1
|
Zanello M, Garnier E, Carron R, Jegou A, Lagarde S, Makhalova J, Medina S, Bénar CG, Bartolomei F, Pizzo F. Stereo-EEG-based ictal functional connectivity in patients with periventricular nodular heterotopia-related epilepsy. Epilepsia 2024; 65:e47-e54. [PMID: 38345420 DOI: 10.1111/epi.17891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 04/16/2024]
Abstract
Nodular heterotopia (NH)-related drug-resistant epilepsy is challenging due to the deep location of the NH and the complexity of the underlying epileptogenic network. Using ictal stereo-electroencephalography (SEEG) and functional connectivity (FC) analyses in 14 patients with NH-related drug-resistant epilepsy, we aimed to determine the leading structure during seizures. For this purpose, we compared node IN and OUT strength between bipolar channels inside the heterotopia and inside gray matter, at the group level and at the individual level. At seizure onset, the channels within NH belonging to the epileptogenic and/or propagation network showed higher node OUT-strength than the channels within the gray matter (p = .03), with higher node OUT-strength than node IN-strength (p = .03). These results are in favor of a "leading" role of NH during seizure onset when involved in the epileptogenic- or propagation-zone network (50% of patients). However, when looking at the individual level, no significant difference between NH and gray matter was found, except for one patient (in two of three seizures). This result confirms the heterogeneity and the complexity of the epileptogenic network organization in NH and the need for SEEG exploration to characterize more precisely patient-specific epileptogenic network organization.
Collapse
Affiliation(s)
- Marc Zanello
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-BRAIN, Université Paris Cité, Paris, France
| | - Elodie Garnier
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | - Romain Carron
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
- APHM, Timone Hospital, Stereotactic and Functional Neurosurgery, Marseille, France
| | - Aude Jegou
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | - Stanislas Lagarde
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | - Julia Makhalova
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- APHM La Timone, CEMEREM, Marseille, France
| | - Samuel Medina
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | - Christian-G Bénar
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | - Fabrice Bartolomei
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | - Francesca Pizzo
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| |
Collapse
|
2
|
Vermoyal JC, Hardy D, Goirand-Lopez L, Vinck A, Silvagnoli L, Fortoul A, Francis F, Cappello S, Bureau I, Represa A, Cardoso C, Watrin F, Marissal T, Manent JB. Grey matter heterotopia subtypes show specific morpho-electric signatures and network dynamics. Brain 2024; 147:996-1010. [PMID: 37724593 DOI: 10.1093/brain/awad318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023] Open
Abstract
Grey matter heterotopia (GMH) are neurodevelopmental disorders associated with abnormal cortical function and epilepsy. Subcortical band heterotopia (SBH) and periventricular nodular heterotopia (PVNH) are two well-recognized GMH subtypes in which neurons are misplaced, either forming nodules lining the ventricles in PVNH, or forming bands in the white matter in SBH. Although both PVNH and SBH are commonly associated with epilepsy, it is unclear whether these two GMH subtypes differ in terms of pathological consequences or, on the contrary, share common altered mechanisms. Here, we studied two robust preclinical models of SBH and PVNH, and performed a systematic comparative assessment of the physiological and morphological diversity of heterotopia neurons, as well as the dynamics of epileptiform activity and input connectivity. We uncovered a complex set of altered properties, including both common and distinct physiological and morphological features across heterotopia subtypes, and associated with specific dynamics of epileptiform activity. Taken together, these results suggest that pro-epileptic circuits in GMH are, at least in part, composed of neurons with distinct, subtype-specific, physiological and morphological properties depending on the heterotopia subtype. Our work supports the notion that GMH represent a complex set of disorders, associating both shared and diverging pathological consequences, and contributing to forming epileptogenic networks with specific properties. A deeper understanding of these properties may help to refine current GMH classification schemes by identifying morpho-electric signatures of GMH subtypes, to potentially inform new treatment strategies.
