1
|
Molendowska M, Mueller L, Fasano F, Jones DK, Tax CMW, Engel M. Giving the prostate the boost it needs: Spiral diffusion MRI using a high-performance whole-body gradient system for high b-values at short echo times. Magn Reson Med 2025; 93:1256-1272. [PMID: 39497447 DOI: 10.1002/mrm.30351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 12/29/2024]
Abstract
PURPOSE To address key issues of low SNR and image distortions in prostate diffusion MRI (dMRI) by means of using strong gradients, single-shot spiral readouts and an expanded encoding model for image reconstruction. METHODS Diffusion-weighted spin echo imaging with EPI and spiral readouts is performed on a whole-body system equipped with strong gradients (up to 250 mT/m). An expanded encoding model including static off-resonance, coil sensitivities, and magnetic field dynamics is employed for image reconstruction. The acquisitions are performed on a phantom and in vivo (one healthy volunteer and one patient with prostate cancer). The resulting images are compared to conventional dMRI EPI with navigator-based image reconstruction and assessed in terms of their congruence, SNR, tissue contrast, and quantitative parameters. RESULTS Using the expanded encoding model, high-quality images of the prostate gland are obtained across all b-values (up to 3 ms/μm2), clearly outperforming the results obtained with conventional image reconstruction. Compared to EPI, spiral imaging provides an SNR gain up to 45% within the gland and even higher in the lesion. In addition, prostate dMRI with single-shot spirals at submillimeter in-plane resolution (0.85 mm) is accomplished. CONCLUSION The combination of strong gradients and an expanded encoding model enables imaging of the prostate with unprecedented image quality. Replacing the commonly used EPI with spirals provides the inherent benefit of shorter echo times and superior readout efficiency and results in higher SNR, which is in particular relevant for considered applications.
Collapse
Affiliation(s)
- Malwina Molendowska
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Lars Mueller
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Fabrizio Fasano
- Siemens Healthcare Ltd, Camberly, UK
- Siemens Healthcare GmbH, Erlangen, Germany
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maria Engel
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| |
Collapse
|
2
|
Fan X, Chatterjee A, Medved M, Antic T, Oto A, Karczmar GS. Introduction to matrix-based method for analyzing hybrid multidimensional prostate MRI data. J Appl Clin Med Phys 2024:e14544. [PMID: 39568316 DOI: 10.1002/acm2.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 11/22/2024] Open
Abstract
A new approach to analysis of prostate hybrid multidimensional MRI (HM-MRI) data was introduced in this study. HM-MRI data were acquired for a combination of a few echo times (TEs) and a few b-values. Naturally, there is a matrix associated with HM-MRI data for each image pixel. To process the data, we first linearized HM-MRI data by taking the natural logarithm of the imaging signal intensity. Subsequently, a hybrid symmetric matrix was constructed by multiplying the matrix for each pixel by its own transpose. The eigenvalues for each pixel could then be calculated from the hybrid symmetric matrix. In order to compare eigenvalues between patients, three b-values and three TEs were used, because this was smallest number of b-values and TEs among all patients. The results of eigenvalues were displayed as qualitative color maps for easier visualization. For quantitative analysis, the ratio (λr) of eigenvalues (λ1, λ2, λ3) was defined as λr = (λ1/λ2)/λ3 to compare region of interest (ROI) between prostate cancer (PCa) and normal tissue. The results show that the combined eigenvalue maps show PCas clearly and these maps are quite different from apparent diffusion coefficient (ADC) and T2 maps of the same prostate. The PCa has significant larger λr, smaller ADC and smaller T2 values than normal prostate tissue (p < 0.001). This suggests that the matrix-based method for analyzing HM-MRI data provides new information that may be clinically useful. The method is easy to use and could be easily implemented in clinical practice. The eigenvalues are associated with combination of ADC and T2 values, and could aid in the identification and staging of PCa.
