1
|
Batra K, Kay FU, Sibley RC, Peshock RM. Imaging of Acute Pulmonary Embolism: An Update. Radiol Clin North Am 2025; 63:207-222. [PMID: 39863375 DOI: 10.1016/j.rcl.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Imaging is essential in the evaluation and management of acute pulmonary embolism. Advances in multi-energy CT including dual-energy CT and photon-counting CT have allowed faster scans with lower radiation dose and optimal quality. Artificial intelligence has a potential role in triaging potentially positive examinations and could serve as a second reader.
Collapse
Affiliation(s)
- Kiran Batra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Fernando U Kay
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert C Sibley
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ronald M Peshock
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
2
|
Lin Y, Liu T, Hu Y, Xu Y, Wang J, Guo S, Xie S, Sun H. Assessment of vascular invasion of pancreatic ductal adenocarcinoma based on CE-boost black blood CT technique. Insights Imaging 2024; 15:293. [PMID: 39636361 PMCID: PMC11621291 DOI: 10.1186/s13244-024-01870-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVES To explore the diagnostic efficacy of advanced intelligent clear-IQ engine (AiCE) and adaptive iterative dose reduction 3D (AIDR 3D), combination with and without the black blood CT technique (BBCT), for detecting vascular invasion in patients diagnosed with nonmetastatic pancreatic ductal adenocarcinoma (PDAC). METHODS A total of 35 consecutive patients diagnosed with PDAC, proceeding with contrast-enhanced abdominal CT scans, were enrolled in this study. The arterial and portal venous phase images were reconstructed using AiCE and AIDR 3D. The corresponding BBCT images were established as AiCE-BBCT and AIDR 3D-BBCT, respectively. Two observers scored the image quality independently. Cohen's kappa (k) value or intraclass correlation coefficient (ICC) was used to analyze consistency. The diagnostic performance of four algorithms in detecting vascular invasion in PDAC patients was assessed using the area under the curve (AUC). RESULTS The AiCE and AiCE-BBCT groups demonstrated superior image noise and diagnostic acceptability compared with AIDR 3D and AIDR 3D-BBCT groups (all p < 0.001), and the k value was 0.861-0.967 for both reviewers. In terms of diagnostic capability for vascular invasion in PDAC, the AiCE-BBCT group exhibited higher specificity (95.0%) and sensitivity (93.3%) compared to the AIDR 3D and AIDR 3D-BBCT groups, with an AUC of 0.942 (95% CI: 0.849-1.000, p < 0.05). Furthermore, all vascular evaluations conducted using AiCE-BBCT demonstrated better consistency (ICC: 0.847-0.935). CONCLUSION The BBCT technique in conjunction with AiCE could lead to notable enhancements in both the image quality of PDAC images and the diagnostic performance for tumor vascular invasion. CRITICAL RELEVANCE STATEMENT Better diagnostic accuracy of vascular invasion of PDAC based on BBCT in combination with an AiCE is a critical factor in determining treatment strategies and patient outcomes. KEY POINTS Identifying vascular invasion of PDAC is important for prognostication. Combined images provide improved image quality and higher diagnostic accuracy. Combined images can excellently display the vascular wall and invasion.
Collapse
Affiliation(s)
- Yue Lin
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Tongxi Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yingying Hu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yinghao Xu
- CT Clinical Research Department, CT Business Unit, Canon Medical Systems (China) Co., Ltd., Beijing, China
| | - Jian Wang
- CT Clinical Research Department, CT Business Unit, Canon Medical Systems (China) Co., Ltd., Beijing, China
| | - Sijia Guo
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Sheng Xie
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Hongliang Sun
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
3
|
Ye M, Wang L, Xing Y, Li Y, Zhao Z, Xu M, Liu W. Comparison of different iterative reconstruction algorithms with contrast-enhancement boost technique on the image quality of CT pulmonary angiography for obese patients. BMC Med Imaging 2024; 24:279. [PMID: 39425007 PMCID: PMC11488249 DOI: 10.1186/s12880-024-01447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
OBJECTIVE To evaluate the effect of the contrast-enhancement-boost (CE-boost) postprocessing technique on improving the image quality of obese patients in computed tomography pulmonary angiography (CTPA) compared to hybrid iterative reconstruction (HIR) and model-based iterative reconstruction (MBIR) algorithms. METHODS This prospective study was conducted on 100 patients who underwent CTPA for suspected pulmonary embolism. Non-obese patients with a body mass index (BMI) under 25 were designated as group 1, while obese patients (group 2) had a BMI exceeding 25. The CE-boost images were generated by subtracting non-contrast HIR images from contrast-enhanced HIR images to improve the visibility of pulmonary arteries further. The CT value, image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were quantitatively assessed. Two chest radiologists independently reviewed the CT images (5, best; 1, worst) across three subjective characteristics including diagnostic confidence, subjective image noise, and vascular contrast. The Friedman test and Dunn-Bonferroni correction were used for statistical analysis. RESULTS The CE-boost had significantly higher CT values than HIR and MBIR in both groups (all p < 0.001). The MBIR yielded the lowest image noise compared with HIR and CE-boost (all p < 0.001). The SNR and CNR of main pulmonary artery (MPA) were significantly higher in CE-boost than in MBIR (all p < 0.05), with HIR showing the lowest values (all p < 0.001). Group 2 MBIR received significantly better subjective image noise scores, while the diagnostic confidence and vascular contrast scored highest with the group 2 CE-boost (all p < 0.05). CONCLUSION Compared to the HIR algorithm, both the CE-boost technique and the MBIR algorithm can improve the image quality of CTPA in obese patients. CE-boost had the greatest potential in increasing the visualization of pulmonary artery and its branches.
Collapse
Affiliation(s)
- Mei Ye
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Li Wang
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Yan Xing
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Yuxiang Li
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Zicheng Zhao
- Canon Medical Systems (China), Beijing, 100015, China
| | - Min Xu
- Canon Medical Systems (China), Beijing, 100015, China
| | - Wenya Liu
- Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
4
|
Sharkey MJ, Checkley EW, Swift AJ. Applications of artificial intelligence in computed tomography imaging for phenotyping pulmonary hypertension. Curr Opin Pulm Med 2024; 30:464-472. [PMID: 38989815 PMCID: PMC11309337 DOI: 10.1097/mcp.0000000000001103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW Pulmonary hypertension is a heterogeneous condition with significant morbidity and mortality. Computer tomography (CT) plays a central role in determining the phenotype of pulmonary hypertension, informing treatment strategies. Many artificial intelligence tools have been developed in this modality for the assessment of pulmonary hypertension. This article reviews the latest CT artificial intelligence applications in pulmonary hypertension and related diseases. RECENT FINDINGS Multistructure segmentation tools have been developed in both pulmonary hypertension and nonpulmonary hypertension cohorts using state-of-the-art UNet architecture. These segmentations correspond well with those of trained radiologists, giving clinically valuable metrics in significantly less time. Artificial intelligence lung parenchymal assessment accurately identifies and quantifies lung disease patterns by integrating multiple radiomic techniques such as texture analysis and classification. This gives valuable information on disease burden and prognosis. There are many accurate artificial intelligence tools to detect acute pulmonary embolism. Detection of chronic pulmonary embolism proves more challenging with further research required. SUMMARY There are numerous artificial intelligence tools being developed to identify and quantify many clinically relevant parameters in both pulmonary hypertension and related disease cohorts. These potentially provide accurate and efficient clinical information, impacting clinical decision-making.
