1
|
Han T, Jeong WK, Shin J, Cha DI, Gu K, Rhu J, Kim JM, Choi GS. Comparison of micro-flow imaging and contrast-enhanced ultrasonography in assessing segmental congestion after right living donor liver transplantation. Ultrasonography 2024; 43:469-477. [PMID: 39390717 PMCID: PMC11532526 DOI: 10.14366/usg.24114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
PURPOSE This study aimed to determine whether micro-flow imaging (MFI) offers diagnostic performance comparable to that of contrast-enhanced ultrasonography (CEUS) in detecting segmental congestion among patients undergoing living donor liver transplantation (LDLT). METHODS Data from 63 patients who underwent LDLT between May and December 2022 were retrospectively analyzed. MFI and CEUS data collected on the first postoperative day were quantified. Segmental congestion was assessed based on imaging findings and laboratory data, including liver enzymes and total bilirubin levels. The reference standard was a postoperative contrast-enhanced computed tomography scan performed within 2 weeks of surgery. Additionally, a subgroup analysis examined patients who underwent reconstruction of the middle hepatic vein territory. RESULTS The sensitivity and specificity of MFI were 73.9% and 67.5%, respectively. In comparison, CEUS demonstrated a sensitivity of 78.3% and a specificity of 75.0%. These findings suggest comparable diagnostic performance, with no significant differences in sensitivity (P=0.655) or specificity (P=0.257) between the two modalities. Additionally, early postoperative laboratory values did not show significant differences between patients with and without congestion. The subgroup analysis also indicated similar diagnostic performance between MFI and CEUS. CONCLUSION MFI without contrast enhancement yielded results comparable to those of CEUS in detecting segmental congestion after LDLT. Therefore, MFI may be considered a viable alternative to CEUS.
Collapse
Affiliation(s)
- Taewon Han
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woo Kyoung Jeong
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jaeseung Shin
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Ik Cha
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyowon Gu
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jinsoo Rhu
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Man Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gyu-Seong Choi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Frenette C, Mendiratta-Lala M, Salgia R, Wong RJ, Sauer BG, Pillai A. ACG Clinical Guideline: Focal Liver Lesions. Am J Gastroenterol 2024; 119:1235-1271. [PMID: 38958301 DOI: 10.14309/ajg.0000000000002857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/25/2024] [Indexed: 07/04/2024]
Abstract
Focal liver lesions (FLLs) have become an increasingly common finding on abdominal imaging, especially asymptomatic and incidental liver lesions. Gastroenterologists and hepatologists often see these patients in consultation and make recommendations for management of multiple types of liver lesions, including hepatocellular adenoma, focal nodular hyperplasia, hemangioma, and hepatic cystic lesions including polycystic liver disease. Malignancy is important to consider in the differential diagnosis of FLLs, and healthcare providers must be familiar with the diagnosis and management of FLLs. This American College of Gastroenterology practice guideline uses the best evidence available to make diagnosis and management recommendations for the most common FLLs.
Collapse
Affiliation(s)
| | | | - Reena Salgia
- Department of Gastroenterology/Hepatology, Henry Ford Health, Detroit, Michigan, USA
| | - Robert J Wong
- Division of Gastroenterology and Hepatology, Veterans Affairs Palo Alto Health Care System and Stanford University School of Medicine, Palo Alto, California, USA
| | - Bryan G Sauer
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, Virginia, USA
| | - Anjana Pillai
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago Medical Center, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Hwang SM, Yoo SY, Jeong WK, Lee MW, Jeon TY, Kim JH. Superb Microvascular Imaging in Pediatric Focal Nodular Hyperplasia. J Pediatr Hematol Oncol 2024; 46:e233-e240. [PMID: 38408130 PMCID: PMC10956684 DOI: 10.1097/mph.0000000000002826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVE To investigate superb microvascular imaging (SMI), a novel Doppler ultrasound technique that can visualize low-velocity microvascular flow, for assessing pediatric focal nodular hyperplasia (FNH). PATIENTS AND METHODS Nine FNH lesions in 6 patients were enrolled. On SMI and color Doppler imaging (CDI), intralesional vascularity was assessed visually and categorized as typical spoke-wheel pattern (central vessel radiating from the center to the periphery), multifocal spoke-wheel pattern, and nonspecific pattern. We compared the vascular features of the lesions between SMI and CDI and evaluated vascular patterns according to lesion size. RESULTS In terms of vascularity pattern, the typical spoke-wheel pattern of FNH was noted more frequently on SMI (67%) than on CDI (11%; P < 0.05). In addition, a multifocal spoke-wheel pattern was noted in all remaining lesions (33%) on SMI. On the contrary, a nonspecific vascular pattern was detected in the majority (78%) of CDI. Regarding the lesion size and vascularity on SMI, the typical spoke-wheel pattern was seen more frequently in the small FNH group than in the large FNH group. The intralesional vascular signal was detected more frequently on SMI (100%) than on CDI (89%). CONCLUSION SMI is feasible in evaluating FNH in children and has a greater ability to demonstrate the spoke-wheel pattern than CDI.