Collapse
Affiliation(s)
- Xiaobing Fan
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| | | | - Milica Medved
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| | - Tatjana Antic
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Aytekin Oto
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| | - Gregory S Karczmar
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Chatterjee A, Fan X, Slear J, Asare G, Yousuf AN, Medved M, Antic T, Eggener S, Karczmar GS, Oto A. Quantitative Multi-Parametric MRI of the Prostate Reveals Racial Differences. Cancers (Basel) 2024; 16:3499. [PMID: 39456593 PMCID: PMC11505680 DOI: 10.3390/cancers16203499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Purpose: This study investigates whether quantitative MRI and histology of the prostate reveal differences between races, specifically African Americans (AAs) and Caucasian Americans (CAs), that can affect diagnosis. Materials and Methods: Patients (98 CAs, 47 AAs) with known or suspected prostate cancer (PCa) underwent 3T MRI (T2W, DWI, and DCE-MRI) prior to biopsy or prostatectomy. Quantitative mpMRI metrics: ADC, T2, and DCE empirical mathematical model parameters were calculated. Results: AAs had a greater percentage of higher Gleason-grade lesions compared to CAs. There were no significant differences in the quantitative ADC and T2 values between AAs and CAs. The cancer signal enhancement rate (α) on DCE-MRI was significantly higher for AAs compared to CAs (AAs: 13.3 ± 9.3 vs. CAs: 6.1 ± 4.7 s-1, p < 0.001). The DCE signal washout rate (β) was significantly lower in benign tissue of AAs (AAs: 0.01 ± 0.09 s-1 vs. CAs: 0.07 ± 0.07 s-1, p < 0.001) and significantly elevated in cancer tissue in AAs (AAs: 0.12 ± 0.07 s-1 vs. CAs: 0.07 ± 0.08 s-1, p = 0.02). DCE significantly improves the differentiation of PCa from benign in AAs (α: 52%, β: 62% more effective in AAs compared to CAs). Histologic analysis showed cancers have a greater proportion (p = 0.04) of epithelium (50.9 ± 12.3 vs. 44.7 ± 12.8%) and lower lumen (10.5 ± 6.9 vs. 16.2 ± 6.8%) in CAs compared to AAs. Conclusions: This study shows that AAs have different quantitative DCE-MRI values for benign prostate and prostate cancer and different histologic makeup in PCa compared to CAs. Quantitative DCE-MRI can significantly improve the performance of MRI for PCa diagnosis in African Americans but is much less effective for Caucasian Americans.
Collapse
Affiliation(s)
- Aritrick Chatterjee
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (A.N.Y.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Xiaobing Fan
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (A.N.Y.); (M.M.); (G.S.K.); (A.O.)
| | - Jessica Slear
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (A.N.Y.); (M.M.); (G.S.K.); (A.O.)
| | - Gregory Asare
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (A.N.Y.); (M.M.); (G.S.K.); (A.O.)
| | - Ambereen N. Yousuf
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (A.N.Y.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Milica Medved
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (A.N.Y.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Tatjana Antic
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | - Scott Eggener
- Section of Urology, University of Chicago, Chicago, IL 60637, USA;
| | - Gregory S. Karczmar
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (A.N.Y.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Aytekin Oto
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (A.N.Y.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Margolis DJA, Chatterjee A, deSouza NM, Fedorov A, Fennessy FM, Maier SE, Obuchowski N, Punwani S, Purysko A, Rakow-Penner R, Shukla-Dave A, Tempany CM, Boss M, Malyarenko D. Quantitative Prostate MRI, From the AJR Special Series on Quantitative Imaging. AJR Am J Roentgenol 2024. [PMID: 39356481 DOI: 10.2214/ajr.24.31715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Prostate MRI has traditionally relied on qualitative interpretation. However, quantitative components hold the potential to markedly improve performance. The ADC from DWI is probably the most widely recognized quantitative MRI biomarker and has shown strong discriminatory value for clinically significant prostate cancer (csPCa) as well as for recurrent cancer after treatment. Advanced diffusion techniques, including intravoxel incoherent motion, diffusion kurtosis, diffusion tensor imaging, and specific implementations such as restriction spectrum imaging, purport even better discrimination, but are more technically challenging. The inherent T1 and T2 of tissue also provide diagnostic value, with more advanced techniques deriving luminal water imaging and hybrid-multidimensional MRI. Dynamic contrast-enhanced imaging, primarily using a modified Tofts model, also shows independent discriminatory value. Finally, quantitative size and shape features can be combined with the aforementioned techniques and be further refined using radiomics, texture analysis, and artificial intelligence. Which technique will ultimately find widespread clinical use will depend on validation across a myriad of platforms use-cases.