Collapse
Affiliation(s)
- Jean-Christophe Vermoyal
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Delphine Hardy
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Lucas Goirand-Lopez
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Antonin Vinck
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Lucas Silvagnoli
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Aurélien Fortoul
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Fiona Francis
- INSERM, Sorbonne University, Institut du Fer à Moulin, Paris 75005, France
| | - Silvia Cappello
- Department of Physiological Genomics, Biomedical Center, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Ingrid Bureau
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Alfonso Represa
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Carlos Cardoso
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Françoise Watrin
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Thomas Marissal
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| | - Jean-Bernard Manent
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille 13009, France
| |
Collapse
|
3
|
Azeem A, von Ellenrieder N, Royer J, Frauscher B, Bernhardt B, Gotman J. Integration of white matter architecture to stereo-EEG better describes epileptic spike propagation. Clin Neurophysiol 2023; 146:135-146. [PMID: 36379837 DOI: 10.1016/j.clinph.2022.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Stereo-electroencephalography (SEEG)-derived epilepsy networks are used to better understand a patient's epilepsy; however, a unimodal approach provides an incomplete picture. We combine tractography and SEEG to determine the relationship between spike propagation and the white matter architecture and to improve our understanding of spike propagation mechanisms. METHODS Probablistic tractography from diffusion imaging (dMRI) of matched subjects from the Human Connectome Project (HCP) was combined with patient-specific SEEG-derived spike propagation networks. Two regions-of-interest (ROIs) with a significant spike propagation relationship constituted a Propagation Pair. RESULTS In 56 of 59 patients, Propagation Pairs were more often tract-connected as compared to all ROI pairs (p < 0.01; d = -1.91). The degree of spike propagation between tract-connected ROIs was greater (39 ± 21%) compared to tract-unconnected ROIs (31 ± 18%; p < 0.0001). Within the same network, ROIs receiving propagation earlier were more often tract-connected to the source (59.7%) as compared to late receivers (25.4%; p < 0.0001). CONCLUSIONS Brain regions involved in spike propagation are more likely to be connected by white matter tracts. Between nodes, presence of tracts suggests a direct course of propagation, whereas the absence of tracts suggests an indirect course of propagation. SIGNIFICANCE We demonstrate a logical and consistent relationship between spike propagation and the white matter architecture.
Collapse
Affiliation(s)
- Abdullah Azeem
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada.
| | - Nicolás von Ellenrieder
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Jessica Royer
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Birgit Frauscher
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Department of Neurology & Neurosurgery, Montreal Neurological Hospital, Montréal, QC, Canada
| | - Boris Bernhardt
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Jean Gotman
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
4
|
Wang ZM, Wei PH, Zhang M, Wu C, Shan Y, Yeh FC, Shan Y, Lu J. Diffusion spectrum imaging predicts hippocampal sclerosis in mesial temporal lobe epilepsy patients. Ann Clin Transl Neurol 2022; 9:242-252. [PMID: 35166461 PMCID: PMC8935311 DOI: 10.1002/acn3.51503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives Epileptic patients suffer from seizure recurrence after surgery due to the challenging localization. Improvement of the noninvasive imaging‐based approach for a better definition of the abnormalities would be helpful for a better outcome. Methods The quantitative anisotropy (QA) of diffusion spectrum imaging (DSI) is a quantitative scalar of evaluating the water diffusivity. Herein, we investigated the association between neuronal diameters or density acquired in literature and QA of DSI as well as the seizure localization in temporal lobe epilepsy. Thirty healthy controls (HCs) and 30 patients with hippocampal sclerosis (HS) were retrospectively analyzed. QA values were calculated and interactively compared between the areas with different neuronal diameter/density acquired from literature in the HCP‐1021 template. Diagnostic tests were performed on Z‐transformed asymmetry indices (AIs) of QA (which exclude physical asymmetry) among HS patients to evaluate its clinical value. Results The QA values in HCs conformed with different pyramidal cell distributions ranged from giant to small; corresponding groups were the motor‐sensory, associative, and limbic groups, respectively. Additionally, the QA value was correlated with the neuronal diameter/density in cortical layer IIIc (correlation coefficient with diameter: 0.529, p = 0.035; density: −0.678, p = 0.011). Decreases in cingulum hippocampal segments (Chs) were consistently observed on the sclerosed side in patients. The area under the curve of the Z‐transformed AI in Chs to the lateralization of HS was 0.957 (sensitivity: 0.909, specificity: 0.895). Interpretation QA based on DSI is likely to be useful to provide information to reflect the neuronal diameter/density and further facilitate localization of epileptic tissues.
