusion-weighted image with background signals suppression was 94.8% sensitivity and 91.7% accuracy, WB-DWBIS inter-observer agreement in the detection of bony metastatic deposits in cancer patients was good (0.7 45, agreement = 93.2%).
Conclusions
Using WB-DWBIS images, bone lesion identification and characterization (site and number) were improved, producing outcomes similar to bone scanning without the use of ionizing radiation.
Collapse
|
16
|
Reijnierse M. Axial Skeleton Bone Marrow Changes in Inflammatory Rheumatologic Disorders. Semin Musculoskelet Radiol 2023; 27:91-102. [PMID: 36868247 PMCID: PMC9984269 DOI: 10.1055/s-0043-1761496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Magnetic resonance imaging (MRI) of the axial skeleton, spine, and sacroiliac (SI) joints is critical for the early detection and follow-up of inflammatory rheumatologic disorders such as axial spondyloarthritis, rheumatoid arthritis, and SAPHO/CRMO (synovitis, acne, pustulosis, hyperostosis, and osteitis/chronic recurrent multifocal osteomyelitis). To offer a valuable report to the referring physician, disease-specific knowledge is essential. Certain MRI parameters can help the radiologist provide an early diagnosis and lead to effective treatment. Awareness of these hallmarks may help avoid misdiagnosis and unnecessary biopsies. A bone marrow edema-like signal plays an important role in reports but is not disease specific. Age, sex, and history should be considered in interpreting MRI to prevent overdiagnosis of rheumatologic disease. Differential diagnoses-degenerative disk disease, infection, and crystal arthropathy-are addressed here. Whole-body MRI may be helpful in diagnosing SAPHO/CRMO.
Collapse
Affiliation(s)
- Monique Reijnierse
- Musculoskeletal Radiology, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Kim DK, Park SS, Jung JY. [Clinical Application and Limitations of Myeloma Response Assessment and Diagnosis System (MY-RADS)]. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2023; 84:51-74. [PMID: 36818710 PMCID: PMC9935961 DOI: 10.3348/jksr.2022.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023]
Abstract
Multiple myeloma, which is a proliferative disease of plasma cells that originate from a single clone, is the second most common hematologic malignancy following non-Hodgkin lymphoma. In the past, its diagnosis was made based on clinical findings (so-called "CRAB") and a skeletal survey using radiographs. However, since the implementation of the International Myeloma Working Group's revised guideline regarding the radiologic diagnosis of multiple myeloma, whole-body (WB) MRI has emerged to play a central role in the early diagnosis of multiple myeloma. Diffusion-weighted imaging and fat quantification using Dixon methods enable treatment response assessment by MRI. In keeping with the trend, a multi-institutional and multidisciplinary consensus for standardized image acquisition and reporting known as the Myeloma Response Assessment and Diagnostic System (MY-RADS) has recently been proposed. This review aims to describe the clinical application of WB-MRI based on MY-RADS in multiple myeloma, discuss its limitations, and suggest future directions for improvement.
Collapse
Affiliation(s)
- Dong Kyun Kim
- Department of Radiology, Seoul St. Mary’s Hospital, and, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung-Soo Park
- Department of Hematology, Seoul St. Mary’s Hospital, and, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joon-Yong Jung
- Department of Radiology, Seoul St. Mary’s Hospital, and, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
18
|
Improving protocols for whole-body magnetic resonance imaging: oncological and inflammatory applications. Pediatr Radiol 2022:10.1007/s00247-022-05478-5. [PMID: 35982340 DOI: 10.1007/s00247-022-05478-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Whole-body MRI is increasingly used in the evaluation of a range of oncological and non-oncological diseases in infants, children and adolescents. Technical innovation in MRI scanners, coils and sequences have enabled whole-body MRI to be performed more rapidly, offering large field-of-view imaging suitable for multifocal and multisystem disease processes in a clinically useful timeframe. Together with a lack of ionizing radiation, this makes whole-body MRI especially attractive in the pediatric population. Indications include lesion detection in cancer predisposition syndrome surveillance and in the workup of children with known malignancies, and diagnosis and monitoring of a host of infectious and non-infectious inflammatory conditions. Choosing which patients are most likely to benefit from this technology is crucial, but so is adjusting protocols to the patient and disease to optimize lesion detection. The focus of this review is on protocols and the elements impacting image acquisition in pediatric whole-body MRI. We consider the practical aspects, from scanner and coil selection to patient positioning, single-center generic and indication-specific protocols with technical parameters, motion reduction strategies and post-processing. When optimized, collectively these lead to better standardization of whole-body MRI, and when married to systematic analysis and interpretation, they can improve diagnostic accuracy.
Collapse
|
19
|
Zarad CA, Elmaaty AAA, Shanab WSA. Dixon chemical shift MR sequences for demonstrating of bone marrow vertebral metastasis. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2022. [DOI: 10.1186/s43055-022-00861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
This study aimed to investigate the diagnostic performance and clinical utility of different MR Dixon sequences in the characterization of vertebral metastasis in a patient with a history of malignant neoplasm and compare the results with 18-F FDG PET CT. Patients were subjected to MR imaging of the dorsal and lumbosacral spine (1.5 T MR machine) using conventional MR, T2 Dixon and T1 post-contrast Dixon.
Results
This study involved 40 patients (45% female and 55% male) with 161 metastatic lesions and median age 61.5 years. The sensitivities of T1 post-contrast water-only (WO), fat-only (FO) and opposed-phase (OP) Dixon for diagnosis of vertebral metastasis were 92.6%, 89.4% and 83.1%, respectively, while the sensitivity of T2 (WO, OP) Dixon was 78.3% with 100% specificity for both T1 and T2 Dixon. There were excellent positive clinical utilities of T1 post-contrast WO (0.925), FO (0.894) and OP (0.826) Dixon with the good positive clinical utility of T2 Dixon (0.783) for lesion finding. There were fair negative clinical utilities of T1 WO (0.636) and FO (0.553) Dixon with poor negative clinical utilities of T1 OP (0.429), T2 WO and OP (0.375) Dixon for lesion screening. 15% was the best in-phase/opposed-phase ratio for differentiation between metastatic and benign vertebral lesions.
Conclusions
MR Dixon techniques are sensitive and specific for the diagnosis of vertebral metastasis. T1 post-contrast and T2 Dixons have excellent and good positive clinical utilities for lesion finding with fair and poor negative clinical utilities for lesion screening, respectively.
Collapse
|
20
|
Whole-body MRI in oncology: can a single anatomic T2 Dixon sequence replace the combination of T1 and STIR sequences to detect skeletal metastasis and myeloma? Eur Radiol 2022; 33:244-257. [PMID: 35925384 DOI: 10.1007/s00330-022-09007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To compare the diagnostic accuracy of a single T2 Dixon sequence to the combination T1+STIR as anatomical sequences used for detecting tumoral bone marrow lesions in whole-body MRI (WB-MRI) examinations. METHODS Between January 2019 and January 2020, seventy-two consecutive patients (55 men, 17 women, median age = 66 years) with solid (prostate, breast, neuroendocrine) cancers at high risk of metastasis or proven multiple myeloma (MM) prospectively underwent a WB-MRI examination including coronal T1, STIR, T2 Dixon and axial diffusion-weighted imaging sequences. Two radiologists independently assessed the combination of T1+STIR sequences and the fat+water reconstructions from the T2 Dixon sequence. The reference standard was established by consensus reading of WB-MRI and concurrent imaging available at baseline and at 6 months. Repeatability and reproducibility of MRI scores (presence and semi-quantitative count of lesions), image quality (SNR: signal-to-noise, CNR: contrast-to-noise, CRR: contrast-to-reference ratios), and diagnostic characteristics (Se: sensitivity, Sp: specificity, Acc: accuracy) were assessed per-skeletal region and per-patient. RESULTS Repeatability and reproducibility were at least good regardless of the score, region, and protocol (0.67 ≤ AC1 ≤ 0.98). CRR was higher on T2 Dixon fat compared to T1 (p < 0.0001) and on T2 Dixon water compared to STIR (p = 0.0128). In the per-patient analysis, Acc of the T2 Dixon fat+water was higher than that of T1+STIR for the senior reader (Acc = +0.027 [+0.025; +0.029], p < 0.0001) and lower for the junior reader (Acc = -0.029 [-0.031; -0.027], p < 0.0001). CONCLUSIONS A single T2 Dixon sequence with fat+water reconstructions offers similar reproducibility and diagnostic accuracy as the recommended combination of T1+STIR sequences and can be used for skeletal screening in oncology, allowing significant time-saving. KEY POINTS • Replacement of the standard anatomic T1 + STIR WB-MRI protocol by a single T2 Dixon sequence drastically shortens the examination time without loss of diagnostic accuracy. • A protocol based on fat + water reconstructions from a single T2 Dixon sequence offers similar inter-reader agreement and a higher contrast-to-reference ratio for detecting lesions compared to the standard T1 + STIR protocol. • Differences in the accuracy between the two protocols are marginal (+ 3% in favor of the T2 Dixon with the senior reader; -3% against the T2 Dixon with the junior reader).
