1
|
Wen Y, Song N, Peng Y, Wu W, Lin Q, Cui M, Li R, Yu Q, Wu S, Liang Y, Tian W, Meng Y. Radiofrequency enhances drug release from responsive nanoflowers for hepatocellular carcinoma therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:569-579. [PMID: 38887527 PMCID: PMC11181167 DOI: 10.3762/bjnano.15.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignant tumor and the third leading cause of cancer death worldwide. Most patients are diagnosed at an advanced stage, and systemic chemotherapy is the preferred treatment modality for advanced HCC. Curcumin (CUR) is a polyphenolic antineoplastic drug with low toxicity obtained from plants. However, its low bioavailability and poor solubility limit its functionality. In this study, radiofrequency- (RF) enhanced responsive nanoflowers (NFs), containing superparamagnetic ferric oxide nanoclusters (Fe3O4 NCs), - CUR layer, - and MnO2 (CUR-Fe@MnO2 NFs), were verified to have a thermal therapeutic effect. Transmission electron microscopy was used to characterize the CUR-Fe@MnO2 NFs, which appeared flower-like with a size of 96.27 nm. The in vitro experimental data showed that RF enhanced the degradation of CUR-Fe@MnO2 NFs to release Mn2+ and CUR. The cytotoxicity test results indicated that after RF heating, the CUR-Fe@MnO2 NFs significantly suppressed HCC cell proliferation. Moreover, CUR-Fe@MnO2 NFs were effective T 1/T 2 contrast agents for molecular magnetic resonance imaging due to the release of Mn2+ and Fe3O4 NCs.
Collapse
Affiliation(s)
- Yanyan Wen
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ningning Song
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Yueyou Peng
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Weiwei Wu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qixiong Lin
- The Ninth Clinical Medical School of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Minjie Cui
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Rongrong Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Qiufeng Yu
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
- Department of Medical Imaging, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Sixue Wu
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yongkang Liang
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
- Department of Medical Imaging, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Wei Tian
- Department of General Surgery, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, China
| | - Yanfeng Meng
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| |
Collapse
|
2
|
Liu J, Zhang G, Li X, Zheng C, Kan X. Enhancing the therapeutic impact of sublethal radiofrequency hyperthermia in malignant solid tumor treatment. Heliyon 2024; 10:e29866. [PMID: 38681568 PMCID: PMC11053292 DOI: 10.1016/j.heliyon.2024.e29866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Radiofrequency ablation (RFA) is an effective alternative to surgery for managing some malignant solid tumors. However, for medium-to-large tumors (>3 cm), tumors adjacent to large blood vessels, and certain irregular tumors, sublethal radiofrequency hyperthermia (RFH) often produces a margin of ablated tumor owing to the "heat-sink" effect. This effect typically leaves behind viable residual tumors at the margin. Several studies have reported that a sublethal RFH can significantly enhance the efficacy of chemotherapy, radiotherapy, immunotherapy, and gene therapy for malignant solid tumors. The possible mechanisms by which RFH enhances these therapies include heat-induced tissue fracturing, increased permeability of the cytoplasmic membrane, exaggerated cellular metabolism, blockade of the repair pathways of radiation-damaged tumor cells, and activation of the heat shock protein pathways. Therefore, RFA in combination with chemotherapy, radiotherapy, immunotherapy, or gene therapy may help reduce the rates of residual and recurrent tumors after RFA of malignant solid tumors.