Collapse
Affiliation(s)
- Michael J. Sharkey
- Department of Clinical Medicine, University of Sheffield
- 3D Imaging Lab, Sheffield Teaching Hospitals NHS Foundation Trust
| | | | - Andrew J. Swift
- Department of Clinical Medicine, University of Sheffield
- Insigneo Institute for in Silico Medicine, University of Sheffield
- National Institute for Health and Care Research, Sheffield Biomedical Research Centre, Sheffield, UK
| |
Collapse
|
5
|
Gao Y, Xie H, Chang CW, Peng J, Pan S, Qiu RL, Wang T, Ghavidel B, Roper J, Zhou J, Yang X. CT-based synthetic iodine map generation using conditional denoising diffusion probabilistic model. Med Phys 2024; 51:6246-6258. [PMID: 38889368 PMCID: PMC11489029 DOI: 10.1002/mp.17258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/17/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Iodine maps, derived from image-processing of contrast-enhanced dual-energy computed tomography (DECT) scans, highlight the differences in tissue iodine intake. It finds multiple applications in radiology, including vascular imaging, pulmonary evaluation, kidney assessment, and cancer diagnosis. In radiation oncology, it can contribute to designing more accurate and personalized treatment plans. However, DECT scanners are not commonly available in radiation therapy centers. Additionally, the use of iodine contrast agents is not suitable for all patients, especially those allergic to iodine agents, posing further limitations to the accessibility of this technology. PURPOSE The purpose of this work is to generate synthetic iodine map images from non-contrast single-energy CT (SECT) images using conditional denoising diffusion probabilistic model (DDPM). METHODS One-hundered twenty-six head-and-neck patients' images were retrospectively investigated in this work. Each patient underwent non-contrast SECT and contrast DECT scans. Ground truth iodine maps were generated from contrast DECT scans using commercial software syngo.via installed in the clinic. A conditional DDPM was implemented in this work to synthesize iodine maps. Three-fold cross-validation was conducted, with each iteration selecting the data from 42 patients as the test dataset and the remainder as the training dataset. Pixel-to-pixel generative adversarial network (GAN) and CycleGAN served as reference methods for evaluating the proposed DDPM method. RESULTS The accuracy of the proposed DDPM was evaluated using three quantitative metrics: mean absolute error (MAE) (1.039 ± 0.345 mg/mL), structural similarity index measure (SSIM) (0.89 ± 0.10) and peak signal-to-noise ratio (PSNR) (25.4 ± 3.5 db) respectively. Compared to the reference methods, the proposed technique showcased superior performance across the evaluated metrics, further validated by the paired two-tailed t-tests. CONCLUSION The proposed conditional DDPM framework has demonstrated the feasibility of generating synthetic iodine map images from non-contrast SECT images. This method presents a potential clinical application, which is providing accurate iodine contrast map in instances where only non-contrast SECT is accessible.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Huiqiao Xie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Junbo Peng
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Shaoyan Pan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Richard L.J. Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Beth Ghavidel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
6
|
Malik M, Malik S, Karur GR, Mafeld S, de Perrot M, McInnis MC. Cardiothoracic Imaging for Outcome Prediction in Chronic Thromboembolic Pulmonary Hypertension after Pulmonary Endarterectomy or Balloon Pulmonary Angioplasty: A Scoping Review. J Clin Med 2024; 13:5045. [PMID: 39274257 PMCID: PMC11395896 DOI: 10.3390/jcm13175045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
There has been a rapid expansion in centers performing balloon pulmonary angioplasty (BPA) and pulmonary thromboendarterectomy (PTE) for chronic thromboembolic pulmonary hypertension (CTEPH). The purpose of this scoping review was to identify cardiothoracic imaging predictors of outcomes and to identify gaps to address in future work. A scoping review was conducted using the framework outlined by Arksey and O'Malley and Levac et al. in MEDLINE and EMBASE. The study protocol was preregistered in OSF Registries and performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Reviews (PRISMA-ScR) guidelines. There were 1117 identified studies, including 48 involving pulmonary thromboendarterectomy (n = 25) and balloon pulmonary angioplasty (n = 23). CT was the most common preoperative imaging modality used (n = 21) and CT level of disease was the most reported imaging predictor of outcomes for pulmonary thromboendarterectomy. Although must studies evaluated hemodynamic improvements, imaging was of additional use in predicting clinically significant procedural complications after balloon pulmonary angioplasty, as well as mortality and long-term outcome after pulmonary endarterectomy. Predictors reported in MRI and digital subtraction angiography were less commonly reported and warrant multicenter validation. Cardiothoracic imaging may predict clinically significant outcomes after balloon pulmonary angioplasty and pulmonary thromboendarterectomy. Radiologists involved in the assessment of CTEPH patients should be aware of key predictors and future investigations could focus on multicenter validation and new technologies.
Collapse
Affiliation(s)
- Mikail Malik
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.M.)
| | - Shamir Malik
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.M.)
| | - Gauri R. Karur
- University Medical Imaging Toronto, Toronto General Hospital, Toronto, ON M5G 2C4, Canada
- Division of Cardiothoracic Imaging, Department of Medical Imaging, University of Toronto, Toronto, ON M5T 1W7, Canada
| | - Sebastian Mafeld
- University Medical Imaging Toronto, Toronto General Hospital, Toronto, ON M5G 2C4, Canada
- Division of Interventional Radiology, Department of Medical Imaging, University of Toronto, Toronto, ON M5T 1W7, Canada
| | - Marc de Perrot
- Division of Thoracic Surgery, Department of Surgery, Toronto General Hospital, Toronto, ON M5G 2C4, Canada
| | - Micheal C. McInnis
- University Medical Imaging Toronto, Toronto General Hospital, Toronto, ON M5G 2C4, Canada
- Division of Cardiothoracic Imaging, Department of Medical Imaging, University of Toronto, Toronto, ON M5T 1W7, Canada
| |
Collapse
|
7
|
Gao Y, Qiu RLJ, Xie H, Chang CW, Wang T, Ghavidel B, Roper J, Zhou J, Yang X. CT-based synthetic contrast-enhanced dual-energy CT generation using conditional denoising diffusion probabilistic model. Phys Med Biol 2024; 69:165015. [PMID: 39053511 PMCID: PMC11294926 DOI: 10.1088/1361-6560/ad67a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
Objective.The study aimed to generate synthetic contrast-enhanced Dual-energy CT (CE-DECT) images from non-contrast single-energy CT (SECT) scans, addressing the limitations posed by the scarcity of DECT scanners and the health risks associated with iodinated contrast agents, particularly for high-risk patients.Approach.A conditional denoising diffusion probabilistic model (C-DDPM) was utilized to create synthetic images. Imaging data were collected from 130 head-and-neck (HN) cancer patients who had undergone both non-contrast SECT and CE-DECT scans.Main Results.The performance of the C-DDPM was evaluated using Mean Absolute Error (MAE), Structural Similarity Index (SSIM), and Peak Signal-to-Noise Ratio (PSNR). The results showed MAE values of 27.37±3.35 Hounsfield Units (HU) for high-energy CT (H-CT) and 24.57±3.35HU for low-energy CT (L-CT), SSIM values of 0.74±0.22 for H-CT and 0.78±0.22 for L-CT, and PSNR values of 18.51±4.55 decibels (dB) for H-CT and 18.91±4.55 dB for L-CT.Significance.The study demonstrates the efficacy of the deep learning model in producing high-quality synthetic CE-DECT images, which significantly benefits radiation therapy planning. This approach provides a valuable alternative imaging solution for facilities lacking DECT scanners and for patients who are unsuitable for iodine contrast imaging, thereby enhancing the reach and effectiveness of advanced imaging in cancer treatment planning.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Richard L J Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Huiqiao Xie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Beth Ghavidel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
8
|
de Jong CMM, Kroft LJM, van Mens TE, Huisman MV, Stöger JL, Klok FA. Modern imaging of acute pulmonary embolism. Thromb Res 2024; 238:105-116. [PMID: 38703584 DOI: 10.1016/j.thromres.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
The first-choice imaging test for visualization of thromboemboli in the pulmonary vasculature in patients with suspected acute pulmonary embolism (PE) is multidetector computed tomography pulmonary angiography (CTPA) - a readily available and widely used imaging technique. Through technological advancements over the past years, alternative imaging techniques for the diagnosis of PE have become available, whilst others are still under investigation. In particular, the evolution of artificial intelligence (AI) is expected to enable further innovation in diagnostic management of PE. In this narrative review, current CTPA techniques and the emerging technology photon-counting CT (PCCT), as well as other modern imaging techniques of acute PE are discussed, including CTPA with iodine maps based on subtraction or dual-energy acquisition, single-photon emission CT (SPECT), magnetic resonance angiography (MRA), and magnetic resonance direct thrombus imaging (MRDTI). Furthermore, potential applications of AI are discussed.
Collapse
Affiliation(s)
- C M M de Jong
- Department of Medicine - Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - L J M Kroft
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - T E van Mens
- Department of Medicine - Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - M V Huisman
- Department of Medicine - Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - J L Stöger
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - F A Klok
- Department of Medicine - Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
9
|
Lu Y, Cao R, Jiao S, Li L, Liu C, Hu H, Ma Z, Jiang Y, Chen J. A novel method of carotid artery wall imaging: black-blood CT. Eur Radiol 2024; 34:2407-2415. [PMID: 37736805 PMCID: PMC10957584 DOI: 10.1007/s00330-023-10247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVES To evaluate the application of black-blood CT (BBCT) in carotid artery wall imaging and its accuracy in disclosing stenosis rate and plaque burden of carotid artery. METHODS A total of 110 patients underwent contrast-enhanced CT scan with two phases, and BBCT images were obtained using contrast-enhancement (CE)-boost technology. Two radiologists independently scored subjective image quality on black-blood computerized tomography (BBCT) images using a 4-point scale and then further analyzed plaque types. The artery stenosis rate on BBCT was measured and compared with CTA. The plaque burden on BBCT was compared with that on high-resolution intracranial vessel wall MR imaging (VW-MR imaging). The kappa value and intraclass correlation coefficient (ICC) were used for consistency analysis. The diagnostic accuracy of BBCT for stenosis rate and plaque burden greater than 50% was evaluated by AUC. RESULTS The subjective image quality scores of BBCT had good consistency between the two readers (ICC = 0.836, p < 0.001). BBCT and CTA had a good consistency in the identification of stenosis rate (p < 0.001). There was good consistency between BBCT and VW-MR in diagnosis of plaque burden (p < 0.001). As for plaque burden over 50%, BBCT had good sensitivity (93.10%) and specificity (73.33%), with an AUC of 0.950 (95%CI 0.838-0.993). Compared with CTA, BBCT had higher consistency with VW-MR in disclosing low-density plaques and mixed plaques (ICC = 0.931 vs 0.858, p < 0.001). CONCLUSIONS BBCT can not only display the carotid artery wall clearly but also accurately diagnose the stenosis rate and plaque burden of carotid artery. CLINICAL RELEVANCE STATEMENT Black-blood CT, as a novel imaging technology, can assist clinicians and radiologists in better visualizing the structure of the vessel wall and plaques, especially for patients with contraindication to MRI. KEY POINTS • Black-blood CT can clearly visualize the carotid artery wall and plaque burden. • Black-blood CT is superior to conventional CTA with more accurate diagnosis of the carotid stenosis rate and plaque burden features.