Collapse
|
21
|
Imaging of Oligometastatic Disease. Cancers (Basel) 2022; 14:cancers14061427. [PMID: 35326586 PMCID: PMC8946296 DOI: 10.3390/cancers14061427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary The imaging of oligometastatic disease (OMD) is challenging as it requires precise loco-regional staging and whole-body assessment. The combination of imaging modalities is often required. The more accurate imaging tool will be selected according to tumor type, the timing with regard to measurement and treatment, metastatic location, and the patient’s individual risk for metastasis. The most commonly used modalities are contrast-enhanced computed tomography (CT), magnetic resonance imaging and metabolic and receptor-specific imaging, particularly, 18F-fluorodesoxyglucose positron emission tomography/CT, used alone or in combination. Abstract Oligometastatic disease (OMD) is an emerging state of disease with limited metastatic tumor burden. It should be distinguished from polymetastatic disease due the potential curative therapeutic options of OMD. Imaging plays a pivotal role in the diagnosis and follow-up of patients with OMD. The imaging tools needed in the case of OMD will differ according to different parameters, which include primary tumor type, timing between measurement and treatment, potential metastatic location and the patient’s individual risk for metastasis. In this article, OMD is defined and the use of different imaging modalities in several oncologic situations are described in order to better understand OMD and its specific implication for radiologists.
Collapse
|
22
|
Nakanishi K, Tanaka J, Nakaya Y, Maeda N, Sakamoto A, Nakayama A, Satomura H, Sakai M, Konishi K, Yamamoto Y, Nagahara A, Nishimura K, Takenaka S, Tomiyama N. Whole-body MRI: detecting bone metastases from prostate cancer. Jpn J Radiol 2022; 40:229-244. [PMID: 34693502 PMCID: PMC8891104 DOI: 10.1007/s11604-021-01205-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
Whole-body magnetic resonance imaging (WB-MRI) is currently used worldwide for detecting bone metastases from prostate cancer. The 5-year survival rate for prostate cancer is > 95%. However, an increase in survival time may increase the incidence of bone metastasis. Therefore, detecting bone metastases is of great clinical interest. Bone metastases are commonly located in the spine, pelvis, shoulder, and distal femur. Bone metastases from prostate cancer are well-known representatives of osteoblastic metastases. However, other types of bone metastases, such as mixed or inter-trabecular type, have also been detected using MRI. MRI does not involve radiation exposure and has good sensitivity and specificity for detecting bone metastases. WB-MRI has undergone gradual developments since the last century, and in 2004, Takahara et al., developed diffusion-weighted Imaging (DWI) with background body signal suppression (DWIBS). Since then, WB-MRI, including DWI, has continued to play an important role in detecting bone metastases and monitoring therapeutic effects. An imaging protocol that allows complete examination within approximately 30 min has been established. This review focuses on WB-MRI standardization and the automatic calculation of tumor total diffusion volume (tDV) and mean apparent diffusion coefficient (ADC) value. In the future, artificial intelligence (AI) will enable shorter imaging times and easier automatic segmentation.
Collapse
Affiliation(s)
- Katsuyuki Nakanishi
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567 Japan
| | - Junichiro Tanaka
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567 Japan
| | - Yasuhiro Nakaya
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567 Japan
| | - Noboru Maeda
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567 Japan
| | - Atsuhiko Sakamoto
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567 Japan
| | - Akiko Nakayama
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567 Japan
| | - Hiroki Satomura
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567 Japan
| | - Mio Sakai
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567 Japan
| | - Koji Konishi
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka, 541-8567 Japan
| | - Yoshiyuki Yamamoto
- Department of Urology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka, 541-8567 Japan
| | - Akira Nagahara
- Department of Urology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka, 541-8567 Japan
| | - Kazuo Nishimura
- Department of Urology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka, 541-8567 Japan
| | - Satoshi Takenaka
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka, 541-8567 Japan
| | - Noriyuki Tomiyama
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, Suita, 565-0871 Japan
| |
Collapse
|
23
|
Al-Sarhani H, Gottumukkala RV, Grasparil ADS, Tung EL, Gee MS, Greer MLC. Screening of cancer predisposition syndromes. Pediatr Radiol 2022; 52:401-417. [PMID: 33791839 DOI: 10.1007/s00247-021-05023-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/14/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Pediatric patients with cancer predisposition syndromes are at increased risk of developing malignancies compared with their age-matched peers, necessitating regular surveillance. Screening protocols differ among syndromes and are composed of a number of elements, imaging being one. Surveillance can be initiated in infants, children and adolescents with a tumor known or suspected of being related to a cancer predisposition syndrome or where genetic testing identifies a germline pathogenic gene variant in an asymptomatic child. Pre-symptomatic detection of malignant neoplasms offers potential to improve treatment options and survival outcomes, but the benefits and risks of screening need to be weighed, particularly with variable penetrance in many cancer predisposition syndromes. In this review we discuss the benefits and risks of surveillance imaging and the importance of integrating imaging and non-imaging screening elements. We explore the principles of surveillance imaging with particular reference to whole-body MRI, considering the strategies to minimize false-negative and manage false-positive whole-body MRI results, the value of standardized nomenclature when reporting risk stratification to better guide patient management, and the need for timely communication of results to allay anxiety. Cancer predisposition syndrome screening is a multimodality, multidisciplinary and longitudinal process, so developing formalized frameworks for surveillance imaging programs should enhance diagnostic performance while improving the patient experience.
Collapse
Affiliation(s)
- Haifa Al-Sarhani
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Ravi V Gottumukkala
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angelo Don S Grasparil
- Department of Radiological Sciences, Cardinal Santos Medical Center, San Juan City, Philippines
| | - Eric L Tung
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary-Louise C Greer
- Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada. .,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
Whole Body MRI in the Detection of Lymph Node Metastases in Patients with Testicular Germ Cell Cancer. Life (Basel) 2022; 12:life12020212. [PMID: 35207499 PMCID: PMC8875751 DOI: 10.3390/life12020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Whole-Body Magnetic Resonance Imaging (WB-MRI) is increasingly used for metastatic screening in oncology. This prospective single center study assesses the diagnostic value of WB-MRI including diffusion weighted imaging (DWI) and identifies the sufficient protocol for metastatic lymph node detection in patients with testicular germ cell cancer (TGCC). Forty-three patients underwent contrast enhanced thoraco-abdominopelvic CT (TAP-CT) and WB-MRI with DWI for metastatic lymph node screening. Two independent readers reviewed CTs and WB-MRIs. The diagnostic performance of different imaging protocols (CT, complete WB-MRI, T1W + DWI, T2W + DWI), the agreement between these protocols and the reference standard, the reproducibility of findings and the image quality (Signal and contrast to Noise Ratios, Likert scale) were studied. Reproducibility was very good regardless of both lesion locations (retroperitoneal vs distant lymph nodes, other lesions) and the reader. Diagnostic accuracy of MRI was ≥95% (regardless of the locations and imaging protocol); accuracy of CT was ≥93%. There was a strict overlap of 95% CIs associated with this accuracy between complete WB-MRI, T1W + DWI and T2W + DWI, regardless of the reader. Higher Likert score and SNR were observed for DWI, followed by T2W and T1W sequences. In conclusion, a fast WB-MRI protocol including T2W and DWI is a sufficient, accurate, non-irradiating alternative to TAP-CT for metastatic lymph node screening in TGCC.