Collapse
Affiliation(s)
- Zhen-Ming Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Peng-Hu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Miao Zhang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Chunxue Wu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yi Shan
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| |
Collapse
|
5
|
Boulogne S, Pizzo F, Chatard B, Roehri N, Catenoix H, Ostrowsky‐Coste K, Giusiano B, Guenot M, Carron R, Bartolomei F, Rheims S. Functional connectivity and epileptogenicity of nodular heterotopias: A single‐pulse stimulation study. Epilepsia 2022; 63:961-973. [DOI: 10.1111/epi.17168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Sébastien Boulogne
- Department of Functional Neurology and Epileptology Hospices Civils de Lyon and University of Lyon Lyon France
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
- Lyon 1 University Villeurbanne France
| | - Francesca Pizzo
- Inserm, INS Institut de Neurosciences des Systèmes Aix Marseille University Marseille France
- Epileptology and Cerebral Rythmology Department Assistance Publique – Hôpitaux de Marseille Marseille France
| | - Benoit Chatard
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
| | - Nicolas Roehri
- Inserm, INS Institut de Neurosciences des Systèmes Aix Marseille University Marseille France
| | - Hélène Catenoix
- Department of Functional Neurology and Epileptology Hospices Civils de Lyon and University of Lyon Lyon France
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
| | - Karine Ostrowsky‐Coste
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
- Epileptology, Sleep Disorders and Functional Pediatric Neurology Hospices Civils de Lyon and University of Lyon Lyon France
| | - Bernard Giusiano
- Inserm, INS Institut de Neurosciences des Systèmes Aix Marseille University Marseille France
- Epileptology and Cerebral Rythmology Department Assistance Publique – Hôpitaux de Marseille Marseille France
| | - Marc Guenot
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
- Department of Functional Neurosurgery Hospices Civils de Lyon and University of Lyon Lyon France
| | - Romain Carron
- Department of Functional Neurosurgery Assistance Publique –Hôpitaux de Marseille Marseille France
| | - Fabrice Bartolomei
- Inserm, INS Institut de Neurosciences des Systèmes Aix Marseille University Marseille France
- Epileptology and Cerebral Rythmology Department Assistance Publique – Hôpitaux de Marseille Marseille France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology Hospices Civils de Lyon and University of Lyon Lyon France
- Lyon's Neurosciences Research Center INSERM U1028 CNRS 5292 Lyon France
- Lyon 1 University Villeurbanne France
| |
Collapse
|
6
|
Liu W, Yue Q, Tian Y, Gong Q, Zhou D, Wu X. Neural functional connectivity in patients with periventricular nodular heterotopia-mediated epilepsy. Epilepsy Res 2021; 170:106548. [PMID: 33454660 DOI: 10.1016/j.eplepsyres.2021.106548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/10/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023]
Abstract
Periventricular nodular heterotopia (PNH) is characterized by disabled neural migration and is usually associated with epilepsy. Despite awareness of PNH-related epilepsy, little is known about the brain-level underlying functional neural bases. Thus, we used functional magnetic resonance imaging (MRI) to examine the neurobiology of 42 subjects with PNH-related epilepsy and 42 sex- and age-matched healthy controls. Measurements of functional connectivity (FC) and whole-brain graph theory analysis of data in the resting state were performed to assess neurological organization and topology. PNH patients exhibited significantly higher FC in the parietal lobe, cingulum and thalamus, as well as significantly lower FC in frontoparietal, hippocampal, and precentral regions. Graph theory analysis identified no significant differences between patients and controls, while patients showed lower network global efficiency in the limbic and cerebellum network and occipital cortex. Seed-based FC analysis confirmed disruption of activities and interregional connectivity in remote epileptic networks of patients, which may point to underlying pathological mechanisms. The cerebellum and limbic system of patients showed altered topology, suggesting that these regions or hubs may contribute to whole-brain circuits in PNH and epilepsy.
Collapse
Affiliation(s)
- Wenyu Liu
- Department of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China
| | - Qiang Yue
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China.
| | - Yun Tian
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing, 400715, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China.
| | - Xintong Wu
- Department of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China.