Collapse
Affiliation(s)
- Yao Lu
- The Key Laboratory of Geriatrics, Beijing Institute of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, People's Republic of China
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1, DaHua Road, Dong Dan, Beijing, 100730, People's Republic of China
| | - Ruoyao Cao
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1, DaHua Road, Dong Dan, Beijing, 100730, People's Republic of China
- Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Sheng Jiao
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1, DaHua Road, Dong Dan, Beijing, 100730, People's Republic of China
| | - Ling Li
- Department of Radiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chao Liu
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1, DaHua Road, Dong Dan, Beijing, 100730, People's Republic of China
| | - Hailong Hu
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1, DaHua Road, Dong Dan, Beijing, 100730, People's Republic of China
| | - Zhuangfei Ma
- CT Clinical Research Department, CT Business Unit, Canon Medical Systems (China) CO., LTD., Beijing, People's Republic of China
| | - Yun Jiang
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Juan Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1, DaHua Road, Dong Dan, Beijing, 100730, People's Republic of China.
| |
Collapse
|
10
|
Xu JJ, Ulriksen PS, Jawad S, Rohde YZ, Sejer M, Achiam MP, Resch TA, Lönn L, Hansen KL. Iodine density mapping for the diagnosis of acute bowel ischemia using fast kV-switching dual-energy CT. Abdom Radiol (NY) 2024; 49:312-319. [PMID: 37978076 PMCID: PMC10789852 DOI: 10.1007/s00261-023-04097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE To evaluate the diagnostic capabilities of a supplementary color ramped iodine density map compared to virtual monoenergetic images (VMIs) at 74 keV in the diagnosis of acute bowel ischemia (ABI). METHODS Data for this study were prospectively gathered and retrospectively evaluated. Patients referred to the Department of Diagnostic Radiology between October 2020 and August 2022 on the suspicion of ABI and underwent surgery < 12 h following fast kV-switching venous phase abdominal dual-energy CT (DECT) were consecutively included. Images were evaluated by two board-certified radiologists and two radiology residents. First round included only 74 keV VMIs resembling conventional 120 kVp images, and the second round included a supplementary iodine density map. Readers were asked to register presence of ABI as well as their confidence in their diagnosis based on a 5-point Likert scale. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for each observer with the surgical findings as the gold-standard. McNemar's and Wilcoxon signed-rank test were used to compare registrations and diagnostic confidence across assessment rounds. RESULTS A total of 29 patients resulting in 31 DECT scans were included. Fourteen cases of ischemic/necrotic bowel were reported following surgery. Sensitivity and NPV were decreased with the use of supplementary iodine map images compared to 120 kVp-like images without supplementary iodine map images for three of four observers (round 1 range: 71.4-92.9% and 78.0-94.8%; round 2 range: 57.1-78.6% and 70.1-83.3%, respectively), while specificity and PPV were increased for three of four observers (round 1 range: 64.7-94.1% and 67.4-93.1%; round 2 range: 88.2-94.1% and 73.8-91.1%, respectively). However, no significant difference in ABI diagnosis or diagnostic confidence was found (p-value range: 0.07-1.00 and 0.23-0.58, respectively). CONCLUSION No significant difference for the diagnosis of ABI was found using supplementary iodine mapping. Our study may suggest a trend of increased specificity and decreased sensitivity, hence, the use of supplementary iodine mapping should be carefully considered.
Collapse
Affiliation(s)
- Jack Junchi Xu
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Peter Sommer Ulriksen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Samir Jawad
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Yecatarina Zincuk Rohde
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Morten Sejer
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Michael Patrick Achiam
- Department of Clinical Medicine, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Surgery and Transplantation, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Timothy Andrew Resch
- Department of Clinical Medicine, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Vascular Surgery, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Lars Lönn
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Kristoffer Lindskov Hansen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|
11
|
Azarfar G, Ko SB, Adams SJ, Babyn PS. Applications of deep learning to reduce the need for iodinated contrast media for CT imaging: a systematic review. Int J Comput Assist Radiol Surg 2023; 18:1903-1914. [PMID: 36947337 DOI: 10.1007/s11548-023-02862-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE The usage of iodinated contrast media (ICM) can improve the sensitivity and specificity of computed tomography (CT) for many clinical indications. However, the adverse effects of ICM administration can include renal injury, life-threatening allergic-like reactions, and environmental contamination. Deep learning (DL) models can generate full-dose ICM CT images from non-contrast or low-dose ICM administration or generate non-contrast CT from full-dose ICM CT. Eliminating the need for both contrast-enhanced and non-enhanced imaging or reducing the amount of required contrast while maintaining diagnostic capability may reduce overall patient risk, improve efficiency and minimize costs. We reviewed the current capabilities of DL to reduce the need for contrast administration in CT. METHODS We conducted a systematic review of articles utilizing DL to reduce the amount of ICM required in CT, searching MEDLINE, Embase, Compendex, Inspec, and Scopus to identify papers published from 2016 to 2022. We classified the articles based on the DL model and ICM reduction. RESULTS Eighteen papers met the inclusion criteria for analysis. Of these, ten generated synthetic full-dose (100%) ICM from real non-contrast CT, while four augmented low-dose to full-dose ICM CT. Three used DL to create synthetic non-contrast CT from real 100% ICM CT, while one paper used DL to translate the 100% ICM to non-contrast CT and vice versa. DL models commonly used generative adversarial networks trained and tested by paired contrast-enhanced and non-contrast or low ICM CTs. Image quality metrics such as peak signal-to-noise ratio and structural similarity index were frequently used for comparing synthetic versus real CT image quality. CONCLUSION DL-generated contrast-enhanced or non-contrast CT may assist in diagnosis and radiation therapy planning; however, further work to optimize protocols to reduce or eliminate ICM for specific pathology is still needed along with a dedicated assessment of the clinical utility of these synthetic images.
Collapse
Affiliation(s)
- Ghazal Azarfar
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Seok-Bum Ko
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott J Adams
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Paul S Babyn
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
12
|
Hinen SP, Griffith JP, Chamberlin J, Waltz J, Kocher M, Krull V, Young T, Litvin CB, Varga-Szemes A, Hardie AD. Dual-energy CT iodine overlay improves efficiency of oral contrast leak assessment. Acta Radiol 2023; 64:2357-2362. [PMID: 37157189 DOI: 10.1177/02841851231172771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Evaluation for gastrointestinal leak is a frequent imaging indication, and dual-energy computed tomography (DECT) with oral or rectally administered contrast can be used to improve efficiency and diagnostic confidence. PURPOSE To assess the value of the DECT iodine overlay (IO) reconstruction as a stand-alone image set compared to routine CT in assessing oral or rectal contrast leak from the gastrointestinal system. MATERIAL AND METHODS A blinded, retrospective audit study was performed by three readers who each interpreted 50 studies performed for assessment of oral or rectal contrast leak that were acquired using DECT. Each reader independently assessed both the routine CT images and the images of the reconstructed IO for contrast leak in random order with a six-week "wash-out period" between readings. Clinical follow-up provided the reference standard. Readers recorded the presence/absence of a leak, diagnostic confidence, image quality score, and interpretation time for each image set. RESULTS Pooled data for overall accuracy in identification of a leak increased from 0.81 (95% confidence interval [CI]=0.74-0.87) for routine CT to 0.91 (95% CI=0.85-0.95) with IO, and the area under the curve (AUC) was significantly higher for IO than routine CT (P = 0.015). Readers required significantly less time to interpret IO than routine CT (median improvement of 12.5 s per image using pooled data; P < 0.001) while maintaining diagnostic confidence and perceived image quality. CONCLUSION Use of DECT IO reconstructions for identification of oral or rectal contrast leak requires less time to interpret than routine CT with improved accuracy and maintained diagnostic confidence and perceived image quality.
Collapse
Affiliation(s)
- Shaun P Hinen
- Department of Radiology and Radiological Sciences, The Medical University of South Carolina, Charleston, SC, USA
| | - Joseph P Griffith
- Department of Radiology and Radiological Sciences, The Medical University of South Carolina, Charleston, SC, USA
| | - Jordan Chamberlin
- Department of Radiology and Radiological Sciences, The Medical University of South Carolina, Charleston, SC, USA
| | - Jeffrey Waltz
- Department of Radiology and Radiological Sciences, The Medical University of South Carolina, Charleston, SC, USA
| | - Madison Kocher
- Department of Radiology and Radiological Sciences, The Medical University of South Carolina, Charleston, SC, USA
| | - Veronica Krull
- Department of Radiology and Radiological Sciences, The Medical University of South Carolina, Charleston, SC, USA
| | - Tristan Young
- Department of Radiology and Radiological Sciences, The Medical University of South Carolina, Charleston, SC, USA
| | - Cara B Litvin
- Department of Radiology and Radiological Sciences, The Medical University of South Carolina, Charleston, SC, USA
| | - Akos Varga-Szemes
- Department of Radiology and Radiological Sciences, The Medical University of South Carolina, Charleston, SC, USA
| | - Andrew D Hardie
- Department of Radiology and Radiological Sciences, The Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
13
|
Santamarina MG, Lomakin FM, Beddings I, Riscal DB, Chang Villacís J, Contreras R, Marambio JV, Labarca E, Torres J, Volpacchio M. COVID-19 pneumonia: Perfusion abnormalities shown on subtraction CT angiography in apparently well-ventilated lungs. A prospective cohort study. Heliyon 2023; 9:e18085. [PMID: 37519667 PMCID: PMC10375558 DOI: 10.1016/j.heliyon.2023.e18085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 06/18/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose To evaluate whether a subtraction CT angiography (sCTA) perfusion score may have prognostic value in patients with COVID-19 pneumonia. Method This prospective cohort study included adult patients with RT-PCR-confirmed SARS-CoV-2 infection admitted to the ED and a sCTA performed within 24 h of admission between June and September 2020. Perfusion abnormalities (PA) in areas of apparently spared lung parenchyma on conventional CT images were assessed with sCTA perfusion score. Airspace disease extension was assessed with CT severity scores, which were then correlated with clinical outcomes (admission to ICU, requirement of IMV, and death). Inter-rater reliability (IRR) was assessed using Cohen's Kappa. Independent predictors of adverse outcomes were evaluated by multivariable logistic regression analyses using the Hosmer and Lemeshow's test. Results 191 patients were included: 112 males (58%), median age of 60.8 years (SD ± 16.0). The IRR was very high (median Kappa statistic: 0.95). No association was found between perfusion CT scores and D-dimer levels (Kendall's Tau-B coefficient = 0.08, p = 0.16) or between PaO2/FiO2 ratios and D-dimer levels (Kendall's Tau-B coefficient = -0.10, p = 0.07). Multivariate analyses adjusting for parenchymal disease extension, vascular beaded appearance, pulmonary embolism, sex, and age showed that severe PA remained a significant predictor for ICU admission (AOR: 6.25, 95% CI 2.10-18.7, p = 0.001). The overall diagnostic capacity of this model was adequate (ROC AUC: 0.83; 95% CI 0.77-0.89). Conclusions The assessment of pulmonary perfusion abnormalities in areas of apparently spared lung parenchyma on conventional CT images via sCTA perfusion scoring has prognostic value in COVID-19 pneumonia.