Collapse
|
25
|
Lecouvet FE, Vekemans MC, Van Den Berghe T, Verstraete K, Kirchgesner T, Acid S, Malghem J, Wuts J, Hillengass J, Vandecaveye V, Jamar F, Gheysens O, Vande Berg BC. Imaging of treatment response and minimal residual disease in multiple myeloma: state of the art WB-MRI and PET/CT. Skeletal Radiol 2022; 51:59-80. [PMID: 34363522 PMCID: PMC8626399 DOI: 10.1007/s00256-021-03841-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/28/2021] [Accepted: 06/06/2021] [Indexed: 02/02/2023]
Abstract
Bone imaging has been intimately associated with the diagnosis and staging of multiple myeloma (MM) for more than 5 decades, as the presence of bone lesions indicates advanced disease and dictates treatment initiation. The methods used have been evolving, and the historical radiographic skeletal survey has been replaced by whole body CT, whole body MRI (WB-MRI) and [18F]FDG-PET/CT for the detection of bone marrow lesions and less frequent extramedullary plasmacytomas.Beyond diagnosis, imaging methods are expected to provide the clinician with evaluation of the response to treatment. Imaging techniques are consistently challenged as treatments become more and more efficient, inducing profound response, with more subtle residual disease. WB-MRI and FDG-PET/CT are the methods of choice to address these challenges, being able to assess disease progression or response and to detect "minimal" residual disease, providing key prognostic information and guiding necessary change of treatment.This paper provides an up-to-date overview of the WB-MRI and PET/CT techniques, their observations in responsive and progressive disease and their role and limitations in capturing minimal residual disease. It reviews trials assessing these techniques for response evaluation, points out the limited comparisons between both methods and highlights their complementarity with most recent molecular methods (next-generation flow cytometry, next-generation sequencing) to detect minimal residual disease. It underlines the important role of PET/MRI technology as a research tool to compare the effectiveness and complementarity of both methods to address the key clinical questions.
Collapse
Affiliation(s)
- Frederic E. Lecouvet
- Radiology Department, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, UCLouvain, Hippocrate Avenue 10, 1200 Brussels, Belgium
| | - Marie-Christiane Vekemans
- Haematology Unit, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique (IREC), 1200 Brussels, Belgium
| | - Thomas Van Den Berghe
- Radiology Department, Universiteit Ghent, Sint-Pietersnieuwstraat 33, 9000 Gent, Belgium
| | - Koenraad Verstraete
- Radiology Department, Universiteit Ghent, Sint-Pietersnieuwstraat 33, 9000 Gent, Belgium
| | - Thomas Kirchgesner
- Radiology Department, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, UCLouvain, Hippocrate Avenue 10, 1200 Brussels, Belgium
| | - Souad Acid
- Radiology Department, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, UCLouvain, Hippocrate Avenue 10, 1200 Brussels, Belgium
| | - Jacques Malghem
- Radiology Department, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, UCLouvain, Hippocrate Avenue 10, 1200 Brussels, Belgium
| | - Joris Wuts
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Avenue du Laerbeek 101, 1090 Jette, Belgium
| | - Jens Hillengass
- Departement of Medicine, Myeloma Unit, Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Vincent Vandecaveye
- Radiology Department, Katholieke Univesiteit Leuven, Oude Markt, 13, 3000 Leuven, Belgium
| | - François Jamar
- Nuclear Medicine Department, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Olivier Gheysens
- Nuclear Medicine Department, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Bruno C. Vande Berg
- Radiology Department, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, UCLouvain, Hippocrate Avenue 10, 1200 Brussels, Belgium
| |
Collapse
|
26
|
Treitl KM, Ricke J, Baur-Melnyk A. Whole-body magnetic resonance imaging (WBMRI) versus whole-body computed tomography (WBCT) for myeloma imaging and staging. Skeletal Radiol 2022; 51:43-58. [PMID: 34031705 PMCID: PMC8626374 DOI: 10.1007/s00256-021-03799-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 02/02/2023]
Abstract
Myeloma-associated bone disease (MBD) develops in about 80-90% of patients and severely affects their quality of life, as it accounts for the majority of mortality and morbidity. Imaging in multiple myeloma (MM) and MBD is of utmost importance in order to detect bone and bone marrow lesions as well as extraosseous soft-tissue masses and complications before the initiation of treatment. It is required for determination of the stage of disease and aids in the assessment of treatment response. Whole-body low-dose computed tomography (WBLDCT) is the key modality to establish the initial diagnosis of MM and is now recommended as reference standard procedure for the detection of lytic destruction in MBD. In contrast, whole-body magnetic resonance imaging (WBMRI) has higher sensitivity for the detection of focal and diffuse plasma cell infiltration patterns of the bone marrow and identifies them prior to osteolytic destruction. It is recommended for the evaluation of spinal and vertebral lesions, while functional, diffusion-weighted MRI (DWI-MRI) is a promising tool for the assessment of treatment response. This review addresses the current improvements and limitations of WBCT and WBMRI for diagnosis and staging in MM, underlining the fact that both modalities offer complementary information. It further summarizes the corresponding radiological findings and novel technological aspects of both modalities.
Collapse
Affiliation(s)
- Karla M. Treitl
- grid.5252.00000 0004 1936 973XDepartment of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Jens Ricke
- grid.5252.00000 0004 1936 973XDepartment of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Andrea Baur-Melnyk
- grid.5252.00000 0004 1936 973XDepartment of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| |
Collapse
|
27
|
Farina A, Gasperini C, Aparisi Gómez MP, Bazzocchi A, Fanti S, Nanni C. The Role of FDG-PET and Whole-Body MRI in High Grade Bone Sarcomas With Particular Focus on Osteosarcoma. Semin Nucl Med 2021; 52:635-646. [PMID: 34879906 DOI: 10.1053/j.semnuclmed.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sarcoma represents less than 2% of adult malignancies and about 15% to 20% of malignancies in children and adolescents/young adults. This neoplasm accounts for more than 80 different clinico-pathological entities with different clinical behavior; osteosarcoma and ewing sarcoma are the most frequent primary bone tumors. Because of the general poor prognosis, it is important to find out as many prognostic factors as possible to choose the best therapeutical approach and to correctly schedule the follow-up examinations. Third level imaging such as MRI and PET/CT are of utmost importance in the evaluation of sarcoma patients. The spine and bones in general are optimal sites to be evaluated with FDG PET/CT since the physiological background is low. The standardized uptake value (SUV max, a semiquantitave parameter) is used as a surrogate for proliferative cell rate, and the spatial heterogeneity of FDG distribution within the primary mass as a surrogate for malignancy. In several studies SUVmax was a predictive value for overall survival and progression-free survival. Whole-body MRI is a well-established technique for systemic, radiation-free evaluation, which is mostly applied in the oncological field. WB-MRI provides a combination of anatomical and functional sequences and is useful specifically in the evaluation of disease in organs with relatively high background activity such as the brain, liver, kidney, and spinal canal. These technologies provide accurate staging (also useful to drive the biopsy towards the most active foci in large heterogeneous masses), therapy assessment, relapse detection of local recurrence and distance metastasis but also prognostic indexes, in the context of whole body diagnostic procedures. This paper will provide an overview of the role and added value of PET/CT and WB-MRI in bone sarcomas particular focus on osteosarcoma. We also analyzed the role of the PET/CT and MRI for target delineation of radiation therapy and we and we will do an analysis of future prospects as new tracer non FDG.
Collapse
Affiliation(s)
- Arianna Farina
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
| | - Chiara Gasperini
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Maria Pilar Aparisi Gómez
- Department of Radiology, Auckland City Hospital,, Grafton, Auckland, New Zealand; Department of Radiology, Hospital Nueve de Octubre; Calle Valle de la Ballestera, Valencia, Spain
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
| | - Cristina Nanni
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
28
|
Eissawy MG, Saadawy AMI, Farag K, Akl T, Kamr WH. Accuracy and diagnostic value of diffusion-weighted whole body imaging with background body signal suppression (DWIBS) in metastatic breast cancer. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Breast cancer is the most common malignant tumor among women. The mortality of the patients could be mainly attributed to metastasis and spread of breast cancer to distant sites. The objective of the current study is to evaluate and express the role of diffusion-weighted whole body imaging with background body signal suppression (DWIBS) in detection of osseous and soft tissue metastatic lesions in patients with cancer breast.
Results
The current prospective study included 50 female patients with pathologically proven breast cancer. The overall sensitivity of DWIBS and STIR were 97.5% and 92.5%, respectively. DWIBS was the most sensitive sequence with highest negative predictive values. DWIBS and STIR were the most sensitive with the highest negative predictive value. Both DWIBS and STIR detected more vertebral metastatic deposits (100% and 97.8%, respectively) and more soft tissue lesions (94.4% for both) than WB DWI and T1WI.
Conclusion
DWIBS MRI sequence is an effective method for detection of solid organ, bone and lymph node metastasis but not specific for characterization of lesions.