Collapse
Affiliation(s)
- Jiayun Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Guilin Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xinyi Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xuefeng Kan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
3
|
Interventional Oncolytic Immunotherapy with LTX-315 for Residual Tumor after Incomplete Radiofrequency Ablation of Liver Cancer. Cancers (Basel) 2022; 14:cancers14246093. [PMID: 36551579 PMCID: PMC9777024 DOI: 10.3390/cancers14246093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Objective: To investigate the feasibility of interventional oncolytic immunotherapy with LTX-315 for residual tumors after incomplete radiofrequency ablation (iRFA) of VX2 liver tumors in a rabbit model. Methods: For in vitro experiments, VX2 tumor cells were treated with: (1) phosphate buffered saline, (2) radiofrequency hyperthermia (RFH), (3) LTX-315, and (4) RFH plus LTX-315. The residual tumors after iRFA of VX2 liver tumors were treated with: (1) phosphate buffered saline served as control, (2) 2 mg LTX-315, and (3) 4 mg LTX-315. MTS assay, fluorescence microscopy, and flow cytometry were used to compare cell viabilities and apoptosis among different groups. Ultrasound imaging was used to follow up the tumor growth, which were correlated with the optical imaging and subsequent histology. Results: For in vitro experiments, compared with the other three groups, MTS assay demonstrated the lowest cell viability, fluorescence microscopy showed the least survival cells, and apoptosis analysis revealed the highest percentage of apoptosis cells in the combination treatment groups (p < 0.001). For in vivo experiments, ultrasound imaging showed the smallest tumor volume in the group with 4 mg LTX-315 therapy compared with the other two groups (p < 0.001). The optical imaging and histopathological analysis showed complete necrosis of the tumors in the group with 4 mg LTX-315 therapy. A significant increase of CD8+ T cells and HSP70 and a significant decrease of Tregs were observed in residual tumors in the group with 2 mg LTX-315 therapy compared with the control group (p < 0.001). Conclusion: Interventional oncolytic immunotherapy with LTX-315 for residual tumors after iRFA of liver cancer is feasible, which may open up new avenues to prevent residual tumors after RFA of intermediate-to-large liver cancers.
Collapse
|
4
|
Kan X, Zhou G, Zhang F, Ji H, Shin DS, Monsky W, Zheng C, Yang X. Enhanced efficacy of direct immunochemotherapy for hepatic cancer with image-guided intratumoral radiofrequency hyperthermia. J Immunother Cancer 2022; 10:e005619. [PMID: 36450380 PMCID: PMC9717415 DOI: 10.1136/jitc-2022-005619] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND It is still a challenge to prevent tumor recurrence post radiofrequency ablation (RFA) of medium-to-large hepatocellular carcinomas (HCC). Immunochemotherapy, a combination of immunotherapy with chemotherapy, has demonstrated a great potential in augmenting the treatment efficacy for some malignancies. In this study, we validated the feasibility of using radiofrequency hyperthermia (RFH)-enhanced intratumoral immunochemotherapy of LTX-315 with liposomal doxorubicin for rat orthotopic HCC. METHODS Different groups of luciferase-labeled rat HCC cells and rat orthotopic HCC models were treated by: (1) phosphate buffered saline; (2) RFH; (3) LTX-315; (4) RFH+LTX-315; (5) liposomal doxorubicin; (6) RFH+liposomal doxorubicin; (7) LTX-315+liposomal doxorubicin; and (8) RFH+LTX-315+liposomal doxorubicin. Cell viabilities and apoptosis of different treatment groups were compared. Changes in tumor sizes were quantified by optical and ultrasound imaging, which were confirmed by subsequent histopathology. The potential underlying biological mechanisms of the triple combination treatment (RFH+LTX-315+liposomal doxorubicin) were explored. RESULTS Flow cytometry and MTS assay showed the highest percentage of apoptotic cells and lowest cell viability in the triple combination treatment group compared with other seven groups (p<0.001). Tumors in this group also presented the most profound decrease in bioluminescence signal intensities and the smallest tumor volumes compared with other seven groups (p<0.001). A significant increase of CD8+ T cells, CD8+/interferon (IFN)-γ+ T cells, CD8+/tumor necrosis factor (TNF)-α+ T cells, and natural killer cells, and a significant decrease of regulatory T cells were observed in the tumors (p<0.001). Meanwhile, a significantly higher level of Th1-type cytokines in both plasma (interleukin (IL)-2, IL-12, IL-18, IFN-γ) and tumors (IL-2, IL-18, IFN-γ, TNF-α), as well as a significantly lower Th2-type cytokines of IL-4 and IL-10 in plasma and tumor were detected. CONCLUSIONS Intratumoral RFA-associated RFH could enhance the efficacy of immunochemotherapy of LTX-315 with liposomal doxorubicin for HCC, which may provide a new strategy to increase the curative efficacy of thermal ablation for medium-to-large HCC.