Collapse
Affiliation(s)
- Mario G. Santamarina
- Radiology Department, Hospital Naval Almirante Nef, Viña del Mar, Chile
- Radiology Department, Hospital Dr. Eduardo Pereira, Valparaiso, Chile
| | - Felipe Martinez Lomakin
- Intensive Care Unit, Hospital Naval Almirante Nef, Viña del Mar, Chile
- Universidad Andrés Bello, Viña del Mar, Escuela de Medicina, Facultad de Medicina Viña del Mar, Valparaiso, Chile
| | - Ignacio Beddings
- Radiology Department, Hospital Clínico San Borja Arriaran, Santiago, Chile
| | | | | | - Roberto Contreras
- Intensive Care Unit, Hospital San Martin de Quillota, Quillota, Chile
| | | | - Eduardo Labarca
- Intensive Care Unit, Hospital Naval Almirante Nef, Viña del Mar, Chile
| | - Jorge Torres
- Radiology Department, Hospital Naval Almirante Nef, Viña del Mar, Chile
| | - Mariano Volpacchio
- Radiology Department, Centro de Diagnóstico Dr. Enrique Rossi, Buenos Aires, Argentina
| |
Collapse
|
14
|
Schüssler A, Lug Q, Kremer N, Harth S, Kriechbaum SD, Richter MJ, Guth S, Wiedenroth CB, Tello K, Steiner D, Seeger W, Krombach GA, Roller FC. Evaluation of diagnostic accuracy of dual-energy computed tomography in patients with chronic thromboembolic pulmonary hypertension compared to V/Q-SPECT and pulmonary angiogram. Front Med (Lausanne) 2023; 10:1194272. [PMID: 37425315 PMCID: PMC10324648 DOI: 10.3389/fmed.2023.1194272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose The relevance of dual-energy computed tomography (DECT) for the detection of chronic thromboembolic pulmonary hypertension (CTEPH) still lies behind V/Q-SPECT in current clinical guidelines. Therefore, our study aimed to assess the diagnostic accuracy of DECT compared to V/Q-SPECT with invasive pulmonary angiogram (PA) serving as the reference standard. Methods A total of 28 patients (mean age 62.1 years ± 10.6SD; 18 women) with clinically suspected CTEPH were retrospectively included. All patients received DECT with the calculation of iodine maps, V/Q-SPECT, and PA. Results of DECT and V/Q-SPECT were compared, and the percent of agreement, concordance (utilizing Cohen's kappa), and accuracy (kappa2) to PA were calculated. Furthermore, radiation doses were analyzed and compared. Results In total, 18 patients were diagnosed with CTEPH (mean age 62.4 years ± 11.0SD; 10 women) and 10 patients had other diseases. Compared to PA, accuracy and concordance for DECT were superior to V/Q-SPECT in all patients (88.9% vs. 81.3%; k = 0.764 vs. k = 0.607) and in CTEPH patients (82.4% vs. 70.1%; k = 0.694 vs. k = 0.560). Furthermore, the mean radiation dose was significantly lower for DECT vs. V/Q-SPECT (p = 0.0081). Conclusion In our patient cohort, DECT is at least equivalent to V/Q-SPECT in diagnosing CTEPH and has the added advantage of significantly lower radiation doses in combination with simultaneous assessment of lung and heart morphology. Hence, DECT should be the subject of ongoing research, and if our results are further confirmed, it should be implemented in future diagnostic PH algorithms at least on par with V/Q-SPECT.
Collapse
Affiliation(s)
- Armin Schüssler
- Department of Diagnostic and Interventional Radiology, Justus-Liebig-University Giessen, Giessen, Germany
- Member of the German Center for Lung Research, Giessen, Germany
| | - Quirin Lug
- Department of Diagnostic and Interventional Radiology, Justus-Liebig-University Giessen, Giessen, Germany
- Member of the German Center for Lung Research, Giessen, Germany
| | - Nils Kremer
- Member of the German Center for Lung Research, Giessen, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute, Giessen, Germany
| | - Sebastian Harth
- Department of Diagnostic and Interventional Radiology, Justus-Liebig-University Giessen, Giessen, Germany
- Member of the German Center for Lung Research, Giessen, Germany
| | | | - Manuel J. Richter
- Member of the German Center for Lung Research, Giessen, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute, Giessen, Germany
| | - Stefan Guth
- Department of Thoracic Surgery, Kerckhoff Heart and Thorax Centre, Bad Nauheim, Germany
| | | | - Khodr Tello
- Member of the German Center for Lung Research, Giessen, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute, Giessen, Germany
| | - Dagmar Steiner
- Department of Nuclear Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Werner Seeger
- Member of the German Center for Lung Research, Giessen, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute, Giessen, Germany
- DZHK (German Centre for Cardiovascular Research), Frankfurt am Main, Germany
| | - Gabriele Anja Krombach
- Department of Diagnostic and Interventional Radiology, Justus-Liebig-University Giessen, Giessen, Germany
- Member of the German Center for Lung Research, Giessen, Germany
| | - Fritz Christian Roller
- Department of Diagnostic and Interventional Radiology, Justus-Liebig-University Giessen, Giessen, Germany
- Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
15
|
Fawzy A, Mafeld S, Oreopoulos G, de Perrot M, McInnis MC. Chronic thromboembolic pulmonary hypertension secondary to a vascular malformation: case report diagnosis by lung subtraction iodine mapping. Front Med (Lausanne) 2023; 10:1206116. [PMID: 37396917 PMCID: PMC10311022 DOI: 10.3389/fmed.2023.1206116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a challenging diagnosis that can occur even in the absence of a prior thrombotic event. The main screening test is ventilation-perfusion (VQ) scintigraphy. The gold standard treatment for CTEPH is pulmonary endarterectomy (PEA), however, balloon pulmonary angioplasty (BPA) is an emerging treatment, especially for CTEPH at the segmental level. We report on a case of a patient with segmental CTEPH diagnosed by lung subtraction iodine mapping (LSIM) in the context of a chest wall vascular malformation. CTEPH was treated with BPA and by embolization and ligation of their vascular malformation.
Collapse
Affiliation(s)
- Aly Fawzy
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sebastian Mafeld
- Division of Vascular and Interventional Radiology, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital, University Medical Imaging Toronto, Toronto, ON, Canada
| | - George Oreopoulos
- Division of Vascular and Interventional Radiology, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital, University Medical Imaging Toronto, Toronto, ON, Canada
- Division of Vascular Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Marc de Perrot
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Micheal C. McInnis
- Toronto General Hospital, University Medical Imaging Toronto, Toronto, ON, Canada
- Division of Cardiothoracic Imaging, Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Liu S, Heshmat A, Andrew J, Barreto I, Rinaldi-Ramos CM. Dual imaging agent for magnetic particle imaging and computed tomography. NANOSCALE ADVANCES 2023; 5:3018-3032. [PMID: 37260489 PMCID: PMC10228371 DOI: 10.1039/d3na00105a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/30/2023] [Indexed: 06/02/2023]
Abstract
Magnetic particle imaging (MPI) is a novel biomedical imaging modality that allows non-invasive, tomographic, and quantitative tracking of the distribution of superparamagnetic iron oxide nanoparticle (SPION) tracers. While MPI possesses high sensitivity, detecting nanograms of iron, it does not provide anatomical information. Computed tomography (CT) is a widely used biomedical imaging modality that yields anatomical information at high resolution. A multimodal imaging agent combining the benefits of MPI and CT imaging would be of interest. Here we combine MPI-tailored SPIONs with CT-contrast hafnium oxide (hafnia) nanoparticles using flash nanoprecipitation to obtain dual-imaging MPI/CT agents. Co-encapsulation of iron oxide and hafnia in the composite nanoparticles was confirmed via transmission electron microscopy and elemental mapping. Equilibrium and dynamic magnetic characterization show a reduction in effective magnetic diameter and changes in dynamic magnetic susceptibility spectra at high oscillating field frequencies, suggesting magnetic interactions within the composite dual imaging tracers. The MPI performance of the dual imaging agent was evaluated and compared to the commercial tracer ferucarbotran. The dual-imaging agent has MPI sensitivity that is ∼3× better than this commercial tracer. However, worsening of MPI resolution was observed in the composite tracer when compared to individually coated SPIONs. This worsening resolution could result from magnetic dipolar interactions within the composite dual imaging tracer. The CT performance of the dual imaging agent was evaluated in a pre-clinical animal scanner and a clinical scanner, revealing better contrast compared to a commercial iodine-based contrast agent. We demonstrate that the dual imaging agent can be differentiated from the commercial iodine contrast agent using dual energy CT (DECT) imaging. Furthermore, the dual imaging agent displayed energy-dependent CT contrast arising from the combination of SPION and hafnia, making it potentially suitable for virtual monochromatic imaging of the contrast agent distribution using DECT.