Collapse
|
29
|
Oprea-Lager DE, Cysouw MC, Boellaard R, Deroose CM, de Geus-Oei LF, Lopci E, Bidaut L, Herrmann K, Fournier LS, Bäuerle T, deSouza NM, Lecouvet FE. Bone Metastases Are Measurable: The Role of Whole-Body MRI and Positron Emission Tomography. Front Oncol 2021; 11:772530. [PMID: 34869009 PMCID: PMC8640187 DOI: 10.3389/fonc.2021.772530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
Metastatic tumor deposits in bone marrow elicit differential bone responses that vary with the type of malignancy. This results in either sclerotic, lytic, or mixed bone lesions, which can change in morphology due to treatment effects and/or secondary bone remodeling. Hence, morphological imaging is regarded unsuitable for response assessment of bone metastases and in the current Response Evaluation Criteria In Solid Tumors 1.1 (RECIST1.1) guideline bone metastases are deemed unmeasurable. Nevertheless, the advent of functional and molecular imaging modalities such as whole-body magnetic resonance imaging (WB-MRI) and positron emission tomography (PET) has improved the ability for follow-up of bone metastases, regardless of their morphology. Both these modalities not only have improved sensitivity for visual detection of bone lesions, but also allow for objective measurements of bone lesion characteristics. WB-MRI provides a global assessment of skeletal metastases and for a one-step "all-organ" approach of metastatic disease. Novel MRI techniques include diffusion-weighted imaging (DWI) targeting highly cellular lesions, dynamic contrast-enhanced MRI (DCE-MRI) for quantitative assessment of bone lesion vascularization, and multiparametric MRI (mpMRI) combining anatomical and functional sequences. Recommendations for a homogenization of MRI image acquisitions and generalizable response criteria have been developed. For PET, many metabolic and molecular radiotracers are available, some targeting tumor characteristics not confined to cancer type (e.g. 18F-FDG) while other targeted radiotracers target specific molecular characteristics, such as prostate specific membrane antigen (PSMA) ligands for prostate cancer. Supporting data on quantitative PET analysis regarding repeatability, reproducibility, and harmonization of PET/CT system performance is available. Bone metastases detected on PET and MRI can be quantitatively assessed using validated methodologies, both on a whole-body and individual lesion basis. Both have the advantage of covering not only bone lesions but visceral and nodal lesions as well. Hybrid imaging, combining PET with MRI, may provide complementary parameters on the morphologic, functional, metabolic and molecular level of bone metastases in one examination. For clinical implementation of measuring bone metastases in response assessment using WB-MRI and PET, current RECIST1.1 guidelines need to be adapted. This review summarizes available data and insights into imaging of bone metastases using MRI and PET.
Collapse
Affiliation(s)
- Daniela E. Oprea-Lager
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Matthijs C.F. Cysouw
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Christophe M. Deroose
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS – Humanitas Research Hospital, Milan, Italy
| | - Luc Bidaut
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- College of Science, University of Lincoln, Lincoln, United Kingdom
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Laure S. Fournier
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Paris Cardiovascular Research Center (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), Radiology Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Hopital europeen Georges Pompidou, Université de Paris, Paris, France
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nandita M. deSouza
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Frederic E. Lecouvet
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
30
|
Ahmad MY, Yue H, Tegafaw T, Liu S, Ho SL, Lee GH, Nam SW, Chang Y. Functionalized Lanthanide Oxide Nanoparticles for Tumor Targeting, Medical Imaging, and Therapy. Pharmaceutics 2021; 13:1890. [PMID: 34834305 PMCID: PMC8624040 DOI: 10.3390/pharmaceutics13111890] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Recent progress in functionalized lanthanide oxide (Ln2O3) nanoparticles for tumor targeting, medical imaging, and therapy is reviewed. Among the medical imaging techniques, magnetic resonance imaging (MRI) is an important noninvasive imaging tool for tumor diagnosis due to its high spatial resolution and excellent imaging contrast, especially when contrast agents are used. However, commercially available low-molecular-weight MRI contrast agents exhibit several shortcomings, such as nonspecificity for the tissue of interest and rapid excretion in vivo. Recently, nanoparticle-based MRI contrast agents have become a hot research topic in biomedical imaging due to their high performance, easy surface functionalization, and low toxicity. Among them, functionalized Ln2O3 nanoparticles are applicable as MRI contrast agents for tumor-targeting and nontumor-targeting imaging and image-guided tumor therapy. Primarily, Gd2O3 nanoparticles have been intensively investigated as tumor-targeting T1 MRI contrast agents. T2 MRI is also possible due to the appreciable paramagnetic moments of Ln2O3 nanoparticles (Ln = Dy, Ho, and Tb) at room temperature arising from the nonzero orbital motion of 4f electrons. In addition, Ln2O3 nanoparticles are eligible as X-ray computed tomography contrast agents because of their high X-ray attenuation power. Since nanoparticle toxicity is of great concern, recent toxicity studies on Ln2O3 nanoparticles are also discussed.
Collapse
Affiliation(s)
- Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Huan Yue
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Shuwen Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Son Long Ho
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (M.Y.A.); (H.Y.); (T.T.); (S.L.); (S.L.H.)
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41405, Korea;
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41405, Korea;
| |
Collapse
|
31
|
Giani T, Matteoni V, Perrone A, Simonini G, Cimaz R. Whole-body MRI in pediatric undefined inflammatory conditions. Pediatr Int 2021; 63:1282-1288. [PMID: 33567119 DOI: 10.1111/ped.14650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Whole-body magnetic resonance imaging (WBMRI) is a multiregional imaging technique suitable for investigating the extent of multisystemic diseases without exposure to radiation, with a high sensitivity to bone alterations. The aim of our study was to evaluate the role of WBMRI in the workup of children with non-specific musculoskeletal features and non-indicative laboratory and instrumental data, who were suspected to have a rheumatologic disease. METHODS We retrospectively analyzed medical records, including laboratory tests and radiological data of 34 children who had been evaluated due to non-specific musculoskeletal manifestations, for which a WBMRI was prescribed. RESULTS We included 34 children, 19 females and 15 males, mean age 10 years (range 2-16 years), with the following clinical features: diffuse arthralgia (12 children), persistent fever (2 children), persistent fever and diffuse arthralgia (20 children). Serologic inflammatory markers were increased in 29/34 patients. Twenty-five children had already received X-ray and / or ultrasound before WBMRI, with a negative / uninformative result. WBMRI was performed 3-6 weeks (median, 3.5 weeks) after the initial presentation of symptoms. In 22/34 (65%) children, WBMRI revealed some abnormalities that supported the final diagnosis. Twelve out of 34 children (35%) were be affected by chronic recurrent multifocal osteomyelitis. CONCLUSIONS WBMRI is helpful in pediatric rheumatology for the differential diagnosis of undefined inflammatory conditions. It appears to be a promising tool, especially in the detection of multifocal bone lesions. The diagnosis that mainly benefits from WBMRI in our series is chronic recurrent multifocal osteomyelitis. WBMRI can also help in excluding neoplastic diseases.
Collapse
Affiliation(s)
- Teresa Giani
- Pediatric Rheumatology Unit, Meyer Children University Hospital, Florence, Italy.,Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Veronica Matteoni
- Pediatric Rheumatology Unit, Meyer Children University Hospital, Florence, Italy
| | - Anna Perrone
- Radiology Unit, Meyer Children University Hospital, Florence, Italy
| | - Gabriele Simonini
- Pediatric Rheumatology Unit, Meyer Children University Hospital, Florence, Italy
| | - Rolando Cimaz
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
32
|
Van Damme J, Tombal B, Collette L, Van Nieuwenhove S, Pasoglou V, Gérard T, Jamar F, Lhommel R, Lecouvet FE. Comparison of 68Ga-Prostate Specific Membrane Antigen (PSMA) Positron Emission Tomography Computed Tomography (PET-CT) and Whole-Body Magnetic Resonance Imaging (WB-MRI) with Diffusion Sequences (DWI) in the Staging of Advanced Prostate Cancer. Cancers (Basel) 2021; 13:cancers13215286. [PMID: 34771449 PMCID: PMC8582508 DOI: 10.3390/cancers13215286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Precise staging is key for the optimal management of advanced prostate cancer. PSMA PET-CT and WB-MRI outperform standard imaging technology for staging high-risk prostate cancer, but direct comparison between both modalities is lacking. The primary endpoint of our study was to compare the diagnostic accuracy of both techniques in the detection of lymph node, bone and visceral metastases against a best valuable comparator (BVC), defined as a consensus adjudication of all lesions on the basis of baseline and follow-up imaging, biological and clinical data and histopathologic confirmation when available. Knowing the diagnostic accuracy of both next generation imaging modalities might influence the diagnostic and therapeutic strategy in prostate cancer by tailoring therapy. However, the impact on treatment and patient outcome of an improved detection of metastases has not been determined yet. Abstract Background: Prostate specific membrane antigen (PSMA) positron emission tomography computed tomography (PET-CT) and whole-body magnetic resonance imaging (WB-MRI) outperform standard imaging technology for the detection of metastasis in prostate cancer (PCa). There are few direct comparisons between both modalities. This paper compares the diagnostic accuracy of PSMA PET-CT and WB-MRI for the detection of metastasis in PCa. One hundred thirty-four patients with newly diagnosed PCa (n = 81) or biochemical recurrence after curative treatment (n = 53) with high-risk features prospectively underwent PSMA PET-CT and WB-MRI. The diagnostic accuracy of both techniques for lymph node, skeletal and visceral metastases was compared against a best valuable comparator (BVC). Overall, no significant difference was detected between PSMA PET-CT and WB-MRI to identify metastatic patients when considering lymph nodes, skeletal and visceral metastases together (AUC = 0.96 (0.92–0.99) vs. 0.90 (0.85–0.95); p = 0.09). PSMA PET-CT, however, outperformed WB-MRI in the subgroup of patients with newly diagnosed PCa for the detection of lymph node metastases (AUC = 0.96 (0.92–0.99) vs. 0.86 (0.79–0.92); p = 0.0096). In conclusion, PSMA PET-CT outperforms WB-MRI for the detection of nodal metastases in primary staging of PCa.