Collapse
Affiliation(s)
- Xuefeng Kan
- Image-Guided Bio-Molecular Intervention Research and Section of Vascular and Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanhui Zhou
- Image-Guided Bio-Molecular Intervention Research and Section of Vascular and Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, USA
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Feng Zhang
- Image-Guided Bio-Molecular Intervention Research and Section of Vascular and Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Hongxiu Ji
- Image-Guided Bio-Molecular Intervention Research and Section of Vascular and Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Pathology, Overlake Medical Center and Incyte Diagnostics, Bellevue, WA, USA
| | - David S Shin
- Image-Guided Bio-Molecular Intervention Research and Section of Vascular and Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Wayne Monsky
- Image-Guided Bio-Molecular Intervention Research and Section of Vascular and Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoming Yang
- Image-Guided Bio-Molecular Intervention Research and Section of Vascular and Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
5
|
Hyperthermia Treatment as a Promising Anti-Cancer Strategy: Therapeutic Targets, Perspective Mechanisms and Synergistic Combinations in Experimental Approaches. Antioxidants (Basel) 2022; 11:antiox11040625. [PMID: 35453310 PMCID: PMC9030926 DOI: 10.3390/antiox11040625] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
Despite recent developments in diagnosis and treatment options, cancer remains one of the most critical threats to health. Several anti-cancer therapies have been identified, but further research is needed to provide more treatment options that are safe and effective for cancer. Hyperthermia (HT) is a promising treatment strategy for cancer because of its safety and cost-effectiveness. This review summarizes studies on the anti-cancer effects of HT and the detailed mechanisms. In addition, combination therapies with anti-cancer drugs or natural products that can effectively overcome the limitations of HT are reviewed because HT may trigger protective events, such as an increase of heat shock proteins (HSPs). In the 115 reports included, the mechanisms related to apoptosis, cell cycle, reactive oxygen species, mitochondrial membrane potential, DNA damage, transcription factors and HSPs were considered important. This review shows that HT is an effective inducer of apoptosis. Moreover, the limitations of HT may be overcome using combined therapy with anti-cancer drugs or natural products. Therefore, appropriate combinations of such agents with HT will exert maximal effects to treat cancer.
Collapse
|
6
|
Zheng H, Zhang F, Monsky W, Ji H, Yang W, Yang X. Interventional Optical Imaging-Monitored Synergistic Effect of Radio-Frequency Hyperthermia and Oncolytic Immunotherapy. Front Oncol 2022; 11:821838. [PMID: 35141157 PMCID: PMC8818682 DOI: 10.3389/fonc.2021.821838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022] Open
Abstract
Purpose To develop a new interventional oncology technique using indocyanine green (ICG)-based interventional optical imaging (OI) to monitor the synergistic effect of radiofrequency hyperthermia (RFH)-enhanced oncolytic immunotherapy. Materials and Methods This study included (1) optimization of ICG dose and detection time-window for intracellular uptake by VX2 tumor cells; (2) in-vitro confirmation of capability of using ICG-based OI to assess efficacy of RFH-enhanced oncolytic therapy (LTX-401) for VX2 cells; and (3) in-vivo validation of the interventional OI-monitored, intratumoral RFH-enhanced oncolytic immunotherapy using rabbit models with orthotopic liver VX2 tumors. Both in-vitro and in-vivo experiments were divided into four study groups (n=6/group) with different treatments: (1) combination therapy of RFH+LTX-401; (2) RFH alone at 42°C for 30 min; (3) oncolytic therapy with LTX-401; and (4) control with saline. For in-vivo validation, orthotopic hepatic VX2 tumors were treated using a new multi-functional perfusion-thermal radiofrequency ablation electrode, which enabled simultaneous delivery of both LTX-401 and RFH within the tumor and at the tumor margins. Results In in-vitro experiments, taking