Collapse
Affiliation(s)
- Sook Min Hwang
- Department of Radiology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University
| | - So-Young Yoo
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Korea
| | - Woo Kyoung Jeong
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Korea
| | - Min Woo Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Korea
| | - Tae Yeon Jeon
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Korea
| | - Ji Hye Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
4
|
Qin S, Chen Y, Wang Y, Li F, Cui R, Liu G. Contrast-enhanced ultrasound with microbubbles containing sulfur hexafluoride and perfluorobutane with Kupffer phase for the detection of colorectal liver metastases. Eur Radiol 2024; 34:622-631. [PMID: 37566263 DOI: 10.1007/s00330-023-10051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE To compare contrast-enhanced ultrasound (CEUS) with microbubbles containing sulfur hexafluoride (SHF) and perfluorobutane (PFB) for the detection of colorectal liver metastasis (CRLM). METHODS In this prospective study, conducted from September to November 2021, patients with colorectal cancer were consecutively recruited and underwent same-day ultrasound, SHF-CEUS, and PFB-CEUS. The reference standard was contrast-enhanced MRI and follow-up imaging. The size, depth, echogenicity, and calcification of each focal liver lesion were recorded. The number and conspicuity of CRLMs, based on washout appearance during the late phase (LP) (> 120 s)/Kupffer phase (KP), were evaluated offsite by two blinded readers. RESULTS Overall, 230 lesions (CRLMs, n = 219; benign lesions, n = 11) in 78 patients were evaluated. Lesion conspicuity (p = 0.344) and accuracy in the detection of CRLM were comparable for SHF- and PFB-CEUS (0.877 for SHF vs. 0.770 for PFB, p = 0.087). More CRLMs ≥ 10 mm were identified by LP contrast washout in SHF-CEUS than in KP PFB-CEUS (p < 0.001). More CRLMs < 10 mm were identified by KP washout in PFB-CEUS than in LP SHF-CEUS (p < 0.001). Conspicuity was better on PFB-CEUS than on SHF-CEUS (p = 0.027). In hyperechoic lesions, lesions located deeper than 80 mm, and calcified lesions, CRLM conspicuity on PFB-CEUS was inferior to that on SHF-CEUS (p < 0.05). CONCLUSIONS The overall accuracy of detection and conspicuity of washout in CRLMs were comparable between SHF and PFB-CEUS. PFB-CEUS has the advantage of identifying washout in small CRLMs. However, larger, hyperechogenic, deep-seated, or calcified lesions were better identified using SHF-CEUS. CLINICAL RELEVANCE STATEMENT Accuracy of detection and conspicuity of washout in CRLMs were comparable between SHF- and PFB-CEUS. PFB-CEUS has the advantage in detecting small CRLMs, whereas SHF-CEUS is better for detecting larger, hyperechogenic, deep-seated, or calcified lesions. KEY POINTS Contrast-enhanced ultrasound with sulfur hexafluoride in the late phase and perfluorobutane microbubbles in the Kupffer phase were comparable in terms of accuracy in the detection and conspicuity of colorectal liver metastases. Small colorectal liver metastases (< 10 mm) were more often identified in the Kupffer phase contrast-enhanced ultrasound imaging when using perfluorobutane microbubbles. Larger, hyperechogenic, deep-seated, or calcified lesions were better identified in the late phase contrast-enhanced ultrasound imaging (> 120 s) when using sulfur hexafluoride microbubbles.