Collapse
Affiliation(s)
- Julien Van Damme
- Department of Urology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, B-1200 Brussels, Belgium; (J.V.D.); (B.T.)
| | - Bertrand Tombal
- Department of Urology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, B-1200 Brussels, Belgium; (J.V.D.); (B.T.)
| | - Laurence Collette
- International Drug Development Institute (IDDI), B-1341 Louvain-la-Neuve, Belgium;
| | - Sandy Van Nieuwenhove
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC-IMAG), Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, B-1200 Brussels, Belgium; (S.V.N.); (V.P.)
| | - Vassiliki Pasoglou
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC-IMAG), Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, B-1200 Brussels, Belgium; (S.V.N.); (V.P.)
| | - Thomas Gérard
- Department of Nuclear Medicine, Institut de Recherche Expérimentale et Clinique (IREC-MIRO), Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, B-1200 Brussels, Belgium; (T.G.); (F.J.); (R.L.)
| | - François Jamar
- Department of Nuclear Medicine, Institut de Recherche Expérimentale et Clinique (IREC-MIRO), Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, B-1200 Brussels, Belgium; (T.G.); (F.J.); (R.L.)
| | - Renaud Lhommel
- Department of Nuclear Medicine, Institut de Recherche Expérimentale et Clinique (IREC-MIRO), Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, B-1200 Brussels, Belgium; (T.G.); (F.J.); (R.L.)
| | - Frédéric E. Lecouvet
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC-IMAG), Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, B-1200 Brussels, Belgium; (S.V.N.); (V.P.)
- Correspondence:
| |
Collapse
|
33
|
Deplano L, Piga M, Porcu M, Stecco A, Suri JS, Mannelli L, Cauli A, Carriero A, Saba L. Whole-Body MRI in Rheumatology: Major Advances and Future Perspectives. Diagnostics (Basel) 2021; 11:diagnostics11101770. [PMID: 34679468 PMCID: PMC8534420 DOI: 10.3390/diagnostics11101770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/05/2021] [Accepted: 09/21/2021] [Indexed: 01/31/2023] Open
Abstract
Whole-body magnetic resonance imaging is constantly gaining more importance in rheumatology, particularly for what concerns the diagnosis, follow-up, and treatment response evaluation. Initially applied principally for the study of ankylosing spondylitis, in the last years, its use has been extended to several other rheumatic diseases. Particularly in the pediatric population, WB-MRI is rapidly becoming the gold-standard technique for the diagnosis and follow-up of both chronic recurrent multifocal osteomyelitis and juvenile spondyloarthritis. In this review, we analyze the benefits and limits of this technique as well as possible future applications.
Collapse
Affiliation(s)
- Luca Deplano
- Department of Radiology, University Hospital of Cagliari, 09100 Cagliari, Italy; (L.D.); (L.S.)
| | - Matteo Piga
- Department of Rheumatology, University Hospital of Cagliari, 09100 Cagliari, Italy; (M.P.); (A.C.)
| | - Michele Porcu
- Department of Radiology, University Hospital of Cagliari, 09100 Cagliari, Italy; (L.D.); (L.S.)
- Correspondence:
| | - Alessandro Stecco
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (A.S.); (A.C.)
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA;
| | | | - Alberto Cauli
- Department of Rheumatology, University Hospital of Cagliari, 09100 Cagliari, Italy; (M.P.); (A.C.)
| | - Alessandro Carriero
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (A.S.); (A.C.)
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, 09100 Cagliari, Italy; (L.D.); (L.S.)
| |
Collapse
|
34
|
Pasoglou V, Van Nieuwenhove S, Peeters F, Duchêne G, Kirchgesner T, Lecouvet FE. 3D Whole-Body MRI of the Musculoskeletal System. Semin Musculoskelet Radiol 2021; 25:441-454. [PMID: 34547810 DOI: 10.1055/s-0041-1730401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With its outstanding soft tissue contrast, spatial resolution, and multiplanar capacities, magnetic resonance imaging (MRI) has become a widely used technique. Whole-body MRI (WB-MRI) has been introduced among diagnostic methods for the staging and follow-up assessment in oncologic patients, and international guidelines recommend its use. In nononcologic applications, WB-MRI is as a promising imaging tool in inflammatory diseases, such as seronegative arthritis and inflammatory myopathies. Technological advances have facilitated the introduction of three-dimensional (3D) almost isotropic sequences in MRI examinations covering the whole body. The possibility to reformat 3D images in any plane with equal or almost equal resolution offers comprehensive understanding of the anatomy, easier disease detection and characterization, and finally contributes to correct treatment planning. This article illustrates the basic principles, advantages, and limitations of the 3D approach in WB-MRI examinations and provides a short review of the literature.
Collapse
Affiliation(s)
- Vassiliki Pasoglou
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Sandy Van Nieuwenhove
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frank Peeters
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Gaetan Duchêne
- MR applications, General Electric Healthcare, Diegem, Belgium
| | - Thomas Kirchgesner
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frederic E Lecouvet
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
35
|
Systemic Mastocytosis: Radiological Point of View. Mediterr J Hematol Infect Dis 2021; 13:e2021056. [PMID: 34527208 PMCID: PMC8425380 DOI: 10.4084/mjhid.2021.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
Radiological diagnosis of systemic mastocytosis (SM) can be hard to establish. This difficulty is mainly due to the variable radiological features involving many organ systems (e.g., respiratory, cardiovascular, lympho-reticular, digestive systems, and most commonly skin), and above all, to the broad spectrum of skeletal findings. Skeletal involvement is the most common and prominent imaging feature in patients with SM and represents a prognostic factor as it may entail an aggressive course of the disease. Diagnosis, largely established by histological evaluation of a bone marrow trephine biopsy, supplemented by imaging modalities such as radiography, CT, and magnetic resonance imaging, requires a team approach between the hematologist, radiologist, and pathologist. The general radiologist needs to be familiar with the imaging findings because they may be the first to suggest the correct diagnosis. The primary purpose of this review article was to equip clinicians with pertinent radiological semiotics by presenting relevant radiological features that assist early diagnosis and selection of an effective treatment.
Collapse
|
36
|
Prediction of Early Treatment Response in Multiple Myeloma Using MY-RADS Total Burden Score, ADC, and Fat Fraction From Whole-Body MRI: Impact of Anemia on Predictive Performance. AJR Am J Roentgenol 2021; 218:310-319. [PMID: 34523949 DOI: 10.2214/ajr.21.26534] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: The recently released Myeloma Response Assessment and Diagnosis System (MY-RADS) for multiple myeloma (MM) evaluation by whole-body MRI (WB-MRI) describes the total burden score. However, assessment is confounded by red bone marrow hyperplasia in anemia. Objective: To assess utility of the MY-RADS total burden score, ADC, and fat fraction (FF) from WB-MRI in predicting early treatment response in patients with newly diagnosed MM and to compare these measures' utility between patients with and without anemia. Methods: This retrospective study included 56 patients (mean age 57.4±9.6 years; 40 men, 16 women) with newly diagnosed MM who underwent baseline WB-MRI including DWI and mDixon sequences. Two radiologists recorded total burden score using MY-RADS and measured ADC and FF of diffuse and focal disease sites. Mean values across sites were derived. Interobserver agreement was evaluated; readers' mean assessments were used for further analyses. Presence of deep response after four cycles of induction chemotherapy was recorded. Patients were classified as anemic if having hemoglobin less than 100 g/L. Utility of WB-MRI parameters in predicting deep response was assessed. Results: A total of 24/56 patients showed deep response; a total of 25/56 patients had anemia. Interobserver agreement, expressed using intraclass correlation coefficients, ranged from 0.95 to 0.99. Among patients without anemia, those with deep response compared with those without deep response exhibited lower total burden score (9.0 vs 18.0), lower ADC (0.79x10-3mm2/s vs 1.08x10-3mm2/s), and higher FF (0.21 vs 0.10) (all p<.001). The combination of these three parameters (optimal cutoffs: <15 for total burden score, <0.84×10-3mm2/s for ADC, >0.16 for FF) achieved sensitivity of 93.8%, specificity of 93.3%, and accuracy of 93.5% for predicting deep response. In patients with anemia, none of the three parameters were significantly different between those with and without deep response (all p>.05), and the combination of parameters achieved sensitivity of 56.3%, specificity of 100.0%, and accuracy of 72.0%. Conclusion: Low total burden score, low ADC, and high FF from WB-MRI may predict deep response in MM, though only among those patients without anemia. Clinical Impact: WB-MRI findings may help guide determination of prognosis and initial treatment selection in MM.