| |
Collapse
|
7
|
Lotan E, Tomer O, Tavor I, Blatt I, Goldberg-Stern H, Hoffmann C, Tsarfaty G, Tanne D, Assaf Y. Widespread cortical dyslamination in epilepsy patients with malformations of cortical development. Neuroradiology 2020; 63:225-234. [PMID: 32975591 DOI: 10.1007/s00234-020-02561-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/16/2020] [Indexed: 01/16/2023]
Abstract
PURPOSE Recent research in epilepsy patients confirms our understanding of epilepsy as a network disorder with widespread cortical compromise. Here, we aimed to investigate the neocortical laminar architecture in patients with focal cortical dysplasia (FCD) and periventricular nodular heterotopia (PNH) using clinically feasible 3 T MRI. METHODS Eighteen epilepsy patients (FCD and PNH groups; n = 9 each) and age-matched healthy controls (n = 9) underwent T1 relaxation 3 T MRI, from which component probability T1 maps were utilized to extract sub-voxel composition of 6 T1 cortical layers. Seventy-eight cortical areas of the automated anatomical labeling atlas were divided into 1000 equal-volume sub-areas for better detection of cortical abnormalities, and logistic regressions were performed to compare FCD/PNH patients with healthy controls with the T1 layers composing each sub-area as regressors. Statistical significance (p < 0.05) was determined by a likelihood-ratio test with correction for false discovery rate using Benjamini-Hochberg method. RESULTS Widespread cortical abnormalities were observed in the patient groups. Out of 1000 sub-areas, 291 and 256 bilateral hemispheric cortical sub-areas were found to predict FCD and PNH, respectively. For each of these sub-areas, we were able to identify the T1 layer, which contributed the most to the prediction. CONCLUSION Our results reveal widespread cortical abnormalities in epilepsy patients with FCD and PNH, which may have a role in epileptogenesis, and likely related to recent studies showing widespread structural (e.g., cortical thinning) and diffusion abnormalities in various human epilepsy populations. Our study provides quantitative information of cortical laminar architecture in epilepsy patients that can be further targeted for study in functional and neuropathological studies.
Collapse
Affiliation(s)
- Eyal Lotan
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
- Department of Radiology, NYU Langone Medical Center, 660 1st Ave, New York, NY, 10016, USA.
| | - Omri Tomer
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ido Tavor
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ilan Blatt
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Department of Neurology, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
| | - Hadassah Goldberg-Stern
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Department of Neurology, Schneider Children's Medical Center of Israel, 49202, Petah Tikva, Israel
| | - Chen Hoffmann
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Galia Tsarfaty
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - David Tanne
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Stroke Center, Department of Neurology and Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
| | - Yaniv Assaf
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| |
Collapse
|
8
|
Deleo F, Hong SJ, Fadaie F, Caldairou B, Krystal S, Bernasconi N, Bernasconi A. Whole-brain multimodal MRI phenotyping of periventricular nodular heterotopia. Neurology 2020; 95:e2418-e2426. [PMID: 32817185 DOI: 10.1212/wnl.0000000000010648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To test the hypothesis that in periventricular nodular heterotopia (PVNH) structure and function of cortical areas overlying the heterotopic gray matter are preferentially affected. METHODS We studied a group of 40 patients with PVNH and normal-appearing cortex and compared their quantitative MRI markers of brain development, structure, and function to those of 43 age- and sex-matched healthy controls. Inspired by models of neocortical development suggesting that neuronal migration follows a curvilinear path to preserve topologic correspondence between the outer ventricular zone and the cortical surface, we computationally defined the overlying cortex using the Laplace equation and generated synthetic streamlines that link the ventricles, where nodules are located, and the neocortex. RESULTS We found multilobar cortical thickening encompassing prefrontal, latero-basal temporal, and temporoparietal cortices largely corresponding with the PVNH group-averaged map of the overlying cortex, the latter colocalized with areas of abnormal function, as defined by resting-state fMRI. Patients also presented hippocampal functional hyperconnectivity and malrotation, the latter positively correlating with neocortical maldevelopment indexed by increased folding complexity of the parahippocampus. In clusters of thickness and curvature findings, there were no significant differences between unilateral and bilateral PVNH; contrasting brain-wide metrics between cohorts was also unrevealing. There was no relationship between imaging markers and disease duration except for positive correlation with functional anomalies. CONCLUSION Our quantitative image analysis demonstrates widespread structural and functional alterations in PVNH with differential interaction with the overlying cortex and the hippocampus. Right hemispheric predominance may be explained by an early insult, likely genetically determined, on brain morphogenesis.