Collapse
Affiliation(s)
| | | | - Nandita M deSouza
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Andriy Fedorov
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Fiona M Fennessy
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Stephan E Maier
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | | | - Shonit Punwani
- Centre for Medical Imaging, University College London, London, UK
| | - Andrei Purysko
- Department of Radiology, Cleveland Clinic, Cleveland, OH
| | | | - Amita Shukla-Dave
- Departments of Medical Physics and Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Clare M Tempany
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | | | | |
Collapse
|
5
|
Sun W, Xu D, Li H, Li S, Bao Q, Song X, Topgaard D, Xu H. Quantifying H&E staining results, grading and predicting IDH mutation status of gliomas using hybrid multi-dimensional MRI. MAGMA (NEW YORK, N.Y.) 2024; 37:925-936. [PMID: 38578520 DOI: 10.1007/s10334-024-01154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVE To assess the performance of hybrid multi-dimensional magnetic resonance imaging (HM-MRI) in quantifying hematoxylin and eosin (H&E) staining results, grading and predicting isocitrate dehydrogenase (IDH) mutation status of gliomas. MATERIALS AND METHODS Included were 71 glioma patients (mean age, 50.17 ± 13.38 years; 35 men). HM-MRI images were collected at five different echo times (80-200 ms) with seven b-values (0-3000 s/mm2). A modified three-compartment model with very-slow, slow and fast diffusion components was applied to calculate HM-MRI metrics, including fractions, diffusion coefficients and T2 values of each component. Pearson correlation analysis was performed between HM-MRI derived fractions and H&E staining derived percentages. HM-MRI metrics were compared between high-grade and low-grade gliomas, and between IDH-wild and IDH-mutant gliomas. Using receiver operational characteristic (ROC) analysis, the diagnostic performance of HM-MRI in grading and genotyping was compared with mono-exponential models. RESULTS HM-MRI metrics FDvery-slow and FDslow demonstrated a significant correlation with the H&E staining results (p < .05). Besides, FDvery-slow showed the highest area under ROC curve (AUC = 0.854) for grading, while Dslow showed the highest AUC (0.845) for genotyping. Furthermore, a combination of HM-MRI metrics FDvery-slow and T2Dslow improved the diagnostic performance for grading (AUC = 0.876). DISCUSSION HM-MRI can aid in non-invasive diagnosis of gliomas.
Collapse
Affiliation(s)
- Wenbo Sun
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Dan Xu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Huan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China
| | - Qingjia Bao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, People's Republic of China
| | - Xiaopeng Song
- Central Research Institute, United-Imaging Healthcare, Shanghai, China
| | - Daniel Topgaard
- Department of Chemistry, Lund University, P.O.B. 124, 221 00, Lund, Sweden.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Fokkinga E, Hernandez-Tamames JA, Ianus A, Nilsson M, Tax CMW, Perez-Lopez R, Grussu F. Advanced Diffusion-Weighted MRI for Cancer Microstructure Assessment in Body Imaging, and Its Relationship With Histology. J Magn Reson Imaging 2024; 60:1278-1304. [PMID: 38032021 DOI: 10.1002/jmri.29144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DW-MRI) aims to disentangle multiple biological signal sources in each imaging voxel, enabling the computation of innovative maps of tissue microstructure. DW-MRI model development has been dominated by brain applications. More recently, advanced methods with high fidelity to histology are gaining momentum in other contexts, for example, in oncological applications of body imaging, where new biomarkers are urgently needed. The objective of this article is to review the state-of-the-art of DW-MRI in body imaging (ie, not including the nervous system) in oncology, and to analyze its value as compared to reference colocalized histology measurements, given that demonstrating the histological validity of any new DW-MRI method is essential. In this article, we review the current landscape of DW-MRI techniques that extend standard apparent diffusion coefficient (ADC), describing their acquisition protocols, signal models, fitting settings, microstructural parameters, and relationship with histology. Preclinical, clinical, and in/ex vivo studies were included. The most used techniques were intravoxel incoherent motion (IVIM; 36.3% of used techniques), diffusion kurtosis imaging (DKI; 16.7%), vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT; 13.3%), and imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED; 11.7%). Another notable category of techniques relates to innovative b-tensor diffusion encoding or joint diffusion-relaxometry. The reviewed approaches provide histologically meaningful indices of cancer microstructure (eg, vascularization/cellularity) which, while not necessarily accurate numerically, may still provide useful sensitivity to microscopic pathological processes. Future work of the community should focus on improving the inter-/intra-scanner robustness, and on assessing histological validity in broader contexts. LEVEL OF EVIDENCE: NA TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ella Fokkinga