Collapse
|
37
|
Smerilli G, Di Matteo A, Cipolletta E, Grassi W, Filippucci E. Enthesitis in Psoriatic Arthritis, the Sonographic Perspective. Curr Rheumatol Rep 2021; 23:75. [PMID: 34427783 PMCID: PMC8384799 DOI: 10.1007/s11926-021-01039-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 11/25/2022]
Abstract
Purpose of Review To provide an overview of the ultrasound (US) studies focusing on enthesitis in psoriatic arthritis (PsA). Recent Findings Last-generation US equipment has demonstrated the ability to detect subtle morphostructural and vascular abnormalities at entheseal level. US is able to identify pathologic changes in both “classical” (i.e., the site of attachment of tendons, ligaments, and joint capsules into the bone) and “functional” entheses (i.e., anatomical regions where tendons or ligaments wrap around bony pulleys). Summary US has the potential to be the first-line method in the assessment of enthesitis. In the present review we critically discussed the current definitions of US enthesitis, the scoring systems, and the main fields of application (i.e., the detection of enthesitis in PsA and psoriasis, the identification of different disease subsets, and the assessment of response to treatment).
Collapse
Affiliation(s)
- Gianluca Smerilli
- Rheumatology Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, “Carlo Urbani” Hospital, Via Aldo Moro 25, 60035 Jesi, Ancona, Italy
| | - Andrea Di Matteo
- Rheumatology Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, “Carlo Urbani” Hospital, Via Aldo Moro 25, 60035 Jesi, Ancona, Italy
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Edoardo Cipolletta
- Rheumatology Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, “Carlo Urbani” Hospital, Via Aldo Moro 25, 60035 Jesi, Ancona, Italy
| | - Walter Grassi
- Rheumatology Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, “Carlo Urbani” Hospital, Via Aldo Moro 25, 60035 Jesi, Ancona, Italy
| | - Emilio Filippucci
- Rheumatology Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, “Carlo Urbani” Hospital, Via Aldo Moro 25, 60035 Jesi, Ancona, Italy
| |
Collapse
|
38
|
Updates and Ongoing Challenges in Imaging of Multiple Myeloma: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2021; 217:775-785. [PMID: 33978464 DOI: 10.2214/ajr.21.25878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Advances in the understanding and treatment of multiple myeloma have led to the need for more sensitive and accurate imaging of intramedullary and extramedullary disease. This role of imaging is underscored by recently revised imaging recommendations of the International Myeloma Working Group (IMWG). This narrative review discusses these recommendations from the IMWG for different disease stages, focusing on advanced whole-body modalities, and addresses related challenges and controversies. In the recommendations, whole-body low-dose CT is central in initial patient assessment, replacing the conventional skeletal survey. Although the recommendations favor MRI for diagnosis because of its superior sensitivity and utility in identifying myeloma-defining events, FDG PET/CT is recommended as the modality of choice for assessing treatment response. Consensus opinions are offered regarding the role of imaging in multiple myeloma for characterization of disease distribution, determination of prognosis, and response evaluation.
Collapse
|
39
|
Petralia G, Koh DM, Attariwala R, Busch JJ, Eeles R, Karow D, Lo GG, Messiou C, Sala E, Vargas HA, Zugni F, Padhani AR. Oncologically Relevant Findings Reporting and Data System (ONCO-RADS): Guidelines for the Acquisition, Interpretation, and Reporting of Whole-Body MRI for Cancer Screening. Radiology 2021; 299:494-507. [PMID: 33904776 DOI: 10.1148/radiol.2021201740] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acknowledging the increasing number of studies describing the use of whole-body MRI for cancer screening, and the increasing number of examinations being performed in patients with known cancers, an international multidisciplinary expert panel of radiologists and a geneticist with subject-specific expertise formulated technical acquisition standards, interpretation criteria, and limitations of whole-body MRI for cancer screening in individuals at higher risk, including those with cancer predisposition syndromes. The Oncologically Relevant Findings Reporting and Data System (ONCO-RADS) proposes a standard protocol for individuals at higher risk, including those with cancer predisposition syndromes. ONCO-RADS emphasizes structured reporting and five assessment categories for the classification of whole-body MRI findings. The ONCO-RADS guidelines are designed to promote standardization and limit variations in the acquisition, interpretation, and reporting of whole-body MRI scans for cancer screening. Published under a CC BY 4.0 license Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Giuseppe Petralia
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Dow-Mu Koh
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Raj Attariwala
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Joseph J Busch
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Ros Eeles
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - David Karow
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Gladys G Lo
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Christina Messiou
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Evis Sala
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Hebert A Vargas
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Fabio Zugni
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| | - Anwar R Padhani
- From the Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences (G.P.), and Department of Radiology (F.Z.), IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy (G.P.); Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, England (D.M.K., C.M.); AIM Medical Imaging, Vancouver, Canada (R.A.); Busch Center, Alpharetta, Ga (J.J.B.); The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, England (R.E.); Human Longevity, San Diego, Calif (D.K.); Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong (G.G.L.); Department of Radiology and Cancer Research, UK Cambridge Center, Cambridge, England (E.S.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (H.A.V.); and Paul Strickland Scanner Centre, Northwood, England (A.R.P.)
| |
Collapse
|
40
|
Staging and Classification of Primary Musculoskeletal Bone and Soft Tissue Tumors Based on the 2020 WHO Update, From the AJR Special Series on Cancer Staging. AJR Am J Roentgenol 2021; 217:1038-1052. [PMID: 33852362 DOI: 10.2214/ajr.21.25658] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Staging of primary musculoskeletal bone and soft tissue tumors is most commonly performed using the AJCC and the Enneking or Musculoskeletal Tumor Society (MSTS) staging systems. Radiologic imaging is integral in achieving adequate musculoskeletal neoplastic staging by defining lesion extent and identifying regional lymph node involvement and distant metastatic disease. Additional important features in surgical planning, though not distinct components of the staging systems, include cortical involvement, joint invasion, and neurovascular encasement; these features are optimally evaluated by MRI. In 2020, the WHO updated the classification of primary musculoskeletal tumors of soft tissue and bone. The update reflects the continued explosion in identification of novel gene alterations in many bone and soft tissue neoplasms. This has resulted in newly designated lesions, reclassification of lesion categories, and improved specificity of diagnosis. While radiologists do not need to have a comprehensive knowledge of the pathologic details, a broad working understanding of the most recent update is important to aid accurate and timely diagnosis given that histologic grading is a component of all staging systems. By approaching primary musculoskeletal neoplasms through a multidisciplinary approach with colleagues in pathology, orthopedic oncology, radiation oncology, and medical oncology, radiologists may promote improved diagnosis, treatment, and outcomes.
Collapse
|
41
|
Gómez León N, Aguado Bueno B, Herreros Pérez M, León Ramírez LF, Alegre A, Colletti PM, Rubello D, Carreras JL, Delgado Bolton RC. Agreement Between 18F-FDG PET/CT and Whole-Body Magnetic Resonance Compared With Skeletal Survey for Initial Staging and Response at End-of-Treatment Evaluation of Patients With Multiple Myeloma. Clin Nucl Med 2021; 46:310-322. [PMID: 33534256 PMCID: PMC7938909 DOI: 10.1097/rlu.0000000000003512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE To compare the agreement between whole-body (WB) magnetic resonance (MR) imaging, 18F-FDG PET/CT, and skeletal survey (SS) in patients with multiple myeloma (MM) for diagnosis, initial staging, response evaluation, and early detection of complications. METHODS This is a retrospective cohort study including MM patients who were diagnosed, treated, and followed in 2 institutions. These patients were studied with SS, WB-MR, and/or 18F-FDG PET/CT. We studied bone lesions by anatomical locations and analyzed the concordance between SS and a tomographic technique (WB-MR or 18F-FDG PET/CT) and between both tomographic techniques (WB-MR and PET/CT). RESULTS Forty-four MM patients with a mean age of 62.6 years (range, 38-85 years) were included from January 2012 to February 2016. Whole-body MR and 18F-FDG PET/CT found more lesions than SS in every location except in the skull. Concordance between WB-MR and 18F-FDG PET/CT was either good or excellent in most of the locations and in plasmacytoma studies. However, WB-MR was better than 18F-FDG PET/CT in the study of complications (medullar compression and vascular necrosis). CONCLUSIONS Our results suggest the study of MM patients should include WB-MR and/or 18F-FDG PET/CT, whereas SS is only useful for the skull. Whole-body MR and 18F-FDG PET/CT are complementary techniques, because both of them show good concordance in almost every location. It is still necessary to individualize the indication of each technique according to patient characteristics.