up of ICG by VX2 cells was linearly increased from 0 μg/mL to 100 μg/mL, while ICG-signal intensity (SI) reached the peak at 24 hours. MTS assay and apoptosis analysis demonstrated the lowest cell viability and highest apoptosis in combination therapy, compared to three monotherapies (P<0.005). In in-vivo experiments, ultrasound imaging detected the smallest relative tumor volume for the combination therapy, compared to other monotherapies (P<0.005). In both in-vitro and in-vivo experiments, ICG-based interventional optical imaging detected a significantly decreased SI in combination therapy (P<0.005), which was confirmed by the “gold standard” optical/X-ray imaging (P<0.05). Pathologic/laboratory examinations further confirmed the significantly decreased cell proliferation with Ki-67 staining, significantly increased apoptotic index with TUNEL assay, and significantly increased quantities of CD8 and CD80 positive cells with immunostaining in the combination therapy group, compared to other three control groups (P<0.005). Conclusions We present a new interventional oncology technique, interventional optical imaging-monitored RFH-enhanced oncolytic immunotherapy, which may open new avenues to effectively manage those patients with larger, irregular and unresectable malignancies, not only in liver but also the possibility in other organs.
Collapse
Affiliation(s)
- Hui Zheng
- Image-Guided Biomolecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Feng Zhang
- Image-Guided Biomolecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Wayne Monsky
- Image-Guided Biomolecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Hongxiu Ji
- Image-Guided Biomolecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
- Department of Pathology, Overlake Medical Center and Incyte Diagnostics, Bellevue, WA, United States
| | - Weizhu Yang
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoming Yang
- Image-Guided Biomolecular Intervention Research and Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
- *Correspondence: Xiaoming Yang,
| |
Collapse
|
7
|
Image-guided locoregional non-intravascular interventional treatments for hepatocellular carcinoma: Current status. J Interv Med 2021; 4:1-7. [PMID: 34805939 PMCID: PMC8562266 DOI: 10.1016/j.jimed.2020.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/26/2020] [Accepted: 10/10/2020] [Indexed: 01/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly and frequent cancers worldwide, although great advancement in the treatment of this malignancy have been made within the past few decades. It continues to be a major health issue due to an increasing incidence and a poor prognosis. The majority of patients have their HCC diagnosed at an intermediate or advanced stage in theUSA or China. Curative therapy such as surgical resection or liver transplantation is not considered anoption of treatment at these stages. Transarterial chemoembolization (TACE), the most widely used locoregional therapeutic approach, used to be the mainstay of treatment for cases with unresectable cancer entities. However, for those patients with hypovascular tumors or impaired liver function reserve, TACE is a suboptimal treatment option. For example, embolization does not result in complete coverage of a hypovascular tumor, and may rather promotes postoperative tumor recurrence, or leave residual tumor, in these TACE-resistance patients. In addition, TACE carries a higher risk of hepatic decompensation in patients with poor liver function or reserve. Non-vascular interventional locoregional therapies for HCC include radiofrequency ablation (RFA), microwave ablation (MWA), high-intensity focused ultrasound (HIFU), laser-induced thermotherapy (LITT), cryosurgical ablation (CSA), irreversible Electroporation (IRE), percutaneous ethanol injection (PEI), and brachytherapy. Recent advancements in these techniques have significantly improved the treatment efficacy of HCC and expanded the population of patients who qualify for treatment. This review embraces the current status of imaging-guided locoregional non-intravascular interventional treatments for HCCs, with a primary focus on the clinical evaluation and assessment of the efficacy of combined therapies using these interventional techniques.