Collapse
Affiliation(s)
- Francesco Deleo
- From the Neuroimaging of Epilepsy Laboratory (F.D., S.-J.H., F.F., B.C., S.K., N.B., A.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; and Epilepsy Unit (F.D.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Seok-Jun Hong
- From the Neuroimaging of Epilepsy Laboratory (F.D., S.-J.H., F.F., B.C., S.K., N.B., A.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; and Epilepsy Unit (F.D.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fatemeh Fadaie
- From the Neuroimaging of Epilepsy Laboratory (F.D., S.-J.H., F.F., B.C., S.K., N.B., A.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; and Epilepsy Unit (F.D.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Benoit Caldairou
- From the Neuroimaging of Epilepsy Laboratory (F.D., S.-J.H., F.F., B.C., S.K., N.B., A.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; and Epilepsy Unit (F.D.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sidney Krystal
- From the Neuroimaging of Epilepsy Laboratory (F.D., S.-J.H., F.F., B.C., S.K., N.B., A.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; and Epilepsy Unit (F.D.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Neda Bernasconi
- From the Neuroimaging of Epilepsy Laboratory (F.D., S.-J.H., F.F., B.C., S.K., N.B., A.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; and Epilepsy Unit (F.D.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Bernasconi
- From the Neuroimaging of Epilepsy Laboratory (F.D., S.-J.H., F.F., B.C., S.K., N.B., A.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; and Epilepsy Unit (F.D.), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
9
|
Liu W, Hu X, An D, Zhou D, Gong Q. Resting-state functional connectivity alterations in periventricular nodular heterotopia related epilepsy. Sci Rep 2019; 9:18473. [PMID: 31804610 PMCID: PMC6895037 DOI: 10.1038/s41598-019-55002-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/18/2019] [Indexed: 02/05/2023] Open
Abstract
Periventricular nodular heterotopia (PNH) is a neural migration disorder which often presents clinically with seizures. However, the underlying functional neural basis of PNH is still unclear. We aimed to explore the underlying pathological mechanism of PNH by combining both whole brain functional connectivity (FC) and seed-based FC analyses. We utilized resting-state fMRI to measure functional connectivity strength (FCS) in 38 patients with PNH-related epilepsy and 38 control subjects. The regions with FCS alterations were selected as seeds in the following FC analyses. Pearson correlation analyses were performed to explore associations between these functional neural correlates and clinical features. In comparison with controls, PNH patients showed lower FCS in bilateral insula (P < 0.05, family wise error (FWE) correction), higher FC in the default mode network and lower FC in the fronto-limbic-cerebellar circuits (P < 0.05, FWE correction). Pearson correlation analyses revealed that FCS in bilateral insula was negatively correlated with the epilepsy duration (P < 0.05); medial prefronto-insular connectivity was negatively correlated with Hamilton Anxiety Scale (P < 0.05) and cerebellar-insular connectivity was also negatively correlated with Hamilton Depression Scale (P < 0.05). Using the resting-state FCS analytical approach, we identified significant insular hypoactivation in PNH patients, which suggests that the insula might represent the cortical hub of the whole-brain networks in this condition. Additionally, disruption of resting state FC in large-scale neural networks pointed to a connectivity-based neuropathological process in PNH.
Collapse
Affiliation(s)
- Wenyu Liu
- Departments of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China
| | - Xinyu Hu
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China
| | - Dongmei An
- Departments of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China
| | - Dong Zhou
- Departments of Neurology, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China.
| | - Qiyong Gong
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, China.
| |
Collapse
|
10
|
Malformations of cortical development: New surgical advances. Rev Neurol (Paris) 2019; 175:183-188. [DOI: 10.1016/j.neurol.2019.01.392] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/23/2018] [Accepted: 01/04/2019] [Indexed: 11/18/2022]
|
11
|
Newman EA, Wu D, Taketo MM, Zhang J, Blackshaw S. Canonical Wnt signaling regulates patterning, differentiation and nucleogenesis in mouse hypothalamus and prethalamus. Dev Biol 2018; 442:236-248. [PMID: 30063881 DOI: 10.1016/j.ydbio.2018.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 01/10/2023]
Abstract
The hypothalamus is a small, but anatomically and functionally complex region of the brain whose development is poorly understood. In this study, we have explored its development by studying the canonical Wnt signaling pathway, generating gain and loss of function mutations of beta-catenin (Ctnnb1) in both hypothalamic and prethalamic neuroepithelium. Deletion of Ctnnb1 resulted in an anteriorized and hypoplastic hypothalamus. Posterior structures were lost or reduced, and anterior structures were expanded. In contrast, overexpression of a constitutively active mutant form of Ctnnb1 resulted in severe hyperplasia of prethalamus and hypothalamus, and expanded expression of a subset of posterior and premamillary hypothalamic markers. Moderate defects in differentiation of Arx-positive GABAergic neural precursors were observed in both prethalamus and hypothalamus of Ctnnb1 loss of function mutants, while in gain of function mutants, their differentiation was completely suppressed, although markers of prethalamic progenitors were preserved. Multiple other region-specific markers, including several specific posterior hypothalamic structures, were also suppressed in Ctnnb1 gain of function mutations. Severe, region-specific defects in hypothalamic nucleogenesis were also observed in both gain and loss of function mutations of Ctnnb1. Finally, both gain and loss of function of Ctnnb1 also produced severe, non-cell autonomous disruptions of pituitary development. These findings demonstrate a central and multifaceted role for canonical Wnt signaling in regulating growth, patterning, differentiation and nucleogenesis in multiple diencephalic regions.
