1
|
Ay Ş, Ekinci E, Garip Z. A comparative analysis of meta-heuristic optimization algorithms for feature selection on ML-based classification of heart-related diseases. THE JOURNAL OF SUPERCOMPUTING 2023; 79:11797-11826. [PMID: 37304052 PMCID: PMC9983547 DOI: 10.1007/s11227-023-05132-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 06/13/2023]
Abstract
This study aims to use a machine learning (ML)-based enhanced diagnosis and survival model to predict heart disease and survival in heart failure by combining the cuckoo search (CS), flower pollination algorithm (FPA), whale optimization algorithm (WOA), and Harris hawks optimization (HHO) algorithms, which are meta-heuristic feature selection algorithms. To achieve this, experiments are conducted on the Cleveland heart disease dataset and the heart failure dataset collected from the Faisalabad Institute of Cardiology published at UCI. CS, FPA, WOA, and HHO algorithms for feature selection are applied for different population sizes and are realized based on the best fitness values. For the original dataset of heart disease, the maximum prediction F-score of 88% is obtained using K-nearest neighbour (KNN) when compared to logistic regression (LR), support vector machine (SVM), Gaussian Naive Bayes (GNB), and random forest (RF). With the proposed approach, the heart disease prediction F-score of 99.72% is obtained using KNN for population sizes 60 with FPA by selecting eight features. For the original dataset of heart failure, the maximum prediction F-score of 70% is obtained using LR and RF compared to SVM, GNB, and KNN. With the proposed approach, the heart failure prediction F-score of 97.45% is obtained using KNN for population sizes 10 with HHO by selecting five features. Experimental findings show that the applied meta-heuristic algorithms with ML algorithms significantly improve prediction performances compared to performances obtained from the original datasets. The motivation of this paper is to select the most critical and informative feature subset through meta-heuristic algorithms to improve classification accuracy.
Collapse
Affiliation(s)
- Şevket Ay
- Computer Engineering Department, Faculty of Technology, Sakarya University of Applied Sciences, Sakarya, 54187 Turkey
| | - Ekin Ekinci
- Computer Engineering Department, Faculty of Technology, Sakarya University of Applied Sciences, Sakarya, 54187 Turkey
| | - Zeynep Garip
- Computer Engineering Department, Faculty of Technology, Sakarya University of Applied Sciences, Sakarya, 54187 Turkey
| |
Collapse
|
2
|
Jonske F, Dederichs M, Kim MS, Keyl J, Egger J, Umutlu L, Forsting M, Nensa F, Kleesiek J. Deep Learning-driven classification of external DICOM studies for PACS archiving. Eur Radiol 2022; 32:8769-8776. [PMID: 35788757 PMCID: PMC9705446 DOI: 10.1007/s00330-022-08926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Over the course of their treatment, patients often switch hospitals, requiring staff at the new hospital to import external imaging studies to their local database. In this study, the authors present MOdality Mapping and Orchestration (MOMO), a Deep Learning-based approach to automate this mapping process by combining metadata analysis and a neural network ensemble. METHODS A set of 11,934 imaging series with existing anatomical labels was retrieved from the PACS database of the local hospital to train an ensemble of neural networks (DenseNet-161 and ResNet-152), which process radiological images and predict the type of study they belong to. We developed an algorithm that automatically extracts relevant metadata from imaging studies, regardless of their structure, and combines it with the neural network ensemble, forming a powerful classifier. A set of 843 anonymized external studies from 321 hospitals was hand-labeled to assess performance. We tested several variations of this algorithm. RESULTS MOMO achieves 92.71% accuracy and 2.63% minor errors (at 99.29% predictive power) on the external study classification task, outperforming both a commercial product (82.86% accuracy, 1.36% minor errors, 96.20% predictive power) and a pure neural network ensemble (72.69% accuracy, 10.3% minor errors, 99.05% predictive power) performing the same task. We find that the highest performance is achieved by an algorithm that combines all information into one vote-based classifier. CONCLUSION Deep Learning combined with metadata matching is a promising and flexible approach for the automated classification of external DICOM studies for PACS archiving. KEY POINTS • The algorithm can successfully identify 76 medical study types across seven modalities (CT, X-ray angiography, radiographs, MRI, PET (+CT/MRI), ultrasound, and mammograms). • The algorithm outperforms a commercial product performing the same task by a significant margin (> 9% accuracy gain). • The performance of the algorithm increases through the application of Deep Learning techniques.
Collapse
Affiliation(s)
- Frederic Jonske
- Institute of AI in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, 45131, Essen, Germany.
- Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Essen, Germany.
| | - Maximilian Dederichs
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Moon-Sung Kim
- Institute of AI in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, 45131, Essen, Germany
- Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Julius Keyl
- Institute of AI in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, 45131, Essen, Germany
- Department of Tumor Research, University Hospital Essen, Essen, Germany
| | - Jan Egger
- Institute of AI in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, 45131, Essen, Germany
- Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Essen, Germany
| | - Lale Umutlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
| | - Felix Nensa
- Institute of AI in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, 45131, Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Jens Kleesiek
- Institute of AI in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, 45131, Essen, Germany
- Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
- University Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Eche T, Schwartz LH, Mokrane FZ, Dercle L. Toward Generalizability in the Deployment of Artificial Intelligence in Radiology: Role of Computation Stress Testing to Overcome Underspecification. Radiol Artif Intell 2021; 3:e210097. [PMID: 34870222 DOI: 10.1148/ryai.2021210097] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/20/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
The clinical deployment of artificial intelligence (AI) applications in medical imaging is perhaps the greatest challenge facing radiology in the next decade. One of the main obstacles to the incorporation of automated AI-based decision-making tools in medicine is the failure of models to generalize when deployed across institutions with heterogeneous populations and imaging protocols. The most well-understood pitfall in developing these AI models is overfitting, which has, in part, been overcome by optimizing training protocols. However, overfitting is not the only obstacle to the success and generalizability of AI. Underspecification is also a serious impediment that requires conceptual understanding and correction. It is well known that a single AI pipeline, with prescribed training and testing sets, can produce several models with various levels of generalizability. Underspecification defines the inability of the pipeline to identify whether these models have embedded the structure of the underlying system by using a test set independent of, but distributed identically, to the training set. An underspecified pipeline is unable to assess the degree to which the models will be generalizable. Stress testing is a known tool in AI that can limit underspecification and, importantly, assure broad generalizability of AI models. However, the application of stress tests is new in radiologic applications. This report describes the concept of underspecification from a radiologist perspective, discusses stress testing as a specific strategy to overcome underspecification, and explains how stress tests could be designed in radiology-by modifying medical images or stratifying testing datasets. In the upcoming years, stress tests should become in radiology the standard that crash tests have become in the automotive industry. Keywords: Computer Applications-General, Informatics, Computer-aided Diagnosis © RSNA, 2021.
Collapse
Affiliation(s)
- Thomas Eche
- Department of Radiology, Toulouse Rangueil Hospital, Toulouse, France (T.E., F.Z.M.); and Department of Radiology, NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, 622 West 168th St, New York, NY 10032 (T.E., L.H.S., L.D.)
| | - Lawrence H Schwartz
- Department of Radiology, Toulouse Rangueil Hospital, Toulouse, France (T.E., F.Z.M.); and Department of Radiology, NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, 622 West 168th St, New York, NY 10032 (T.E., L.H.S., L.D.)
| | - Fatima-Zohra Mokrane
- Department of Radiology, Toulouse Rangueil Hospital, Toulouse, France (T.E., F.Z.M.); and Department of Radiology, NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, 622 West 168th St, New York, NY 10032 (T.E., L.H.S., L.D.)
| | - Laurent Dercle
- Department of Radiology, Toulouse Rangueil Hospital, Toulouse, France (T.E., F.Z.M.); and Department of Radiology, NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, 622 West 168th St, New York, NY 10032 (T.E., L.H.S., L.D.)
| |
Collapse
|
4
|
Xu Z, Wang X, Zeng S, Ren X, Yan Y, Gong Z. Applying artificial intelligence for cancer immunotherapy. Acta Pharm Sin B 2021; 11:3393-3405. [PMID: 34900525 PMCID: PMC8642413 DOI: 10.1016/j.apsb.2021.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Artificial intelligence (AI) is a general term that refers to the use of a machine to imitate intelligent behavior for performing complex tasks with minimal human intervention, such as machine learning; this technology is revolutionizing and reshaping medicine. AI has considerable potential to perfect health-care systems in areas such as diagnostics, risk analysis, health information administration, lifestyle supervision, and virtual health assistance. In terms of immunotherapy, AI has been applied to the prediction of immunotherapy responses based on immune signatures, medical imaging and histological analysis. These features could also be highly useful in the management of cancer immunotherapy given their ever-increasing performance in improving diagnostic accuracy, optimizing treatment planning, predicting outcomes of care and reducing human resource costs. In this review, we present the details of AI and the current progression and state of the art in employing AI for cancer immunotherapy. Furthermore, we discuss the challenges, opportunities and corresponding strategies in applying the technology for widespread clinical deployment. Finally, we summarize the impact of AI on cancer immunotherapy and provide our perspectives about underlying applications of AI in the future.
Collapse
Key Words
- AI, artificial intelligence
- Artificial intelligence
- CT, computed tomography
- CTLA-4, cytotoxic T lymphocyte-associated antigen 4
- Cancer immunotherapy
- DL, deep learning
- Diagnostics
- ICB, immune checkpoint blockade
- MHC-I, major histocompatibility complex class I
- ML, machine learning
- MMR, mismatch repair
- MRI, magnetic resonance imaging
- Machine learning
- PD-1, programmed cell death protein 1
- PD-L1, PD-1 ligand1
- TNBC, triple-negative breast cancer
- US, ultrasonography
- irAEs, immune-related adverse events
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xinxin Ren
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University, Changsha 410008, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|