Collapse
|
8
|
Chen M, Zhang F, Song J, Weng Q, Li P, Li Q, Qian K, Ji H, Pietrini S, Ji J, Yang X. Image-Guided Peri-Tumoral Radiofrequency Hyperthermia-Enhanced Direct Chemo-Destruction of Hepatic Tumor Margins. Front Oncol 2021; 11:593996. [PMID: 34235070 PMCID: PMC8255807 DOI: 10.3389/fonc.2021.593996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/28/2021] [Indexed: 01/02/2023] Open
Abstract
Purpose To validate the feasibility of using peri-tumoral radiofrequency hyperthermia (RFH)-enhanced chemotherapy to obliterate hepatic tumor margins. Method and Materials This study included in vitro experiments with VX2 tumor cells and in vivo validation experiments using rabbit models of liver VX2 tumors. Both in vitro and in vivo experiments received different treatments in four groups (n=6/group): (i) RFH-enhanced chemotherapy consisting of peri-tumoral injection of doxorubicin plus RFH at 42°C; (ii) RFH alone; (iii) doxorubicin alone; and (iv) saline. Therapeutic effect on cells was evaluated using different laboratory examinations. For in vivo experiments, orthotopic hepatic VX2 tumors in 24 rabbits were treated by using a multipolar radiofrequency ablation electrode, enabling simultaneous delivery of both doxorubicin and RFH within the tumor margins. Ultrasound imaging was used to follow tumor growth overtime, correlated with subsequent histopathological analysis. Results In in vitro experiments, MTS assay demonstrated the lowest cell proliferation, and apoptosis analysis showed the highest apoptotic index with RFH-enhanced chemotherapy, compared with the other three groups (p<0.01). In in vivo experiments, ultrasound imaging detected the smallest relative tumor volume with RFH-enhanced chemotherapy (p<0.01). The TUNEL assay further confirmed the significantly increased apoptotic index and decreased cell proliferation in the RFH-enhanced therapy group (p<0.01). Conclusion This study demonstrates that peri-tumoral RFH can specifically enhance the destruction of tumor margins in combination with peri-tumoral injection of a chemotherapeutic agent. This new interventional oncology technique may address the critical clinical problem of frequent marginal tumor recurrence/persistence following thermal ablation of large (>3 cm) hepatic cancers.
Collapse
Affiliation(s)
- Minjiang Chen
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States.,Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, China
| | - Feng Zhang
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Jingjing Song
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States.,Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, China
| | - Qiaoyou Weng
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States.,Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, China
| | - Peicheng Li
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Qiang Li
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Kun Qian
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Hongxiu Ji
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States.,Department of Pathology, Overlake Medical Center and Incyte Diagnostics, Bellevue, WA, United States
| | - Sean Pietrini
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, China
| | - Xiaoming Yang
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
9
|
Qian K, Chen M, Zhang F, Chick JFB, Ji H, Zheng C, Yang X. Image-Guided Radiofrequency Hyperthermia (RFH)-Enhanced Direct Chemotherapy of Hepatic Tumors: The Underlying Biomolecular Mechanisms. Front Oncol 2021; 10:610543. [PMID: 33585231 PMCID: PMC7878973 DOI: 10.3389/fonc.2020.610543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose To evaluate the treatment effect of radiofrequency-induced hyperthermia (RFH) combined with intra-tumoral chemotherapy for rabbit VX2 liver tumors and explore the underlying mechanism that drives local hyperthermia-enhanced chemotherapy. Materials and Methods VX2 cell lines and rabbits with liver VX2 tumors were randomly allocated to four treatment groups including: (1) combination therapy of Doxorubicin (DOX) plus hyperthermia/RFH (n=6); (2) DOX only; (3) hyperthermia/RFH only (n=6); and (4) phosphate-buffered saline-treated control (n=6). Cell