Collapse
Affiliation(s)
- Elizabeth A Newman
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan Wu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jiangyang Zhang
- Department of Radiology, NYU Langone School of Medicine, New York, NY, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Rouchy RC, Attyé A, Medici M, Renard F, Kastler A, Grand S, Tropres I, Righini CA, Krainik A. Facial nerve tractography: A new tool for the detection of perineural spread in parotid cancers. Eur Radiol 2018; 28:3861-3871. [PMID: 29633003 DOI: 10.1007/s00330-018-5318-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/29/2017] [Accepted: 01/09/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To determine whether facial nerve MR tractography is useful in detecting PeriNeural Spread in parotid cancers. METHODS Forty-five participants were enrolled. Thirty patients with surgically managed parotid tumors (15 malignant, 15 benign) were compared with 15 healthy volunteers. All of them had undergone 3T-MRI with diffusion acquisition and post-processing constrained spherical deconvolution-based tractography. Parameters of diffusion-weighted sequences were b-value 1,000 s/mm2, 32 directions. Two radiologists performed a blinded visual reading of tractographic maps and graded the facial nerve average pathlength and fractional anisotropy (FA). We also compared diagnostic accuracy of tractography with morphological MRI sequences to detect PeriNeural Spread. Non-parametric methods were used. RESULTS Average pathlength was significantly higher in cases with PeriNeural Spread (39.86 mm [Quartile1: 36.27; Quartile3: 51.19]) versus cases without (16.23 mm [12.90; 24.90]), p<0.001. The threshold above which there was a significant association with PeriNeural Spread was set at 27.36 mm (Se: 100%; Sp: 84%; AUC: 0.96, 95% CI 0.904-1). There were no significant differences in FA between groups. Tractography map visual analyses directly displayed PeriNeural Spread in distal neural ramifications with sensitivity of 75%, versus 50% using morphological sequences. CONCLUSIONS Tractography could be used to identify facial nerve PeriNeural Spread by parotid cancers. KEY POINTS • Tractography could detect facial nerve PeriNeural Spread in parotid cancers. • The average pathlength parameter is increased in case of PeriNeural Spread. • Tractography could map PeriNeural Spread more precisely than conventional imaging.
Collapse
Affiliation(s)
- René-Charles Rouchy
- Department of Neuroradiology and MRI, Grenoble Alpes University Hospital - SFR RMN Neurosciences, F-38043, Grenoble, Cedex 9, France. .,University of Grenoble Alpes, IRMaGe, F-38000, Grenoble, France.