Collapse
Affiliation(s)
- Nieves Gómez León
- From the University Hospital Research Institute, Department of Radiology, University Hospital La Princesa
- Autonomous University of Madrid
| | | | - María Herreros Pérez
- Autonomous University of Madrid
- Department of Medicine, University Hospital Severo Ochoa, Leganés
| | - Luisa F. León Ramírez
- Department of Nuclear Medicine, University Hospital Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Adrián Alegre
- Department of Haematology, University Hospital la Princesa of Madrid
| | | | - Domenico Rubello
- Department of Nuclear Medicine and PET Unit, Rovigo Hospital, Rovigo, Italy
| | - José L. Carreras
- Department of Nuclear Medicine, University Hospital Clínico San Carlos, Madrid
| | - Roberto C. Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
| |
Collapse
|
42
|
Switlyk MD. Magnetic resonance imaging for assessing treatment response in bone marrow metastases. Acta Radiol 2021; 62:483-499. [PMID: 31154803 DOI: 10.1177/0284185119851234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer metastasis to bone is a frequent observation in malignancy that may result in complications such as pathological fractures and spinal cord compression. Monitoring treatment effects is the main concern in oncology; however, the evaluation of treatment response in bone is particularly challenging as it lacks well-established criteria. In addition, bone metastases have traditionally been considered non-measurable manifestations of cancer. Magnetic resonance imaging (MRI) is one of the most specific and sensitive methods for imaging skeletal metastases. The aim of this article is to highlight the diagnostic performance of MRI in the treatment monitoring of bone metastases, to review the current literature, and to provide an overview of recommendations for the evaluation of treatment response in bone.
Collapse
Affiliation(s)
- Marta D Switlyk
- Department of Radiology, Radiumhospitalet, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
43
|
Rapid Musculoskeletal MRI in 2021: Value and Optimized Use of Widely Accessible Techniques. AJR Am J Roentgenol 2021; 216:704-717. [DOI: 10.2214/ajr.20.22901] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Ji X, Huang W, Dong H, Shen Z, Zheng M, Zou D, Shen W, Xia S. Evaluation of bone marrow infiltration in multiple myeloma using whole-body diffusion-weighted imaging and T1-weighted water-fat separation Dixon. Quant Imaging Med Surg 2021; 11:641-651. [PMID: 33532264 DOI: 10.21037/qims-20-289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Multiple myeloma (MM) is a blood cancer caused by the unlimited proliferation of intramedullary plasma cells. The presence of focal lesions (FLs) is presumed to be a more relevant factor for patient outcomes and risk distribution than diffuse bone marrow signal abnormalities. Signal changes in these FLs also have a good correlation with prognosis. As the cell density increased, a lower apparent diffusion coefficient (ADC) value was found with the diffusion-weighted imaging (DWI) sequence. Therefore, whole-body magnetic resonance imaging (MRI) with DWI sequences is sensitive to cell density and viability and may be vital for disease detection and therapy response assessments. However, the correlation between the DWI signal and the degree of bone destruction and the proportion of bone marrow plasma cells (BMPC) was still unclear in patients with MM. Water-fat separation MRI is used mainly for evaluating liver and bone marrow fat quantification, and fat quantification in other diseases. Meanwhile, it is also possible to assess the extent of bone marrow invasion in medullary lesions. This study aimed to investigate the correlation between ADC values from whole-body DWI and water/fat MRI signals from T1-weighted water-fat separation in evaluating bone marrow infiltration in patients with MM. Methods The study included 35 patients with MM who underwent whole-body DWI and T1-weighted water-fat separation Dixon examinations before therapy. The ADC values, normalized fat signal intensity (nMfat), normalized water molecular signal intensity (nMwater), and normalized fat fraction (nFF) of the thoracolumbar spine was measured in FLs and the normal-appearing bone marrow (NABM). The differences in values were compared using the independent-samples t-test. The correlation between ADC values and water-fat MRI signals was estimated using the Pearson or Spearman correlation test. The correlation between the MRI above parameters and proportions of BMPC was also explored. Results Statistically significant differences were found between the mean ADC values in FLs and NABM (0.72 vs. 0.33 mm2/s, P<0.0001). Significantly elevated nMwater values and decreased nMfat and nFF values were observed in FLs; no correlations were found in NABM (P>0.05). The ADC value highly correlated with nMfat and nFF values and moderately with the nMwater value in FLs (r=-0.899, -0.834, 0.642, respectively, P<0.0001). Correlations were also observed between the proportion of BMPC and MRI parameters in MM (r=0.984, 0.716, -0.938, and -0.905, respectively, P<0.05). Conclusions The ADC value combined with water-fat separation parameters could be used for evaluating thoracolumbar bone marrow infiltration in MM. All parameters correlated with the proportion of BMPC, which helped assess the early response in MM therapy.
Collapse
Affiliation(s)
- Xiaodong Ji
- Radiology Department, First Central Clinical College, Tianjin Medical University, Tianjin, China.,Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Huazheng Dong
- Radiology Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Zhiwei Shen
- Philips Healthcare, World Profit Centre, Beijing, China
| | - Meizhu Zheng
- Radiological Department, Third Central Hospital of Tianjin, Tianjin, China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Shuang Xia
- Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
45
|
Whole-body MRI-based multivariate prediction model in the assessment of bone metastasis in prostate cancer. World J Urol 2021; 39:2937-2943. [PMID: 33521882 DOI: 10.1007/s00345-020-03571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/12/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE A whole-body MRI (WB-MRI) including T1, short time inversion recovery (STIR), diffusion-weighted imaging (high b value) was applied in our center for the detection of bone metastasis in prostate cancer (PCa) patients. We intended to assess the diagnostic performance of this examination. METHODS 547 cases of PCa patients with higher risk of metastasis were referred to bone scintigraphy with SPECT/CT (BS + SPECT/CT) and whole-body MRI in Shanghai Changhai Hospital. Best valuable comparator (BVC) was applied for the final diagnosis of metastasis. A panel of radiologists interpreted the results. Decision curve analysis (DCA) and receiver operating characteristic curve (ROC) analysis were applied. RESULTS Bone metastasis was diagnosed in 110 cases, and others were non-metastatic by BVC. The area under the receiver operating characteristic curve (AUC) was higher in WB-MRI (0.778) than BS + SPECT/CT (0.634, p < 0.001). A WB-MRI-based prediction model was established with AUC of 0.877. Internal validation showed that the predictive model was well-calibrated. The DCA demonstrated that the model had higher net benefit than the BS + SPECT/CT-based model. CONCLUSION WB-MRI is more effective in identifying metastasis in PCa patients than BS + SPECT/CT. The prediction model combined WB-MRI with clinical parameters may be a promising approach to the assessment of metastasis.
Collapse
|
46
|
Kaeley GS. Enthesitis in psoriatic arthritis (Part 2): imaging. Rheumatology (Oxford) 2021; 59:i15-i20. [PMID: 32159789 PMCID: PMC7065457 DOI: 10.1093/rheumatology/keaa040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/02/2020] [Indexed: 01/30/2023] Open
Abstract
Enthesitis is a hallmark finding in PsA and may predate the onset of synovitis. Clinical examination of enthesitis provides no structural information, relies on eliciting tenderness at entheseal sites and may not be sensitive or specific. Soft tissue imaging techniques such as musculoskeletal ultrasound and MRI can depict ultrastructural and inflammatory changes. Although these imaging techniques are complimentary, ultrasound can image superficial entheses with high fidelity and examine vascularity with the use of Doppler but cannot image subchondral bone. MRI depicts bone and can visualize bone marrow edema as well as soft tissue edema. However, due to short relaxation times, entheseal structures are not easily differentiated. There has been increasing recognition of biomechanical confounding, especially since the majority of the entheses examined are in the lower extremity. Imaging entheseal indices are being developed to minimize the effect of body weight and activity. In the following article, contemporary concepts of entheses in relation to imaging will be reviewed as well as important confounders in assessing entheseal alterations. The role and limitations of imaging techniques will be discussed.