Collapse
Affiliation(s)
- Si Qin
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancunerheng Rd, Guangzhou, 510655, Guangdong, China
| | - Yao Chen
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancunerheng Rd, Guangzhou, 510655, Guangdong, China
| | - YiMin Wang
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancunerheng Rd, Guangzhou, 510655, Guangdong, China
| | - FangQian Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancunerheng Rd, Guangzhou, 510655, Guangdong, China
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui Cui
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancunerheng Rd, Guangzhou, 510655, Guangdong, China
| | - GuangJian Liu
- Department of Medical Ultrasonics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancunerheng Rd, Guangzhou, 510655, Guangdong, China.
| |
Collapse
|
5
|
Jeong WK. Diagnosis of hepatocellular carcinoma using Sonazoid: a comprehensive review. JOURNAL OF LIVER CANCER 2023; 23:272-283. [PMID: 37723641 PMCID: PMC10565540 DOI: 10.17998/jlc.2023.08.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/20/2023]
Abstract
Sonazoid contrast-enhanced ultrasonography (CEUS) is a promising technique for the detection and diagnosis of focal liver lesions, particularly hepatocellular carcinoma (HCC). Recently, a collaborative effort between the Korean Society of Radiology and Korean Society of Abdominal Radiology resulted in the publication of guidelines for diagnosing HCC using Sonazoid CEUS. These guidelines propose specific criteria for identifying HCC based on the imaging characteristics observed during Sonazoid CEUS. The suggested diagnostic criteria include nonrim arterial phase hyperenhancement, and the presence of late and mild washout, or Kupffer phase washout under the premise that the early or marked washout should not occur during the portal venous phase. These criteria aim to improve the accuracy of HCC diagnosis using Sonazoid CEUS. This review offers a comprehensive overview of Sonazoid CEUS in the context of HCC diagnosis. It covers the fundamental principles of Sonazoid CEUS and its clinical applications, and introduces the recently published guidelines. By providing a summary of this emerging technique, this review contributes to a better understanding of the potential role of Sonazoid CEUS for diagnosing HCC.
Collapse
Affiliation(s)
- Woo Kyoung Jeong
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Diagnosis and Follow-up of Incidental Liver Lesions in Children. J Pediatr Gastroenterol Nutr 2022; 74:320-327. [PMID: 34984985 DOI: 10.1097/mpg.0000000000003377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Incidental liver lesions are identified in children without underlying liver disease or increased risk of hepatic malignancy in childhood. Clinical and imaging evaluation of incidental liver lesions can be complex and may require a multidisciplinary approach. This review aims to summarize the diagnostic process and follow-up of incidental liver lesions based on review of the literature, use of state-of-the-art imaging, and our institutional experience. Age at presentation, gender, alpha fetoprotein levels, tumor size, and imaging characteristics should all be taken into consideration to optimize diagnosis process. Some lesions, such as simple liver cyst, infantile hemangioma, focal nodular hyperplasia (FNH), and focal fatty lesions, have specific imaging characteristics. Recently, contrast-enhanced ultrasound (CEUS) was Food and Drug Administration (FDA)-approved for the evaluation of pediatric liver lesions. CEUS is most specific in lesions smaller than 3 cm and is most useful in the diagnosis of infantile hemangioma, FNH, and focal fatty lesions. The use of hepatobiliary contrast in MRI increases specificity in the diagnosis of FNH. Recently, lesion characteristics in MRI were found to correlate with subtypes of hepatocellular adenomas and associated risk for hemorrhage and malignant transformation. Biopsy should be considered when there are no specific imaging characteristics of a benign lesion. Surveillance with imaging and alpha fetoprotein (AFP) should be performed to confirm the stability of lesions when the diagnosis cannot be determined, and whenever biopsy is not feasible.
Collapse
|