- Biomedical Engineering, Track Medical Physics, Delft University of Technology, Delft, The Netherlands
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan A Hernandez-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Andrada Ianus
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Markus Nilsson
- Department of Diagnostic Radiology, Clinical Sciences Lund, Lund, Sweden
| | - Chantal M W Tax
- Cardiff University Brain Research Imaging Center (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raquel Perez-Lopez
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francesco Grussu
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
7
|
Correia ETDO, Baydoun A, Li Q, Costa DN, Bittencourt LK. Emerging and anticipated innovations in prostate cancer MRI and their impact on patient care. Abdom Radiol (NY) 2024; 49:3696-3710. [PMID: 38877356 PMCID: PMC11390809 DOI: 10.1007/s00261-024-04423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Prostate cancer (PCa) remains the leading malignancy affecting men, with over 3 million men living with the disease in the US, and an estimated 288,000 new cases and almost 35,000 deaths in 2023 in the United States alone. Over the last few decades, imaging has been a cornerstone in PCa care, with a crucial role in the detection, staging, and assessment of PCa recurrence or by guiding diagnostic or therapeutic interventions. To improve diagnostic accuracy and outcomes in PCa care, remarkable advancements have been made to different imaging modalities in recent years. This paper focuses on reviewing the main innovations in the field of PCa magnetic resonance imaging, including MRI protocols, MRI-guided procedural interventions, artificial intelligence algorithms and positron emission tomography, which may impact PCa care in the future.
Collapse
Affiliation(s)
| | - Atallah Baydoun
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Qiubai Li
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Daniel N Costa
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leonardo Kayat Bittencourt
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA.
| |
Collapse
|
8
|
Stamatelatou A, Rizzo R, Simsek K, van Asten JJA, Heerschap A, Scheenen T, Kreis R. Diffusion-weighted MR spectroscopy of the prostate. Magn Reson Med 2024; 92:1323-1337. [PMID: 38775024 DOI: 10.1002/mrm.30141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE Prostate tissue has a complex microstructure, mainly composed of epithelial and stromal cells, and of extracellular (acinar-luminal) spaces. Diffusion-weighted MR spectroscopy (DW-MRS) is ideally suited to explore complex microstructure in vivo with metabolites selectively distributed in different subspaces. To date, this technique has been applied to brain and muscle. This study presents the development and pioneering utilization of 1H-DW-MRS in the prostate, accompanied by in vitro studies to support interpretations of in vivo findings. METHODS Nine healthy volunteers underwent a prostate MR examination (mean age, 56 years; range, 31-66). Metabolic complexation was studied in vitro using solutions with major compounds found in prostatic fluid of the lumen. DW-MRS was performed at 3 T with a non-water-suppressed single-voxel sequence with metabolite-cycling to concurrently measure metabolite and water signals. The water signal was used in postprocessing as a reference in a motion-compensation scheme. The spectra were fitted simultaneously in the spectral and diffusion-weighting dimensions. Apparent diffusion coefficients (ADCs) were derived by fitting signal decays that were assumed to be mono-exponential for metabolites and biexponential for water. RESULTS DW-MRS of the prostate revealed relatively low ADCs for Cho and Cr compounds, aligning with their intracellular location and higher ADCs for citrate and spermine supporting their luminal origin. In vitro assessments of the ADCs of citrate and spermine demonstrated their complex formation and protein binding. Tissue concentrations of MRS-detectable metabolites were as expected for the voxel location. CONCLUSIONS This work successfully demonstrates the feasibility of 1H-DW-MRS of the prostate and its potential for providing valuable microstructural information.