viability and doxorubicin uptake by VX2 tumor cells were assayed using flow cytometry and fluorescence microscopy 24 h after treatments. Western blot was used to evaluate the expression level of heat shock protein 70 (HSP70) in tumor cells and tissues. For the harvested VX2 tumors, fluorescence microscopy was used to evaluate the distribution and penetration of doxorubicin in tumor tissues and HSP70 expression was analyzed by Western blot and immunohistochemistry. Results RFH enhanced the chemotherapeutic effect of doxorubicin in VX2 cells and rabbit liver VX2 tumors resulting in higher apoptosis and lower cell viability. Flowcytometry of VX2 cells showed more apoptotic cells in combination therapy of hyperthermia and DOX, compared with other three groups in-vitro experiments (45.80 ± 1.27% vs 20.66 ± 0.71%, vs 15.16 ± 0.81% and 0.62 ± 0.06%, respectively, p<0.01). The quantitative analysis by Western blot and immunohistochemistry showed increased expression of HSP70 in both VX2 tumor cells (1.28 ± 0.13 vs 0.64 ± 0.13 vs 0.83 ± 0.10 vs 0.15 ± 0.03, respectively, p<0.05) and tumors (1.47 ± 0.13 vs 0.51 ± 0.13 vs 0.74 ± 0.11 vs 0.16 ± 0.04, respectively, p <0.01). Fluorescence microscopy showed increased uptake of DOX in tumor cells in the combination therapy group. Conclusions RFH/hyperthermia enhanced the chemotherapeutic effect of DOX in VX2 tumors by promoting the uptake of DOX and the expression HSP70 in tumors.
Collapse
Affiliation(s)
- Kun Qian
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States.,Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minjiang Chen
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Feng Zhang
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Jeffrey Forris Beecham Chick
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Hongxiu Ji
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoming Yang
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
10
|
Jin G, Li Y, Zhang F, Li P, Zhao L, Zhou Y, Ji H, Pietrini S, Zhai B, Yang X. Epithelial ovarian cancer: feasibility of image-guided intratumoral radiofrequency hyperthermia-enhanced direct gene therapy. Am J Cancer Res 2019; 9:378-389. [PMID: 30906635 PMCID: PMC6405963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023] Open
Abstract
The aim of this study was to develop an interventional oncologic technique, "Image-guided intratumoral radiofrequency hyperthermia (RFH)-enhanced herpes simplex virus-thymidine kinase (HSV-TK) gene therapy of ovarian cancer. This study consisted of three portions: (1) serial in-vitro experiments to establish "proof-of-principle" of this novel technique using human ovarian cancer cells; (2) serial in-vivo experiments to validate technical feasibility using animal models with the same orthotopic ovarian cancers; and (3) serial investigations into the underlying bio-molecular mechanisms of this technique. We included four subject groups: (i) combination therapy with RFH+HSV-TK gene therapy; (ii) gene therapy-only; (iii) RFH-only; and (iv) Phosphate-buffered saline (PBS). For in-vitro experiments, confocal microscopy and MTS assays were performed to quantify HSV-TK gene expression and assess cell viability. For in-vivo experiments, bioluminescence optical and ultrasound imaging were used to assess therapeutic effectiveness. These results were correlated with subsequent pathologic/laboratory studies to further elucidate the biologic mechanisms of this technique. In in-vitro experiments, combination therapy resulted in the lowest cell proliferation and greatest increase in HSV-TK gene expression among four subject groups. In in-vivo experiments, combination therapy lead to significant decreases of bioluminescence signals and sizes of tumors in combination therapy by optical and ultrasound imaging. Pathology/laboratory examinations confirmed the significantly increased expression of Bax, Caspase-3, HSP70, IL-2, and CD94 in cancer tissues subjected to combination therapy. "Image-guided intratumoral RFH-enhanced direct gene therapy" is an effective interventional oncologic technique which functions through apoptotic/anti-tumor immunity pathways. This technical development may open new avenues for treating ovarian cancer.