Collapse
Affiliation(s)
- Sitong Liu
- Department of Chemical Engineering, University of Florida Gainesville FL 32611 USA
| | - Anahita Heshmat
- Department of Radiology, University of Florida Gainesville FL 32610-0374 USA
| | - Jennifer Andrew
- Department of Material Science and Engineering, University of Florida Gainesville FL 32603 USA
| | - Izabella Barreto
- Department of Radiology, University of Florida Gainesville FL 32610-0374 USA
| | - Carlos M Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida Gainesville FL 32611 USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville FL 32611-6131 USA
| |
Collapse
|
17
|
Huang H, Ali A, Liu Y, Xie H, Ullah S, Roy S, Song Z, Guo B, Xu J. Advances in image-guided drug delivery for antibacterial therapy. Adv Drug Deliv Rev 2023; 192:114634. [PMID: 36503884 DOI: 10.1016/j.addr.2022.114634] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
The emergence of antibiotic-resistant bacterial strains is seriously endangering the global healthcare system. There is an urgent need for combining imaging with therapies to realize the real-time monitoring of pathological condition and treatment progress. It also provides guidance on exploring new medicines and enhance treatment strategies to overcome the antibiotic resistance of existing conventional antibiotics. In this review, we provide a thorough overview of the most advanced image-guided approaches for bacterial diagnosis (e.g., computed tomography imaging, magnetic resonance imaging, photoacoustic imaging, ultrasound imaging, fluorescence imaging, positron emission tomography, single photon emission computed tomography imaging, and multiple imaging), and therapies (e.g., photothermal therapy, photodynamic therapy, chemodynamic therapy, sonodynamic therapy, immunotherapy, and multiple therapies). This review focuses on how to design and fabricate photo-responsive materials for improved image-guided bacterial theranostics applications. We present a potential application of different image-guided modalities for both bacterial diagnosis and therapies with representative examples. Finally, we highlighted the current challenges and future perspectives image-guided approaches for future clinical translation of nano-theranostics in bacterial infections therapies. We envision that this review will provide for future development in image-guided systems for bacterial theranostics applications.
Collapse
Affiliation(s)
- Haiyan Huang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Arbab Ali
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano Safety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yi Liu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Xie
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Sana Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box: 33, PC: 616, Oman
| | - Shubham Roy
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
18
|
Correlation between CT Value on Lung Subtraction CT and Radioactive Count on Perfusion Lung Single Photon Emission CT in Chronic Thromboembolic Pulmonary Hypertension. Diagnostics (Basel) 2022; 12:diagnostics12112895. [PMID: 36428955 PMCID: PMC9688979 DOI: 10.3390/diagnostics12112895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Lung subtraction CT (LSCT), the subtraction of noncontrast CT from CT pulmonary angiography (CTPA) without spatial misregistration, is easily applicable by utilizing a software-based deformable image registration technique without additional hardware and permits the evaluation of lung perfusion as iodine accumulation, similar to that observed in perfusion lung single photon emission CT (PL-SPECT). The aim of this study was to use LSCT to newly assess the quantitative correlation between the CT value on LSCT and radioactive count on PL-SPECT as a reference and validate the quantification of lung perfusion by measuring the CT value in chronic thromboembolic pulmonary hypertension (CTEPH). Methods: We prospectively enrolled 47 consecutive patients with CTEPH undergoing both LSCT and PL-SPECT; we used noncontrast CT, CTPA, and LSCT to measure CT values and PL-SPECT to measure radioactive counts in areas representing three different perfusion classes—no perfusion defect, subsegmental perfusion defect, and segmental perfusion defect; we compared CT values on noncontrast CT, CTPA, and LSCT and radioactive counts on PL-SPECT among the three classes, then assessed the correlation between them. Results: Both the CT values and radioactive counts differed significantly among the three classes (p < 0.01 for all) and showed weak correlation (ρ = 0.38) by noncontrast CT, moderate correlation (ρ = 0.61) by CTPA, and strong correlation (ρ = 0.76) by LSCT. Conclusions: The CT value measurement on LSCT is a novel quantitative approach to assess lung perfusion in CTEPH and only correlates strongly with radioactive count measurement on PL-SPECT.
Collapse
|
19
|
Menale S, Scheggi V, Giovacchini J, Marchionni N. Persistent respiratory failure after SARS-CoV-2 infection: The role of dual energy computed tomography. A case report. Radiol Case Rep 2022; 17:3179-3184. [PMID: 35784783 PMCID: PMC9236780 DOI: 10.1016/j.radcr.2022.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Background: COVID-19 disease is often complicated by respiratory failure, developing through multiple pathophysiological mechanisms, with pulmonary embolism (PE) and microvascular thrombosis as key and frequent components. Newer imaging modalities such as dual-energy computed tomography (DECT) can represent a turning point in the diagnosis and follow-up of suspected PE during COVID-19. Case presentation: A 78-year-old female presented to our internal medicine 3 weeks after initial hospitalization for COVID-19 disease, for recrudescent respiratory failure needing oxygen therapy. A computed tomography (CT) lungs scan showed a typical SARSCoV-2 pneumonia. Over the following 15 days, respiratory function gradually improved. Unexpectedly, after 21 days from symptom onset, the patient started complaining of breath shortening with remarkable desaturation requiring high-flow oxygen ventilation. CT pulmonary angiography and transthoracic echocardiography were negative for signs of PE. Thereby, Dual-energy CT angiography of the lungs (DECT) was performed and detected diffuse peripheral microembolism. After 2 weeks, a second DECT was performed, showing a good response to the anticoagulation regimen, with reduced extent of microembolism and some of the remaining emboli partially recanalized. Discussion: DECT is an emerging diagnostic technique providing both functional and anatomical information. DECT has been reported to produce a much sharper delineation of perfusion defects than pulmonary scintigraphy, using a significantly lower equivalent dose of mSv. We highlight that DECT is particularly useful in SARS-Cov-2 infection, in order to determine the predominant underlying pathophysiology, particularly when respiratory failure prolongs despite improved lung parenchymal radiological findings
Collapse
|
20
|
Farag A, Fielding J, Catanzano T. Role of Dual-energy Computed Tomography in Diagnosis of Acute Pulmonary Emboli, a Review. Semin Ultrasound CT MR 2022; 43:333-343. [PMID: 35738818 DOI: 10.1053/j.sult.2022.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prompt diagnosis of pulmonary embolism is essential to avert morbidity and mortality. There are a number of diagnostic options for identification of a pulmonary embolism, including laboratory and imaging investigations. While computed tomography pulmonary angiography (CTPA) has largely supplanted nuclear medicine ventilation/perfusion studies, there remain significant limitations in the optimal performance of CTPA. Dual-energy computed tomography has the ability to overcome many of the limitations of standard of care CTPA, including rescue of poor contrast boluses and the ability to evaluate pulmonary perfusion defects.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Radiology, UMass Chan Medical School-Baystate, Springfield, MA
| | - Jordan Fielding
- Department of Radiology, UMass Chan Medical School-Baystate, Springfield, MA
| | - Tara Catanzano
- Department of Radiology, UMass Chan Medical School-Baystate, Springfield, MA.
| |
Collapse
|
21
|
McInnis M. Imaging Advances in Chronic Thromboembolic Pulmonary Hypertension. Semin Roentgenol 2022; 57:324-334. [DOI: 10.1053/j.ro.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/11/2022]
|
22
|
Ball L, Scaramuzzo G, Herrmann J, Cereda M. Lung aeration, ventilation, and perfusion imaging. Curr Opin Crit Care 2022; 28:302-307. [PMID: 35653251 PMCID: PMC9178949 DOI: 10.1097/mcc.0000000000000942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Lung imaging is a cornerstone of the management of patients admitted to the intensive care unit (ICU), providing anatomical and functional information on the respiratory system function. The aim of this review is to provide an overview of mechanisms and applications of conventional and emerging lung imaging techniques in critically ill patients. RECENT FINDINGS Chest radiographs provide information on lung structure and have several limitations in the ICU setting; however, scoring systems can be used to stratify patient severity and predict clinical outcomes. Computed tomography (CT) is the gold standard for assessment of lung aeration but requires moving the patients to the CT facility. Dual-energy CT has been recently applied to simultaneous study of lung aeration and perfusion in patients with respiratory failure. Lung ultrasound has an established role in the routine bedside assessment of ICU patients, but has poor spatial resolution and largely relies on the analysis of artifacts. Electrical impedance tomography is an emerging technique capable of depicting ventilation and perfusion at the bedside and at the regional level. SUMMARY Clinicians should be confident with the technical aspects, indications, and limitations of each lung imaging technique to improve patient care.