Collapse
Affiliation(s)
- Angeliki Stamatelatou
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rudy Rizzo
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center, sitem-insel, Bern, Switzerland
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kadir Simsek
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | - Jack J A van Asten
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roland Kreis
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center, sitem-insel, Bern, Switzerland
- Institute of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Kallis K, Conlin CC, Zhong AY, Hussain TS, Chatterjee A, Karczmar GS, Rakow-Penner R, Dale AM, Seibert TM. Comparison of synthesized and acquired high b-value diffusion-weighted MRI for detection of prostate cancer. Cancer Imaging 2024; 24:89. [PMID: 38972972 PMCID: PMC11229343 DOI: 10.1186/s40644-024-00723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND High b-value diffusion-weighted images (DWI) are used for detection of clinically significant prostate cancer (csPCa). This study qualitatively and quantitatively compares synthesized DWI (sDWI) to acquired (aDWI) for detection of csPCa. METHODS One hundred fifty-one consecutive patients who underwent prostate MRI and biopsy were included in the study. Axial DWI with b = 0, 500, 1000, and 2000 s/mm2 using a 3T clinical scanner using a 32-channel phased-array body coil were acquired. We retrospectively synthesized DWI for b = 2000 s/mm2 via extrapolation based on mono-exponential decay, using b = 0 and b = 500 s/mm2 (sDWI500) and b = 0, b = 500 s/mm2, and b = 1000 s/mm2 (sDWI1000). Differences in signal intensity between sDWI and aDWI were evaluated within different regions of interest (prostate alone, prostate plus 5 mm, 30 mm and 70 mm margin and full field of view). The maximum DWI value within each ROI was evaluated for prediction of csPCa. Classification accuracy was compared to Restriction Spectrum Imaging restriction score (RSIrs), a previously validated biomarker based on multi-exponential DWI. Discrimination of csPCa was evaluated via area under the receiver operating characteristic curve (AUC). RESULTS Within the prostate, mean ± standard deviation of percent mean differences between sDWI and aDWI signal were -46 ± 35% for sDWI1000 and -67 ± 24% for sDWI500. AUC for aDWI, sDWI500, sDWI1000, and RSIrs within the prostate 0.62[95% confidence interval: 0.53, 0.71], 0.63[0.54, 0.72], 0.65[0.56, 0.73] and 0.78[0.71, 0.86], respectively. CONCLUSION sDWI is qualitatively comparable to aDWI within the prostate. However, hyperintense artifacts are introduced with sDWI in the surrounding pelvic tissue that interfere with quantitative cancer detection and might mask metastases. In the prostate, RSIrs yields superior quantitative csPCa detection than sDWI or aDWI.
Collapse
Affiliation(s)
- Karoline Kallis
- Department of Radiation Medicine and Applied Sciences, University of California San Diego Health, La Jolla, CA, USA
| | - Christopher C Conlin
- Department of Radiology, University of California San Diego Health, La Jolla, San Diego, CA, USA
| | - Allison Y Zhong
- Department of Radiation Medicine and Applied Sciences, University of California San Diego Health, La Jolla, CA, USA
| | - Troy S Hussain
- Department of Radiation Medicine and Applied Sciences, University of California San Diego Health, La Jolla, CA, USA
| | - Aritrick Chatterjee
- Department of Radiology, University of Chicago, Chicago, IL, USA
- Sanford J. Grossmann Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL, USA
| | - Gregory S Karczmar
- Department of Radiology, University of Chicago, Chicago, IL, USA
- Sanford J. Grossmann Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL, USA
| | - Rebecca Rakow-Penner
- Department of Radiology, University of California San Diego Health, La Jolla, San Diego, CA, USA
| | - Anders M Dale
- Department of Radiology, University of California San Diego Health, La Jolla, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego Health, La Jolla, San Diego, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Tyler M Seibert
- Department of Radiology, University of California San Diego Health, La Jolla, San Diego, CA, USA.
- Department of Radiation Medicine and Applied Sciences, University of California San Diego Health, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego Jacobs School of Engineering, La Jolla, San Diego, CA, USA.
| |
Collapse
|
10
|
Chatterjee A, Dwivedi DK. MRI-based virtual pathology of the prostate. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01163-w. [PMID: 38856839 DOI: 10.1007/s10334-024-01163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
Prostate cancer poses significant diagnostic challenges, with conventional methods like prostate-specific antigen (PSA) screening and transrectal ultrasound (TRUS)-guided biopsies often leading to overdiagnosis or miss clinically significant cancers. Multiparametric MRI (mpMRI) has emerged as a more reliable tool. However, it is limited by high inter-observer variability and radiologists missing up to 30% of clinically significant cancers. This article summarizes a few of these recent advancements in quantitative MRI techniques that look at the "Virtual Pathology" of the prostate with an aim to enhance prostate cancer detection and characterization. These techniques include T2 relaxation-based techniques such as luminal water imaging, diffusion based such as vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT) and restriction spectrum imaging or combined relaxation-diffusion techniques such as hybrid multi-dimensional MRI (HM-MRI), time-dependent diffusion imaging, and diffusion-relaxation correlation spectrum imaging. These methods provide detailed insights into underlying prostate microstructure and tissue composition and have shown improved diagnostic accuracy over conventional MRI. These innovative MRI methods hold potential for augmenting mpMRI, reducing variability in diagnosis, and paving the way for MRI as a 'virtual histology' tool in prostate cancer diagnosis. However, they require further validation in larger multi-center clinical settings and rigorous in-depth radiological-pathology correlation are needed for broader implementation.