Collapse
Affiliation(s)
- Guangxin Jin
- Image-Guided Biomolecular Intervention Research, Section of Interventional Radiology, Department of Radiology, University of Washington School of MedicineSeattle, WA, USA
- Department of Interventional Oncology, Renji Hospital, Sochool of Medicine, Shanghai Jiaotong UniversityShanghai, China
| | - Yaying Li
- Image-Guided Biomolecular Intervention Research, Section of Interventional Radiology, Department of Radiology, University of Washington School of MedicineSeattle, WA, USA
- Department of Radiology, Guizhou General HospitalGuiyang, China
| | - Feng Zhang
- Image-Guided Biomolecular Intervention Research, Section of Interventional Radiology, Department of Radiology, University of Washington School of MedicineSeattle, WA, USA
| | - Peicheng Li
- Image-Guided Biomolecular Intervention Research, Section of Interventional Radiology, Department of Radiology, University of Washington School of MedicineSeattle, WA, USA
| | - Liangcai Zhao
- Image-Guided Biomolecular Intervention Research, Section of Interventional Radiology, Department of Radiology, University of Washington School of MedicineSeattle, WA, USA
| | - Yiming Zhou
- Image-Guided Biomolecular Intervention Research, Section of Interventional Radiology, Department of Radiology, University of Washington School of MedicineSeattle, WA, USA
| | - Hongxiu Ji
- Image-Guided Biomolecular Intervention Research, Section of Interventional Radiology, Department of Radiology, University of Washington School of MedicineSeattle, WA, USA
- Department of Pathology, Overlake Medical Center and Incyte DiagnosticsBellevue, WA, USA
| | - Sean Pietrini
- Image-Guided Biomolecular Intervention Research, Section of Interventional Radiology, Department of Radiology, University of Washington School of MedicineSeattle, WA, USA
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, Sochool of Medicine, Shanghai Jiaotong UniversityShanghai, China
| | - Xiaoming Yang
- Image-Guided Biomolecular Intervention Research, Section of Interventional Radiology, Department of Radiology, University of Washington School of MedicineSeattle, WA, USA
| |
Collapse
|
11
|
Luo J, Zhou J, Xie F, Zhu Y, Zhou F, Zhang S, Jiang S, He J, Liu J, Wu X, Zhang Y, Sun J, Yang X. Combined treatment of cholangiocarcinoma with interventional radiofrequency hyperthermia and heat shock protein promoter-mediated HSV-TK gene therapy. Am J Cancer Res 2018; 8:1595-1603. [PMID: 30210927 PMCID: PMC6129501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023] Open
Abstract
Cholangiocarcinoma is a most lethal malignancy frequently resistant to chemotherapy. Herpes simplex virus thymidine kinase/Ganciclovir (HSV-TK/GCV) suicide gene therapy is a promising approach to treat different cancers, including cholangiocarcinoma. However drawbacks including low therapeutic gene expression and lack of precise targeted gene delivery limit the wide clinical utilization of the suicide gene therapy. We attempted to overcome these obstacles. We established the "proof-of-principle" of this concept via serial in-vitro experiments using human cholangiocarcinoma cells and then validated the new interventional oncology technique in vivo using mice harboring the same patient derived cholangiocarcinomas. Curative effects were evaluated by magnetic resonance imaging and confirmed by pathology and laboratory examinations. Intratumoral radiofrequency hyperthermia (RFH) significantly elevated the targeted expression of HSV-TK gene and further enhanced the therapeutic effects of direct intratumoral HSV-TK/GCV gene therapy, evident as the least number of survival tumor cells, smallest tumor size, and the highest apoptosis index in the combination treatment of HSV-TK plus RFH, compared to other control treatments. The novel combination of image-guided interventional oncology, RFH technology, and direct gene therapy may be valuable for the effective treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Jingfeng Luo
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Jiali Zhou
- No. 1 Clinical Medical School, Zhejiang Chinese Medicine UniversityHangzhou, Zhejiang, China
| | - Fengnan Xie
- Medical Imaging School, Hangzhou Medical CollegeHangzhou, Zhejiang, China
| | - Yali Zhu