Collapse
Affiliation(s)
- Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l’Oncologia e le Neuroscienze, Genoa, Italy
| | - Gaetano Scaramuzzo
- Department of Translational medicine, University of Ferrara, Ferrara, Italy
- Anesthesia and intensive care, Arcispedale Sant’Anna, Ferrara, Italy
| | - Jake Herrmann
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, United States of America
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Zhao Y, Hubbard L, Malkasian S, Abbona P, Molloi S. Contrast timing optimization of a two-volume dynamic CT pulmonary perfusion technique. Sci Rep 2022; 12:8212. [PMID: 35581304 PMCID: PMC9114423 DOI: 10.1038/s41598-022-12016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/21/2022] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study is to develop and validate an optimal timing protocol for a low-radiation-dose CT pulmonary perfusion technique using only two volume scans. A total of 24 swine (48.5 ± 14.3 kg) underwent contrast-enhanced dynamic CT. Multiple contrast injections were made under different pulmonary perfusion conditions, resulting in a total of 141 complete pulmonary arterial input functions (AIFs). Using all the AIF curves, an optimal contrast timing protocol was developed for a first-pass, two-volume dynamic CT perfusion technique (one at the base and the other at the peak of AIF curve). A subset of swine was used to validate the prospective two-volume pulmonary perfusion technique. The prospective two-volume perfusion measurements were quantitatively compared to the previously validated retrospective perfusion measurements with t-test, linear regression, and Bland–Altman analysis. As a result, the pulmonary artery time-to-peak (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${T}_{PA}$$\end{document}TPA) was related to one-half of the contrast injection duration (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{{T}_{Inj}}{2}$$\end{document}TInj2) by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${T}_{PA}=1.01\frac{{T}_{Inj}}{2}+1.01$$\end{document}TPA=1.01TInj2+1.01 (r = 0.95). The prospective two-volume perfusion measurements (PPRO) were related to the retrospective measurements (PRETRO) by PPRO = 0.87PRETRO + 0.56 (r = 0.88). The CT dose index and size-specific dose estimate of the two-volume CT technique were estimated to be 28.4 and 47.0 mGy, respectively. The optimal timing protocol can enable an accurate, low-radiation-dose two-volume dynamic CT perfusion technique.
Collapse
Affiliation(s)
- Yixiao Zhao
- Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, Irvine, CA, 92697, USA
| | - Logan Hubbard
- Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, Irvine, CA, 92697, USA
| | - Shant Malkasian
- Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, Irvine, CA, 92697, USA
| | - Pablo Abbona
- Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sabee Molloi
- Department of Radiological Sciences, Medical Sciences I, B-140, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
24
|
Kaptein FHJ, Kroft LJM, Hammerschlag G, Ninaber MK, Bauer MP, Huisman MV, Klok FA. Pulmonary infarction in acute pulmonary embolism. Thromb Res 2021; 202:162-169. [PMID: 33862471 DOI: 10.1016/j.thromres.2021.03.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/24/2021] [Indexed: 01/10/2023]
Abstract
Pulmonary infarction results from occlusion of the distal pulmonary arteries leading to ischemia, hemorrhage and ultimately necrosis of the lung parenchyma. It is most commonly caused by acute pulmonary embolism (PE), with a reported incidence of around 30%. Following an occlusion of the pulmonary artery, the bronchial arteries are recruited as primary source of perfusion of the pulmonary capillaries. The relatively higher blood pressure in the bronchial circulation causes an increase in the capillary blood flow, leading to extravasation of erythrocytes (i.e. alveolar hemorrhage). If this hemorrhage cannot be resorbed, it results in tissue necrosis and infarction. Different definitions of pulmonary infarction are used in literature (clinical, radiological and histological), although the diagnosis is nowadays mostly based on radiological characteristics. Notably, the infarcted area is only replaced by a fibrotic scar over a period of months. Hence and formally, the diagnosis of pulmonary infarction cannot be confirmed upon diagnosis of acute PE. Little is known of the impact and relevance of pulmonary infarction in acute PE, and whether specific management strategies should be applied to prevent and/or treat complications such as pain, pneumonia or post-PE syndrome. In this review we will summarize current knowledge on the pathophysiology, epidemiology, diagnosis and prognosis of pulmonary infarction in the setting of acute PE. We highlight the need for dedicated studies to overcome the current knowledge gaps.
Collapse
Affiliation(s)
- F H J Kaptein
- Department of Medicine - Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - L J M Kroft
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - G Hammerschlag
- Department of Respiratory and Sleep Medicine, The Royal Melbourne Hospital, Melbourne, Australia
| | - M K Ninaber
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - M P Bauer
- Department of Medicine - Acute Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - M V Huisman
- Department of Medicine - Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - F A Klok
- Department of Medicine - Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
25
|
van Dam LF, Kroft LJM, Huisman MV, Ninaber MK, Klok FA. Computed Tomography Pulmonary Perfusion for Prediction of Short-Term Clinical Outcome in Acute Pulmonary Embolism. TH OPEN 2021; 5:e66-e72. [PMID: 33585787 PMCID: PMC7875679 DOI: 10.1055/s-0041-1723782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/18/2020] [Indexed: 11/18/2022] Open
Abstract
Background
Computed tomography pulmonary angiography (CTPA) is the imaging modality of choice for the diagnosis of acute pulmonary embolism (PE). With computed tomography pulmonary perfusion (CTPP) additional information on lung perfusion can be assessed, but its value in PE risk stratification is unknown. We aimed to evaluate the correlation between CTPP-assessed perfusion defect score (PDS) and clinical presentation and its predictive value for adverse short-term outcome of acute PE.
Patients and Methods
This was an exploratory, observational study in 100 hemodynamically stable patients with CTPA-confirmed acute PE in whom CTPP was performed as part of routine clinical practice. We calculated the difference between the mean PDS in patients with versus without chest pain, dyspnea, and hemoptysis and 7-day adverse outcome. Multivariable logistic regression analysis and likelihood-ratio test were used to assess the added predictive value of PDS to CTPA parameters of right ventricle dysfunction and total thrombus load, for intensive care unit admission, reperfusion therapy and PE-related death.
Results
We found no correlation between PDS and clinical symptoms. PDS was correlated to reperfusion therapy (
n
= 4 with 16% higher PDS, 95% confidence interval [CI]: 3.5–28%) and PE-related mortality (
n
= 2 with 22% higher PDS, 95% CI: 4.9–38). Moreover, PDS had an added predictive value to CTPA assessment for PE-related mortality (from Chi-square 14 to 19,
p
= 0.02).
Conclusion
CTPP-assessed PDS was not correlated to clinical presentation of acute PE. However, PDS was correlated to reperfusion therapy and PE-related mortality and had an added predictive value to CTPA-reading for PE-related mortality; this added value needs to be demonstrated in larger studies.
Collapse
Affiliation(s)
- Lisette F van Dam
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Lucia J M Kroft
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Menno V Huisman
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten K Ninaber
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frederikus A Klok
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
26
|
Dual-energy CT performance in acute pulmonary embolism: a meta-analysis. Eur Radiol 2021; 31:6248-6258. [PMID: 33555356 DOI: 10.1007/s00330-020-07633-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To evaluate the diagnostic performance of dual-energy computed tomography (DECT) with regard to its post-processing techniques, namely linear blending (LB), iodine maps (IM), and virtual monoenergetic (VM) reconstructions, in diagnosing acute pulmonary embolism (PE). METHODS This meta-analysis was conducted according to PRISMA. A systematic search on MEDLINE and EMBASE was performed in December 2019, looking for articles reporting the diagnostic performance of DECT on a per-patient level. Diagnostic performance meta-analyses were conducted grouping study parts according to DECT post-processing methods. Correlations between radiation or contrast dose and publication year were appraised. RESULTS Seventeen studies entered the analysis. Only lobar and segmental acute PE were considered, subsegmental acute PE being excluded from analysis due to data heterogeneity or lack of data. LB alone was assessed in 6 study parts accounting for 348 patients, showing a pooled sensitivity of 0.87 and pooled specificity of 0.93. LB and IM together were assessed in 14 study parts accounting for 1007 patients, with a pooled sensitivity of 0.89 and pooled specificity of 0.90. LB, IM, and VM together were assessed in 2 studies (for a total 144 patients) and showed a pooled sensitivity of 0.90 and pooled specificity of 0.90. The area under the curve for LB alone, and LB together with IM was 0.93 (not available for studies using LB, IM and VM because of paucity of data). Radiation and contrast dose did not decrease with increasing year of publication. CONCLUSIONS Considering the published performance of single-energy CT in diagnosing acute PE, either dual-energy or single-energy computed tomography can be comparably used for the detection of acute PE. KEY POINTS • Dual-energy CT displayed pooled sensitivity and specificity of 0.87 and 0.93 for linear blending alone, 0.89 and 0.90 for linear blending and iodine maps, and 0.90 and 0.90 for linear blending iodine maps, and virtual monoenergetic reconstructions. • The performance of dual-energy CT for patient management is not superior to that reported in literature for single-energy CT (0.83 sensitivity and 0.96 specificity). • Dual-energy CT did not yield substantial advantages in the identification of patients with acute pulmonary embolism compared to single-energy techniques.