| | - Arnaud Attyé
- Department of Neuroradiology and MRI, Grenoble Alpes University Hospital - SFR RMN Neurosciences, F-38043, Grenoble, Cedex 9, France.,University of Grenoble Alpes, IRMaGe, F-38000, Grenoble, France
| | - Maud Medici
- Clinical Investigation Centre 1406 - Innovative Technology, National Institute of Health and Medical Research, Grenoble, France.,Public Health Department, Grenoble Alpes University Hospital, Grenoble, France
| | - Félix Renard
- University of Grenoble Alpes, IRMaGe, F-38000, Grenoble, France
| | - Adrian Kastler
- Department of Neuroradiology and MRI, Grenoble Alpes University Hospital - SFR RMN Neurosciences, F-38043, Grenoble, Cedex 9, France.,University of Grenoble Alpes, IRMaGe, F-38000, Grenoble, France
| | - Sylvie Grand
- Department of Neuroradiology and MRI, Grenoble Alpes University Hospital - SFR RMN Neurosciences, F-38043, Grenoble, Cedex 9, France.,University of Grenoble Alpes, IRMaGe, F-38000, Grenoble, France
| | - Irène Tropres
- University of Grenoble Alpes, IRMaGe, F-38000, Grenoble, France.,IRMaGe, Inserm US 17, CNRS UMS 3552, Grenoble, France
| | | | - Alexandre Krainik
- Department of Neuroradiology and MRI, Grenoble Alpes University Hospital - SFR RMN Neurosciences, F-38043, Grenoble, Cedex 9, France.,University of Grenoble Alpes, IRMaGe, F-38000, Grenoble, France
| |
Collapse
|
13
|
Super-Resolution Track-Density Imaging Reveals Fine Anatomical Features in Tree Shrew Primary Visual Cortex and Hippocampus. Neurosci Bull 2017; 34:438-448. [PMID: 29247318 DOI: 10.1007/s12264-017-0199-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/07/2017] [Indexed: 12/21/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (dMRI) is widely used to study white and gray matter (GM) micro-organization and structural connectivity in the brain. Super-resolution track-density imaging (TDI) is an image reconstruction method for dMRI data, which is capable of providing spatial resolution beyond the acquired data, as well as novel and meaningful anatomical contrast that cannot be obtained with conventional reconstruction methods. TDI has been used to reveal anatomical features in human and animal brains. In this study, we used short track TDI (stTDI), a variation of TDI with enhanced contrast for GM structures, to reconstruct direction-encoded color maps of fixed tree shrew brain. The results were compared with those obtained with the traditional diffusion tensor imaging (DTI) method. We demonstrated that fine microstructures in the tree shrew brain, such as Baillarger bands in the primary visual cortex and the longitudinal component of the mossy fibers within the hippocampal CA3 subfield, were observable with stTDI, but not with DTI reconstructions from the same dMRI data. The possible mechanisms underlying the enhanced GM contrast are discussed.
Collapse
|
14
|
Bourdillon P, Apra C, Guénot M, Duffau H. Similarities and differences in neuroplasticity mechanisms between brain gliomas and nonlesional epilepsy. Epilepsia 2017; 58:2038-2047. [PMID: 29105067 DOI: 10.1111/epi.13935] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To analyze the conceptual and practical implications of a hodotopic approach in neurosurgery, and to compare the similarities and the differences in neuroplasticity mechanisms between low-grade gliomas and nonlesional epilepsy. METHODS We review the recent data about the hodotopic organization of the brain connectome, alongside the organization of epileptic networks, and analyze how these two structures interact, suggesting therapeutic prospects. Then we focus on the mechanisms of neuroplasticity involved in glioma natural course and after glioma surgery. Comparing these mechanisms with those in action in an epileptic brain highlights their differences, but more importantly, gives an original perspective to the consequences of surgery on an epileptic brain and what could be expected after pathologic white matter removal. RESULTS The organization of the brain connectome and the neuroplasticity is the same in all humans, but different pathologic mechanisms are involved, and specific therapeutic approaches have been developed in epilepsy and glioma surgery. We demonstrate that the "connectome" point of view can enrich epilepsy care. We also underscore how theoretical and practical tools commonly used in epilepsy investigations, such as invasive electroencephalography, can be of great help in awake surgery in general. SIGNIFICANCE Putting together advances in understanding of connectomics and neuroplasticity, leads to significant conceptual improvements in epilepsy surgery.