Collapse
Affiliation(s)
- Gurjit S Kaeley
- Division of Rheumatology and Clinical Immunology, University of Florida College of Medicine, Jacksonville, FL, USA
| |
Collapse
|
47
|
Giraudo C, Lecouvet FE, Cotten A, Eshed I, Jans L, Jurik AG, Maas M, Weber M, Sudoł-Szopińska I. Whole-body magnetic resonance imaging in inflammatory diseases: Where are we now? Results of an International Survey by the European Society of Musculoskeletal Radiology. Eur J Radiol 2021; 136:109533. [PMID: 33454461 DOI: 10.1016/j.ejrad.2021.109533] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 12/07/2020] [Accepted: 01/05/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate the current role of WB-MRI for rheumatic inflammatory diseases in clinical practice using a survey addressed to musculoskeletal radiologists. METHODS A survey composed of 61 questions, subdivided in three sections, demographics (five questions), application of WB-MRI for inflammatory musculoskeletal diseases in adults and children (28 questions: 7 open and 21 multiple choice for each subgroup) was distributed via the European Society of Musculoskeletal Radiology (ESSR) from July 2 to December 31, 2018 to radiologists working in academic, private, and public workplaces. Comparisons among the different workplaces were performed using the Chi-squared and the Kruskal-Wallis test for nominal and ordinal data, respectively (p < 0.05). RESULTS Seventy-two participants out of the 1779 (4%) members of the ESSR with 10.4 ± 7.9 years of experience in musculoskeletal imaging, replied to at least one question. 30.6% and 12.3% of the respondents performed at least 50 WB-MRI examinations per year in adults and children, respectively. The most frequent indications were myositis in adults and chronic recurrent multifocal osteomyelitis (CRMO) in children, the latter mostly in academic centers (p = 0.013). The ESSR Arthrits Subcommitte's protocol was applied by half of the participants and especially radiologists working in private practice used it for adults (p = 0.025). Contrast medium was rarely used for adults particularly by academics (p = 0.04). Diffusion Weighted Imaging was applied for children mostly in private practice (p = 0.01) although, overall, it plays a marginal role. Scoring systems were rarely used. Ongoing research is limited. CONCLUSION WB-MRI is not routinely applied for musculoskeletal inflammatory diseases. The most frequent indications are myositis and CRMO.
Collapse
Affiliation(s)
- Chiara Giraudo
- Radiology Institute, Department of Medicine - DIMED, University of Padova, Italy.
| | - Frederic E Lecouvet
- Department of Radiology and Medical Imaging, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Anne Cotten
- Department of Musculoskeletal Radiology, Lille University Hospital, Lille, France
| | - Iris Eshed
- Department of Radiology, Sheba Medical Center, affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Lennart Jans
- Department of Radiology and Medical Imaging, Ghent University Hospital, Ghent, Belgium
| | - Anne Grethe Jurik
- Department of Radiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Mario Maas
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michael Weber
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Iwona Sudoł-Szopińska
- Department of Radiology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| |
Collapse
|
48
|
Santone A, Brunese MC, Donnarumma F, Guerriero P, Mercaldo F, Reginelli A, Miele V, Giovagnoni A, Brunese L. Radiomic features for prostate cancer grade detection through formal verification. Radiol Med 2021; 126:688-697. [PMID: 33394366 DOI: 10.1007/s11547-020-01314-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
AIM Prostate cancer represents the most common cancer afflicting men. It may be asymptomatic at the early stage. In this paper, we propose a methodology aimed to detect the prostate cancer grade by computing non-invasive shape-based radiomic features directly from magnetic resonance images. MATERIALS AND METHODS We use a freely available dataset composed by coronal magnetic resonance images belonging to 112 patients. We represent magnetic resonance slices in terms of formal model, and we exploit model checking to check whether a set of properties (formulated with the support of pathologists and radiologists) is verified on the formal model. Each property is related to a different cancer grade with the aim to cover all the cancer grade groups. RESULTS An average specificity equal to 0.97 and an average sensitivity equal to 1 have been obtained with our methodology. CONCLUSION The experimental analysis demonstrates the effectiveness of radiomics and formal verification for Gleason grade group detection from magnetic resonance.
Collapse
Affiliation(s)
- Antonella Santone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Maria Chiara Brunese
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Federico Donnarumma
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Pasquale Guerriero
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Francesco Mercaldo
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy.
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | | | - Andrea Giovagnoni
- Department of Radiology, Ospedali Riuniti, Universit Politecnica delle Marche, Ancona, Italy
| | - Luca Brunese
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
49
|
Van Nieuwenhove S, Van Damme J, Padhani AR, Vandecaveye V, Tombal B, Wuts J, Pasoglou V, Lecouvet FE. Whole-body magnetic resonance imaging for prostate cancer assessment: Current status and future directions. J Magn Reson Imaging 2020; 55:653-680. [PMID: 33382151 DOI: 10.1002/jmri.27485] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Over the past decade, updated definitions for the different stages of prostate cancer and risk for distant disease, along with the advent of new therapies, have remarkably changed the management of patients. The two expectations from imaging are accurate staging and appropriate assessment of disease response to therapies. Modern, next-generation imaging (NGI) modalities, including whole-body magnetic resonance imaging (WB-MRI) and nuclear medicine (most often prostate-specific membrane antigen [PSMA] positron emission tomography [PET]/computed tomography [CT]) bring added value to these imaging tasks. WB-MRI has proven its superiority over bone scintigraphy (BS) and CT for the detection of distant metastasis, also providing reliable evaluations of disease response to treatment. Comparison of the effectiveness of WB-MRI and molecular nuclear imaging techniques with regard to indications and the definition of their respective/complementary roles in clinical practice is ongoing. This paper illustrates the evolution of WB-MRI imaging protocols, defines the current state-of-the art, and highlights the latest developments and future challenges. The paper presents and discusses WB-MRI indications in the care pathway of men with prostate cancer in specific key situations: response assessment of metastatic disease, "all in one" cancer staging, and oligometastatic disease.
Collapse
Affiliation(s)
- Sandy Van Nieuwenhove
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Julien Van Damme
- Department of Urology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Anwar R Padhani
- Mount Vernon Cancer Centre, Mount Vernon Hospital, London, UK
| | - Vincent Vandecaveye
- Department of Radiology and Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Bertrand Tombal
- Department of Urology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Joris Wuts
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Vassiliki Pasoglou
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frederic E Lecouvet
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
50
|
Isaac A, Lecouvet F, Dalili D, Fayad L, Pasoglou V, Papakonstantinou O, Ahlawat S, Messiou C, Weber MA, Padhani AR. Detection and Characterization of Musculoskeletal Cancer Using Whole-Body Magnetic Resonance Imaging. Semin Musculoskelet Radiol 2020; 24:726-750. [PMID: 33307587 DOI: 10.1055/s-0040-1719018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Whole-body magnetic resonance imaging (WB-MRI) is gradually being integrated into clinical pathways for the detection, characterization, and staging of malignant tumors including those arising in the musculoskeletal (MSK) system. Although further developments and research are needed, it is now recognized that WB-MRI enables reliable, sensitive, and specific detection and quantification of disease burden, with clinical applications for a variety of disease types and a particular application for skeletal involvement. Advances in imaging techniques now allow the reliable incorporation of WB-MRI into clinical pathways, and guidelines recommending its use are emerging. This review assesses the benefits, clinical applications, limitations, and future capabilities of WB-MRI in the context of other next-generation imaging modalities, as a qualitative and quantitative tool for the detection and characterization of skeletal and soft tissue MSK malignancies.
Collapse
Affiliation(s)
- Amanda Isaac
- School of Biomedical Engineering & Imaging Sciences, Kings College London, United Kingdom.,Guy's & St Thomas' Hospitals, London, United Kingdom
| | - Frederic Lecouvet
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Danoob Dalili
- School of Biomedical Engineering & Imaging Sciences, Kings College London, United Kingdom.,Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Laura Fayad
- The Russell H. Morgan Department of Radiology and Radiological Science, John's Hopkins School of Medicine, Baltimore, Maryland
| | - Vasiliki Pasoglou
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Olympia Papakonstantinou
- 2nd Department of Radiology, National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| | - Shivani Ahlawat
- The Russell H. Morgan Department of Radiology and Radiological Science, John's Hopkins School of Medicine, Baltimore, Maryland
| | - Christina Messiou
- The Royal Marsden Hospital, London, United Kingdom.,The Institute of Cancer Research, London, United Kingdom
| | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Centre Rostock, Rostock, Germany
| | - Anwar R Padhani
- The Institute of Cancer Research, London, United Kingdom.,Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, United Kingdom
| |
Collapse
|