Collapse
|
27
|
Huh J, Kim B, Lee JH, Won JH, Kim J, Kwon Y, Kim JK. Added Value of CT Arterial Subtraction Images in Liver Imaging Reporting and Data System Treatment Response Categorization for Transcatheter Arterial Chemoembolization-Treated Hepatocellular Carcinoma. Invest Radiol 2021; 56:109-116. [PMID: 33405431 DOI: 10.1097/rli.0000000000000714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to assess the benefit of adding arterial subtraction images from computed tomography (CT) to the Liver Imaging Reporting and Data System (LI-RADS) v2018 treatment response (LR-TR) categorization in patients treated with transcatheter arterial chemoembolization (TACE) for hepatocellular carcinoma (HCC). MATERIALS AND METHODS This retrospective study included 115 patients with 151 HCCs treated by TACE using an emulsion of doxorubicin and iodized oil who underwent multiphasic CT protocol that additionally generated arterial subtraction images based on nonrigid anatomic correction algorithm. Of 151 HCCs, 67 (44.4%) were viable and 84 (55.6%) were nonviable. Two independent readers assessed the per-lesion LR-TR categories in set 1 of multiphasic CT images alone and set 2 including both set 1 and CT arterial subtraction images, besides diagnostic confidence, and the quality of subtraction images. The sensitivity and specificity of LR-TR viable category between the sets were compared using the generalized estimating equation. Interobserver agreements of LR-TR categorization in each set and the quality of subtraction images were assessed by Cohen κ. RESULTS The quality of subtraction images was mostly good to perfect (98.7%) with good interobserver agreement (κ = 0.71), and none were nondiagnostic. For detecting viable HCC, LR-TR viable category showed sensitivity of 53.7% to 56.7% and specificity of 96.4% to 98.8% in set 1. In comparison, set 2 showed significantly higher sensitivity of 88.1% to 89.6% (P < 0.002) and equivalent specificity of 94% to 95.2% (P > 0.13) for the same category. In sets 1 and 2, 31.3% to 34.3% and 9% to 10.4% of viable HCC were miscategorized as LR-TR nonviable, respectively. LR-TR equivocal category was less assigned in set 2 (1.3%) than in set 1 (6.6%-7.9%). Set 2 showed slightly higher level of confidence for LR-TR categorization compared with set 1 (3.4 ± 0.8 vs 3.8 ± 0.5). Interobserver agreement was excellent in both sets (κ = 0.85 in set 1 and 0.97 in set 2). CONCLUSIONS The LR-TR viable category is highly specific but inadequately sensitive for detecting viable tumor in TACE-treated HCC on conventional multiphasic CT. Adding arterial subtraction images to the conventional CT images significantly increases sensitivity without compromising the specificity and improves the diagnostic confidence of LR-TR viable category.
Collapse
Affiliation(s)
- Jimi Huh
- From the Department of Radiology, Ajou University Hospital, Ajou University School of Medicine, Suwon
| | - Bohyun Kim
- Department of Radiology, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jei Hee Lee
- From the Department of Radiology, Ajou University Hospital, Ajou University School of Medicine, Suwon
| | - Je Hwan Won
- From the Department of Radiology, Ajou University Hospital, Ajou University School of Medicine, Suwon
| | - Jinoo Kim
- From the Department of Radiology, Ajou University Hospital, Ajou University School of Medicine, Suwon
| | - Yohan Kwon
- From the Department of Radiology, Ajou University Hospital, Ajou University School of Medicine, Suwon
| | - Jai Keun Kim
- From the Department of Radiology, Ajou University Hospital, Ajou University School of Medicine, Suwon
| |
Collapse
|
28
|
Diagnostic Impact of Quantitative Dual-Energy Computed Tomography Perfusion Imaging for the Assessment of Subsegmental Pulmonary Embolism. J Comput Assist Tomogr 2021; 45:151-156. [PMID: 33186173 DOI: 10.1097/rct.0000000000001106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the quantitative differences of dual-energy computed tomography perfusion imaging measurements in subsegmental pulmonary embolism (SSPE), between normal lung parenchyma (NLP) and hypoperfused segments (HPS) with and without thrombus on computed tomography angiography (CTA). METHODS Lung attenuation, iodine density, and normalized uptake values were measured from HPS and NLP on iodine maps of 43 patients with SSPE. Presence of pulmonary embolism (PE) on CTA was recorded. One-way repeated-measures analysis of variance and Kruskal-Wallis analyses with post hoc comparisons were conducted. RESULTS The numbers of HPS with and without SSPE on CTA were 45 (55.6%) and 36 (44.4%), respectively. Lung attenuation of NLP was significantly different from HPS (P < 0.001). Iodine density and normalized uptake values of HPS with PE were significantly lower than those of HPS without PE, which is significantly lower than NLP (P < 0.001). CONCLUSIONS Subsegmental pulmonary embolism causes HPS on dual-energy computed tomography perfusion imaging, which demonstrates different iodine density and normalized uptake values depending on the presence of thrombus.
Collapse
|
29
|
Dhawan RT, Gopalan D, Howard L, Vicente A, Park M, Manalan K, Wallner I, Marsden P, Dave S, Branley H, Russell G, Dharmarajah N, Kon OM. Beyond the clot: perfusion imaging of the pulmonary vasculature after COVID-19. THE LANCET. RESPIRATORY MEDICINE 2021; 9:107-116. [PMID: 33217366 PMCID: PMC7833494 DOI: 10.1016/s2213-2600(20)30407-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
A compelling body of evidence points to pulmonary thrombosis and thromboembolism as a key feature of COVID-19. As the pandemic spread across the globe over the past few months, a timely call to arms was issued by a team of clinicians to consider the prospect of long-lasting pulmonary fibrotic damage and plan for structured follow-up. However, the component of post-thrombotic sequelae has been less widely considered. Although the long-term outcomes of COVID-19 are not known, should pulmonary vascular sequelae prove to be clinically significant, these have the potential to become a public health problem. In this Personal View, we propose a proactive follow-up strategy to evaluate residual clot burden, small vessel injury, and potential haemodynamic sequelae. A nuanced and physiological approach to follow-up imaging that looks beyond the clot, at the state of perfusion of lung tissue, is proposed as a key triage tool, with the potential to inform therapeutic strategies.
Collapse
Affiliation(s)
- Ranju T Dhawan
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK; Hybrid Imaging and Therapy Unit, The Wellington Hospital, HCA Healthcare, London, UK.
| | - Deepa Gopalan
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK; National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, London, UK; Hybrid Imaging and Therapy Unit, The Wellington Hospital, HCA Healthcare, London, UK
| | - Luke Howard
- Department of Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK; National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Angelito Vicente
- Hybrid Imaging and Therapy Unit, The Wellington Hospital, HCA Healthcare, London, UK
| | - Mirae Park
- Department of Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Kavina Manalan
- Department of Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Ingrid Wallner
- Hybrid Imaging and Therapy Unit, The Wellington Hospital, HCA Healthcare, London, UK
| | - Peter Marsden
- Hybrid Imaging and Therapy Unit, The Wellington Hospital, HCA Healthcare, London, UK; Medical Physics and Biomedical Engineering, University College London Hospitals, London, UK
| | - Surendra Dave
- Hybrid Imaging and Therapy Unit, The Wellington Hospital, HCA Healthcare, London, UK
| | - Howard Branley
- Respiratory Unit, The Wellington Hospital, HCA Healthcare, London, UK
| | - Georgina Russell
- Department of Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Nishanth Dharmarajah
- Hybrid Imaging and Therapy Unit, The Wellington Hospital, HCA Healthcare, London, UK
| | - Onn M Kon
- Department of Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
30
|
van Dam LF, Kroft LJM, Boon GJAM, Huisman MV, Ninaber MK, Klok FA. Computed tomography pulmonary perfusion imaging and 3-months clinical outcomes after acute pulmonary embolism. Thromb Res 2020; 199:32-34. [PMID: 33387875 DOI: 10.1016/j.thromres.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Lisette F van Dam
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands.
| | - Lucia J M Kroft
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gudula J A M Boon
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Menno V Huisman
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten K Ninaber
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frederikus A Klok
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
31
|
Santamarina MG, Boisier Riscal D, Beddings I, Contreras R, Baque M, Volpacchio M, Martinez Lomakin F. COVID-19: What Iodine Maps From Perfusion CT can reveal-A Prospective Cohort Study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:619. [PMID: 33087155 PMCID: PMC7576979 DOI: 10.1186/s13054-020-03333-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Subtraction CT angiography (sCTA) is a technique used to evaluate pulmonary perfusion based on iodine distribution maps. The aim of this study is to assess lung perfusion changes with sCTA seen in patients with COVID-19 pneumonia and correlate them with clinical outcomes. MATERIAL AND METHODS A prospective cohort study was carried out with 45 RT-PCR-confirmed COVID-19 patients that required hospitalization at three different hospitals, between April and May 2020. In all cases, a basic clinical and demographic profile was obtained. Lung perfusion was assessed using sCTA. Evaluated imaging features included: Pattern predominance of injured lung parenchyma in both lungs (ground-glass opacities, consolidation and mixed pattern) and anatomical extension; predominant type of perfusion abnormality (increased perfusion or hypoperfusion), perfusion abnormality distribution (focal or diffuse), extension of perfusion abnormalities (mild, moderate and severe involvement); presence of vascular dilatation and vascular tortuosity. All participants were followed-up until hospital discharge searching for the development of any of the study endpoints. These endpoints included intensive-care unit (ICU) admission, initiation of invasive mechanical ventilation (IMV) and death. RESULTS Forty-one patients (55.2 ± 16.5 years, 22 men) with RT-PCR-confirmed SARS-CoV-2 infection and an interpretable iodine map were included. Patients with perfusion anomalies on sCTA in morphologically normal lung parenchyma showed lower Pa/Fi values (294 ± 111.3 vs. 397 ± 37.7, p = 0.035), and higher D-dimer levels (1156 ± 1018 vs. 378 ± 60.2, p < 0.01). The main common patterns seen in lung CT scans were ground-glass opacities, mixed pattern with predominant ground-glass opacities and mixed pattern with predominant consolidation in 56.1%, 24.4% and 19.5% respectively. Perfusion abnormalities were common (36 patients, 87.8%), mainly hypoperfusion in areas of apparently healthy lung. Patients with severe hypoperfusion in areas of apparently healthy lung parenchyma had an increased probability of being admitted to ICU and to initiate IMV (HR of 11.9 (95% CI 1.55-91.9) and HR 7.8 (95% CI 1.05-61.1), respectively). CONCLUSION Perfusion abnormalities evidenced in iodine maps obtained by sCTA are associated with increased admission to ICU and initiation of IMV in COVID-19 patients.