Collapse
Affiliation(s)
- Aritrick Chatterjee
- Department of Radiology, University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, IL, 60637, USA.
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL, USA.
| | | |
Collapse
|
11
|
Duan L, Liu Z, Wan F, Dai B. Advantage of whole-mount histopathology in prostate cancer: current applications and future prospects. BMC Cancer 2024; 24:448. [PMID: 38605339 PMCID: PMC11007899 DOI: 10.1186/s12885-024-12071-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/29/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Whole-mount histopathology (WMH) has been a powerful tool to investigate the characteristics of prostate cancer. However, the latest advancement of WMH was yet under summarization. In this review, we offer a comprehensive exposition of current research utilizing WMH in diagnosing and treating prostate cancer (PCa), and summarize the clinical advantages of WMH and outlines potential on future prospects. METHODS An extensive PubMed search was conducted until February 26, 2023, with the search term "prostate", "whole-mount", "large format histology", which was limited to the last 4 years. Publications included were restricted to those in English. Other papers were also cited to contribute a better understanding. RESULTS WMH exhibits an enhanced legibility for pathologists, which improved the efficacy of pathologic examination and provide educational value. It simplifies the histopathological registration with medical images, which serves as a convincing reference standard for imaging indicator investigation and medical image-based artificial intelligence (AI). Additionally, WMH provides comprehensive histopathological information for tumor volume estimation, post-treatment evaluation, and provides direct pathological data for AI readers. It also offers complete spatial context for the location estimation of both intraprostatic and extraprostatic cancerous region. CONCLUSIONS WMH provides unique benefits in several aspects of clinical diagnosis and treatment of PCa. The utilization of WMH technique facilitates the development and refinement of various clinical technologies. We believe that WMH will play an important role in future clinical applications.
Collapse
Affiliation(s)
- Lewei Duan
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Shanghai Genitourinary Cancer Institute, 200032, Shanghai, China
| | - Zheng Liu
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Shanghai Genitourinary Cancer Institute, 200032, Shanghai, China
| | - Fangning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, 200032, Shanghai, China.
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, 200032, Shanghai, China.
| |
Collapse
|
12
|
Chatterjee A, Fan X, Oto A, Karczmar G. Four-quadrant vector mapping of hybrid multidimensional MRI data for the diagnosis of prostate cancer. Med Phys 2024; 51:2057-2065. [PMID: 37642562 PMCID: PMC10902195 DOI: 10.1002/mp.16687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/07/2023] [Accepted: 07/29/2023] [Indexed: 08/31/2023] Open
Abstract
PURPOSE The interpretation of prostate multiparametric magnetic resonance imaging (MRI) is subjective in nature, and there is large inter-observer variability among radiologists and up to 30% of clinically significant cancers are missed. This has motivated the development of new MRI techniques and sequences, especially quantitative approaches to improve prostate cancer diagnosis. Using hybrid multidimensional MRI, apparent diffusion coefficient (ADC) and T2 have been shown to change as a function of echo time (TE) and b-values, and that this dependence is different for cancer and benign tissue, which can be exploited for prostate cancer diagnosis. The purpose of this study is to investigate whether four-quadrant vector mapping of hybrid multidimensional MRI (HM-MRI) data can be used to diagnose prostate cancer (PCa) and determine cancer aggressiveness. METHODS Twenty-one patients with confirmed PCa underwent preoperative MRI prior to radical prostatectomy. Axial HM-MRI were acquired with all combinations of TE = 47, 75, 100 ms and b-values of 0, 750, 1500 s/mm2 , resulting in a 3 × 3 data matrix associated with each voxel. Prostate Quadrant (PQ) mapping analysis represents HM-MRI data for each voxel as a color-coded vector in the four-quadrant space of HM-MRI parameters (a 2D matrix of signal values for each combination of b-value and TE) with associated amplitude and angle information representing the change in T2 and ADC as a function of b-value and TE, respectively. RESULTS Cancers have a higher PQ4 (22.50% ± 21.27%) and lower PQ2 (69.86% ± 28.24%) compared to benign tissue: peripheral, transition, and central zone (PQ4 = 0.13% ± 0.56%, 5.73% ± 15.07%, 2.66% ± 4.05%, and PQ2 = 98.51% ± 3.05%, 86.18% ± 21.75%, 93.38% ± 9.88%, respectively). Cancers have a higher vector angle (206.5 ± 41.8°) and amplitude (0.017 ± 0.013) compared to benign tissue. PQ metrics showed moderate correlation with Gleason score (|ρ| = 0.388-0.609), with more aggressive cancers being associated with increased PQ4 and angle and reduced PQ2 and amplitude. A combination of four-quadrant analysis metrics provided an area under the curve of 0.904 (p < 0.001) for the differentiation of prostate cancer from benign prostatic tissue. CONCLUSIONS Four-quadrant vector mapping of HM-MRI data provides effective cancer markers, with cancers associated with high PQ4 and high vector angle and lower PQ2 and vector amplitude.