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Fei Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Shuanglin Zhang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Shaojie Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Jie He
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Jiaxin Liu
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Xia Wu
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Yanhua Zhang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
- Image-Guided Bio-Molecular Intervention Research, Department of Radiology, University of Washington School of MedicineSeattle, WA, USA
| |
Collapse
|
12
|
Xiong F, Zhang F, Jin Y, Weng Q, Song J, Zhou G, Shin D, Zheng C, Yang X. Orthotopic hepatic cancer: radiofrequency hyperthermia-enhanced intratumoral herpes simplex virus-thymidine kinase gene therapy. Oncotarget 2017; 9:14099-14108. [PMID: 29581830 PMCID: PMC5865656 DOI: 10.18632/oncotarget.23586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/08/2017] [Indexed: 01/04/2023] Open
Abstract
Purpose To validate the feasibility of using interventional radiofrequency hyperthermia(RFH) to enhance herpes simplex virus-thymidine kinase (HSV-TK)/ganciclovir (GCV) gene therapy of rat orthotopic hepatic cancer. Material and Methods Rat hepatocellular carcinoma cells (MCA-RH-7777) were transduced with lentivirus/luciferase gene for optical imaging. In-vitro experiments with the luciferase cells and in-vivo experiments on rats with orthotopic hepatic tumors were divided into four treatment groups: (i) HSV-TK/GCV-mediated gene therapy combined with RFH; (ii) gene therapy alone; (iii) RFH alone; and (iv) phosphate buffered saline (PBS). Cell viability was evaluated by MTS assay and confocal microscopy, and HSV-TK gene expression in cells and tumors was quantified by western blotting. Bioluminescent optical imaging and ultrasound imaging were used to monitor and compare the photon signal and tumor size changes among different treatment groups overtime, respectively. The imaging findings were correlated with histology. Results For in-vitro experiments, the combination therapy group (gene therapy + RFH) demonstrated the lowest cell proliferation by MTS assay, compared to the gene therapy alone, RFH alone, and PBS (26.1±3.2% vs 50.4±4.6% vs 82.9±6.3% vs 100%, p<0.01). The combination therapy group also showed fewer survived cells by the confocal microscopy and the lowest bioluminescent signal by the optical imaging. For in-vivo experiments, the combination therapy group demonstrated a significantly decreased signal intensity on the bioluminescent optical imaging (0.57±0.09, 1.06±0.10 vs 3.43±0.27 vs 3.85±0.12, p<0.05) and smallest tumor volume by ultrasound imaging (0.28±0.11 vs 1.28±0.23vs 4.64±0.35 vs 6.37±0.36, p<0.05), compared to the other three groups. Additionally, these imaging findings correlated well with the histological confirmation. Conclusion It is feasible to use RFH to enhance HSV-TK/GCV gene therapy of hepatic tumors in in-vitro and in-vivo settings, as assessed by molecular imaging. This technical development may provide a novel opportunity for effective treatment of liver malignancies by employing simultaneous integration of radiofrequency technology, interventional oncology, and direct intratumoral gene therapy.
Collapse
Affiliation(s)
- Fu Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China.,Image-Guided Bio-Molecular Intervention Research and Section of Vascular & Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Feng Zhang
- Image-Guided Bio-Molecular Intervention Research and Section of Vascular & Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Yin Jin
- Image-Guided Bio-Molecular Intervention Research and Section of Vascular & Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Qiaoyou Weng
- Image-Guided Bio-Molecular Intervention Research and Section of Vascular & Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Jingjing Song
- Image-Guided Bio-Molecular Intervention Research and Section of Vascular & Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Guofeng Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - David Shin
- Image-Guided Bio-Molecular Intervention Research and Section of Vascular & Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Xiaoming Yang
- Image-Guided Bio-Molecular Intervention Research and Section of Vascular & Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| |
Collapse
|