Collapse
Affiliation(s)
- Mario G Santamarina
- Radiology Department, Hospital Naval Almirante Nef, Subida Alesandri S/N., Viña del Mar, Provincia de Valparaíso, Chile. .,Radiology Department, Hospital Dr. Eduardo Pereira, Valparaiso, Chile.
| | | | | | - Roberto Contreras
- Intensive Care Unit, Hospital San Martin de Quillota, Quillota, Chile
| | - Martiniano Baque
- Intensive Care Unit, Hospital IESS Los Ceibos, Guayaquil, Ecuador
| | - Mariano Volpacchio
- Radiology Department, Centro de Diagnóstico Dr. Enrique Rossi, Buenos Aires, Argentina
| | - Felipe Martinez Lomakin
- Intensive Care Unit, Hospital Naval Almirante Nef, Viña del Mar, Chile.,Viña del Mar, Escuela de Medicina, Facultad de Medicina Viña del Mar, Universidad Andres Bello, Valparaiso, Chile
| |
Collapse
|
32
|
Santamarina MG, Boisier D, Contreras R, Baque M, Volpacchio M, Beddings I. COVID-19: a hypothesis regarding the ventilation-perfusion mismatch. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:395. [PMID: 32631389 PMCID: PMC7338110 DOI: 10.1186/s13054-020-03125-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Mario G Santamarina
- Radiology Department, Hospital Naval Almirante Nef, Subida Alessandri S/N, Viña Del Mar, Chile.,Radiology Department, Hospital Dr. Eduardo Pereira, Enrique Ibsen S/N, Valparaíso, Chile
| | - Dominique Boisier
- Intensive Care Unit, Hospital Naval Almirante Nef, Subida Alessandri S/N, Viña Del Mar, Chile
| | - Roberto Contreras
- Intensive Care Unit, Hospital San Martín de Quillota, La Concepción 1050, Quillota, Chile
| | - Martiniano Baque
- Intensive Care Unit, Hospital IESS Los Ceibos, Av. El Bombero Km 6.5, Guayaquil, Ecuador
| | - Mariano Volpacchio
- Radiology Department, Centro de Diagnóstico Dr. Enrique Rossi, Arenales, 2777, Ciudad de Buenos Aires, Capital Federal Argentina, Argentina
| | - Ignacio Beddings
- Radiology Department, Clínica Bupa Santiago, Av. Departamental 1455, La Florida, Santiago, Región Metropolitana, Chile.
| |
Collapse
|
33
|
Salehi Ravesh M, Tesch K, Lebenatus A, Koktzoglou I, Edelman RR, Eden M, Langguth P, Graessner J, Jansen O, Both M. Clinical Value of Noncontrast-Enhanced Radial Quiescent-Interval Slice-Selective (QISS) Magnetic Resonance Angiography for the Diagnosis of Acute Pulmonary Embolism Compared to Contrast-Enhanced Computed Tomography and Cartesian Balanced Steady-State Free Precession. J Magn Reson Imaging 2020; 52:1510-1524. [PMID: 32537799 DOI: 10.1002/jmri.27240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Free-breathing noncontrast-enhanced (non-CE) magnetic resonance angiography (MRA) techniques are of considerable interest for the diagnosis of acute pulmonary embolism (APE), due to the possibility for repeated examinations, avoidance of side effects from iodine-based contrast agents, and the absence of ionizing radiation exposure as compared to CE-computed tomographic angiography (CTA). PURPOSE To analyze the clinical performance of free-breathing and electrocardiogram (ECG)-gated radial quiescent-interval slice-selective (QISS)-MRA compared to CE-CTA and to Cartesian balanced steady-state free precession (bSSFP)-MRA. STUDY TYPE Prospective. SUBJECTS Thirty patients with confirmed APE and 30 healthy volunteers (HVs). FIELD STRENGTH/SEQUENCE Radial QISS- and bSSFP-MRA at 1.5T. ASSESSMENT Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were computed to compare the pulmonary imaging quality between MRA methods. The pulmonary arterial tree was divided into 25 branches and an ordinal scoring system was used to assess the image quality of each pulmonary branch. The clinical performance of the two MRA techniques in accurately assessing APE was evaluated with respect to CE-CTA as the clinical reference standard. STATISTICAL TESTS Wilcoxon signed-rank and Spearman's correlation tests were performed. Sensitivity and specificity of the MRA techniques were determined using CE-CTA as the clinical reference standard. RESULTS Thrombus-mimicking artifacts appeared more frequently in lobar and peripheral arteries of patients with Cartesian bSSFP than with radial QISS-MRA (pulmonary trunk: 12.2% vs. 14.0%, P = 0.64; lobar arteries: 35.6% vs. 22.0%, P = 0.005, peripheral arteries: 74.4% vs. 49.0%, P < 0.001). The relative increases in SNR and of CNR provided by radial QISS-MRA with respect to Cartesian bSSFP-MRA were 30-35% (P-values of SNR/CNR, HVs: 0.09/0.09, patients: 0.03/0.02). The image quality of pulmonary arterial branches was considered good to excellent in 77.2% of patients with radial QISS-MRA and in 43.2% with Cartesian bSSFP-MRA (P < 0.0001). The clinical performance of radial QISS-MRA was higher than Cartesian bSSFP-MRA for grading embolism, with a total sensitivity of 86.0% vs. 80.6% and a specificity of 93.3% vs. 84.0%, respectively. DATA CONCLUSION Radial QISS-MRA is a reliable and safe non-CE angiographic technique with promising clinical potential compared to Cartesian bSSFP-MRA and as an alternative technique to CE-CTA for the diagnosis of APE. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Mona Salehi Ravesh
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany.,Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Karolin Tesch
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Annett Lebenatus
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Ioannis Koktzoglou
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA.,Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Robert R Edelman
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA.,Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Matthias Eden
- Department for Internal Medicine III, Molecular Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Patrick Langguth
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | | | - Olav Jansen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| |
Collapse
|
34
|
Applications of Pediatric Body CT Angiography: What Radiologists Need to Know. AJR Am J Roentgenol 2020; 214:1019-1030. [DOI: 10.2214/ajr.19.22274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Pulmonary perfusion by iodine subtraction maps CT angiography in acute pulmonary embolism: comparison with pulmonary perfusion SPECT (PASEP trial). Eur Radiol 2020; 30:4857-4864. [PMID: 32279113 DOI: 10.1007/s00330-020-06836-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/03/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To assess the diagnostic accuracy of iodine map computed tomography pulmonary angiography (CTPA), for segment-based evaluation of lung perfusion in patients with acute pulmonary embolism (PE), using perfusion single-photon emission CT (SPECT) imaging as a reference standard. METHODS Thirty participants who have been diagnosed with acute pulmonary embolism on CTPA underwent perfusion SPECT/CT within 24 h. Perfusion SPECT and iodine map were independently interpreted by 2 nuclear medicine physicians and 2 radiologists. For both modalities, each segment was classified as normoperfused or hypoperfused, as defined by a perfusion defect of more than 25% of a segment. The primary end point was the diagnostic accuracy (sensitivity and specificity) of iodine map for segment-based evaluation of lung perfusion, using perfusion SPECT imaging as a reference standard. Following blinded interpretation, a retrospective explanatory analysis was performed to determine potential causes of misinterpretation. RESULTS The median time between CTPA with iodine maps and perfusion SPECT was 14 h (range 2-23 h). A total of 597 segments were analyzed. Sensitivity and specificity of iodine maps with CTPA for the detection of segmental perfusion defects were 231/284 = 81.3% (95% CI 76.4 to 85.4%) and 247/313 = 78.9% (95% CI 74.1 to 83.1%), respectively. In retrospect, false results were explained in 48.7%. CONCLUSION Iodine map CTPA showed promising results for the assessment of pulmonary perfusion in patients with acute PE, with sensitivity of 81.3% and specificity of 78.9%, respectively. Recognition of typical pitfalls such as atelectasis, fissures, or beam-hardening artifacts may further improve the accuracy of the test. KEY POINTS • Sensitivity and specificity of iodine subtraction maps for the detection of segmental perfusion defects were 81.3% (95% CI 76.4 to 85.4%) and 78.9% (95% CI 74.1 to 83.1%), respectively. • Recognition of typical pitfalls such as atelectasis, fissures, or beam-hardening artifacts may further improve the diagnostic accuracy of the test.
Collapse
|