Collapse
Affiliation(s)
- Aritrick Chatterjee
- Department of Radiology, University of Chicago, Chicago, IL, USA
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL, USA
| | - Xiaobing Fan
- Department of Radiology, University of Chicago, Chicago, IL, USA
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL, USA
| | - Aytekin Oto
- Department of Radiology, University of Chicago, Chicago, IL, USA
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL, USA
| | - Gregory Karczmar
- Department of Radiology, University of Chicago, Chicago, IL, USA
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Zhu A, Tarasek M, Hua Y, Fiveland E, Maier SE, Mazaheri Y, Fung M, Westin CF, Yeo DT, Szczepankiewicz F, Tempany C, Akin O, Foo TK. Human prostate MRI at ultrahigh-performance gradient: A feasibility study. Magn Reson Med 2024; 91:640-648. [PMID: 37753628 PMCID: PMC10841413 DOI: 10.1002/mrm.29874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE To demonstrate the technical feasibility and the value of ultrahigh-performance gradient in imaging the prostate in a 3T MRI system. METHODS In this local institutional review board-approved study, prostate MRI was performed on 4 healthy men. Each subject was scanned in a prototype 3T MRI system with a 42-cm inner-diameter gradient coil that achieves a maximum gradient amplitude of 200 mT/m and slew rate of 500 T/m/s. PI-RADS V2.1-compliant axial T2 -weighted anatomical imaging and single-shot echo planar DWI at standard gradient of 70 mT/m and 150 T/m/s were obtained, followed by DWI at maximum performance (i.e., 200 mT/m and 500 T/m/s). In comparison to state-of-the-art clinical whole-body MRI systems, the high slew rate improved echo spacing from 1020 to 596 μs and, together with a high gradient amplitude for diffusion encoding, TE was reduced from 55 to 36 ms. RESULTS In all 4 subjects (waist circumference = 81-91 cm, age = 45-65 years), no peripheral nerve stimulation sensation was reported during DWI. Reduced image distortion in the posterior peripheral zone prostate gland and higher signal intensity, such as in the surrounding muscle of high-gradient DWI, were noted. CONCLUSION Human prostate MRI at simultaneously high gradient amplitude of 200 mT/m and slew rate of 500 T/m/s is feasible, demonstrating that improved gradient performance can address image distortion and T2 decay-induced SNR issues for in vivo prostate imaging.