Collapse
Affiliation(s)
- Pierre Bourdillon
- Department of Neurosurgery, Hospital for Neurology and Neurosurgery Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France.,Brain and Spine Institute, INSERM U1127, CNRS 7225, Paris, France.,Claude Bernard University, University of Lyon, Lyon, France.,Pierre and Marie Curie University, Sorbonne University, Paris, France
| | - Caroline Apra
- Pierre and Marie Curie University, Sorbonne University, Paris, France
| | - Marc Guénot
- Department of Neurosurgery, Hospital for Neurology and Neurosurgery Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France.,Brain and Spine Institute, INSERM U1127, CNRS 7225, Paris, France.,Neuroscience Research Center of Lyon, INSERM U1028, CNRS 5292, Lyon, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier, France.,University of Montpellier, Montpellier, France.,Institute for Neurosciences of Montpellier, INSERM U1051, Montpellier, France
| |
Collapse
|
15
|
Pizzo F, Roehri N, Catenoix H, Medina S, McGonigal A, Giusiano B, Carron R, Scavarda D, Ostrowsky K, Lepine A, Boulogne S, Scholly J, Hirsch E, Rheims S, Bénar CG, Bartolomei F. Epileptogenic networks in nodular heterotopia: A stereoelectroencephalography study. Epilepsia 2017; 58:2112-2123. [DOI: 10.1111/epi.13919] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Francesca Pizzo
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
| | - Nicolas Roehri
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
| | - Hélène Catenoix
- Department of Functional Neurology and Epileptology; Hospices Civils de Lyon (Lyon University Hospital); Hospital for Neurology and Neurosurgery Pierre Wertheimer; Lyon France
| | - Samuel Medina
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
| | - Aileen McGonigal
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
- Clinical Neurophysiology; APHM; Timone Hospital; Marseille France
| | - Bernard Giusiano
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
| | - Romain Carron
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
- Functional and Stereotactic Neurosurgery; APHM; Timone Hospital; Marseille France
| | - Didier Scavarda
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
- Functional and Stereotactic Neurosurgery; APHM; Timone Hospital; Marseille France
| | - Karine Ostrowsky
- Department of Functional Neurology and Epileptology; Hospices Civils de Lyon (Lyon University Hospital); Hospital for Neurology and Neurosurgery Pierre Wertheimer; Lyon France
| | - Anne Lepine
- Pediatric Neurology Department; Timone Hospital; APHM; Marseille France
| | - Sébastien Boulogne
- Department of Functional Neurology and Epileptology; Hospices Civils de Lyon (Lyon University Hospital); Hospital for Neurology and Neurosurgery Pierre Wertheimer; Lyon France
| | - Julia Scholly
- Medical and Surgical Epilepsy Unit; Hautepierre Hospital; University of Strasbourg; Strasbourg France
| | - Edouard Hirsch
- Medical and Surgical Epilepsy Unit; Hautepierre Hospital; University of Strasbourg; Strasbourg France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology; Hospices Civils de Lyon (Lyon University Hospital); Hospital for Neurology and Neurosurgery Pierre Wertheimer; Lyon France
| | - Christian-George Bénar
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
| | - Fabrice Bartolomei
- Inserm; Institut de Neurosciences des Systèmes (INS); Aix Marseille Univ; Marseille France
- Clinical Neurophysiology; APHM; Timone Hospital; Marseille France
| |
Collapse
|
16
|
Liu W, Yan B, An D, Niu R, Tang Y, Tong X, Gong Q, Zhou D. Perilesional and contralateral white matter evolution and integrity in patients with periventricular nodular heterotopia and epilepsy: a longitudinal diffusion tensor imaging study. Eur J Neurol 2017; 24:1471-1478. [PMID: 28872216 DOI: 10.1111/ene.13441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/31/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND PURPOSE This study aimed to assess the evolution of perinodular and contralateral white matter abnormalities in patients with periventricular nodular heterotopia (PNH) and epilepsy. METHODS Diffusion tensor imaging (DTI) (64 directions) and 3 T structural magnetic resonance imaging were performed in 29 PNH patients (mean age 27.3 years), and 16 patients underwent a second scan (average time between the two scans 1.1 years). Fractional anisotropy and mean diffusivity were measured within the perilesional and contralateral white matter. RESULTS Longitudinal analysis showed that white matter located 10 mm from the focal nodule displayed characteristics intermediate to tissue 5 mm away, and normal-appearing white matter (NAWM) also established evolution profiles of perinodular white matter in different cortical lobes. Compared to 29 age- and sex-matched healthy controls, significant decreased fractional anisotropy and elevated mean diffusivity values were observed in regions 5 and 10 mm from nodules (P < 0.01), whilst DTI metrics of the remaining NAWM did not differ significantly from controls. Additionally, normal DTI metrics were shown in the contralateral region in patients with unilateral PNH. CONCLUSIONS Periventricular nodular heterotopia is associated with microstructural abnormalities within the perilesional white matter and the extent decreases with increasing distance from the nodule. In the homologous contralateral region, white matter diffusion metrics were unchanged in unilateral PNH. These findings have clinical implications with respect to the medical and surgical interventions of PNH-related epilepsy.
Collapse
Affiliation(s)
- W Liu
- Departments of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - B Yan
- Departments of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - D An
- Departments of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - R Niu
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - Y Tang
- Departments of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - X Tong
- Departments of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Q Gong
- Departments of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - D Zhou
- Departments of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|