Collapse
Affiliation(s)
- Ante Zhu
- GE Research, Niskayuna, New York, United States
| | | | - Yihe Hua
- GE Research, Niskayuna, New York, United States
| | | | - Stephan E. Maier
- Brigham and Women’s Hospital, Boston, Massachusetts, United States
| | - Yousef Mazaheri
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | | | | | | | | | - Clare Tempany
- Brigham and Women’s Hospital, Boston, Massachusetts, United States
| | - Oguz Akin
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | | |
Collapse
|
14
|
Chatterjee A, Gallan A, Fan X, Medved M, Akurati P, Bourne RM, Antic T, Karczmar GS, Oto A. Prostate Cancers Invisible on Multiparametric MRI: Pathologic Features in Correlation with Whole-Mount Prostatectomy. Cancers (Basel) 2023; 15:5825. [PMID: 38136370 PMCID: PMC10742185 DOI: 10.3390/cancers15245825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
We investigated why some prostate cancers (PCas) are not identified on multiparametric MRI (mpMRI) by using ground truth reference from whole-mount prostatectomy specimens. A total of 61 patients with biopsy-confirmed PCa underwent 3T mpMRI followed by prostatectomy. Lesions visible on MRI prospectively or retrospectively identified after correlating with histology were considered "identified cancers" (ICs). Lesions that could not be identified on mpMRI were considered "unidentified cancers" (UCs). Pathologists marked the Gleason score, stage, size, and density of the cancer glands and performed quantitative histology to calculate the tissue composition. Out of 115 cancers, 19 were unidentified on MRI. The UCs were significantly smaller and had lower Gleason scores and clinical stage lesions compared with the ICs. The UCs had significantly (p < 0.05) higher ADC (1.34 ± 0.38 vs. 1.02 ± 0.30 μm2/ms) and T2 (117.0 ± 31.1 vs. 97.1 ± 25.1 ms) compared with the ICs. The density of the cancer glands was significantly (p = 0.04) lower in the UCs. The percentage of the Gleason 4 component in Gleason 3 + 4 lesions was nominally (p = 0.15) higher in the ICs (20 ± 12%) compared with the UCs (15 ± 8%). The UCs had a significantly lower epithelium (32.9 ± 21.5 vs. 47.6 ± 13.1%, p = 0.034) and higher lumen volume (20.4 ± 10.0 vs. 13.3 ± 4.1%, p = 0.021) compared with the ICs. Independent from size and Gleason score, the tissue composition differences, specifically, the higher lumen and lower epithelium in UCs, can explain why some of the prostate cancers cannot be identified on mpMRI.
Collapse
Affiliation(s)
- Aritrick Chatterjee
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Gallan
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Xiaobing Fan
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Milica Medved
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| | | | - Roger M. Bourne
- Discipline of Medical Imaging Science, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Tatjana Antic
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | - Gregory S. Karczmar
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Aytekin Oto
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA; (X.F.); (M.M.); (G.S.K.); (A.O.)
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Enríquez-Mier-Y-Terán FE, Chatterjee A, Antic T, Oto A, Karczmar G, Bourne R. Multi-model sequential analysis of MRI data for microstructure prediction in heterogeneous tissue. Sci Rep 2023; 13:16486. [PMID: 37779137 PMCID: PMC10543593 DOI: 10.1038/s41598-023-43329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
We propose a general method for combining multiple models to predict tissue microstructure, with an exemplar using in vivo diffusion-relaxation MRI data. The proposed method obviates the need to select a single 'optimum' structure model for data analysis in heterogeneous tissues where the best model varies according to local environment. We break signal interpretation into a three-stage sequence: (1) application of multiple semi-phenomenological models to predict the physical properties of tissue water pools contributing to the observed signal; (2) from each Stage-1 semi-phenomenological model, application of a tissue microstructure model to predict the relative volumes of tissue structure components that make up each water pool; and (3) aggregation of the predictions of tissue structure, with weightings based on model likelihood and fractional volumes of the water pools from Stage-1. The multiple model approach is expected to reduce prediction variance in tissue regions where a complex model is overparameterised, and bias where a model is underparameterised. The separation of signal characterisation (Stage-1) from biological assignment (Stage-2) enables alternative biological interpretations of the observed physical properties of the system, by application of different tissue structure models. The proposed method is exemplified with human prostate diffusion-relaxation MRI data, but has potential application to a wide range of analyses where a single model may not be optimal throughout the sampled domain.
Collapse
Affiliation(s)
- Francisco E Enríquez-Mier-Y-Terán
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, 2008, Australia
- The Brain and Mind Centre, The University of Sydney, Sydney, 2050, Australia
| | - Aritrick Chatterjee
- Department of Radiology, University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, 60637, IL, USA
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, 60637, IL, USA
| | - Tatjana Antic
- Department of Pathology, University of Chicago, Chicago, 60637, IL, USA
| | - Aytekin Oto
- Department of Radiology, University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, 60637, IL, USA
| | - Gregory Karczmar
- Department of Radiology, University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, 60637, IL, USA
| | - Roger Bourne
- Discipline of Medical Imaging Science, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, 2006, Australia.
| |
Collapse
|
16
|
Fennessy FM, Maier SE. Quantitative diffusion MRI in prostate cancer: Image quality, what we can measure and how it improves clinical assessment. Eur J Radiol 2023; 167:111066. [PMID: 37651828 PMCID: PMC10623580 DOI: 10.1016/j.ejrad.2023.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Diffusion-weighted imaging is a dependable method for detection of clinically significant prostate cancer. In prostate tissue, there are several compartments that can be distinguished from each other, based on different water diffusion decay signals observed. Alterations in cell architecture, such as a relative increase in tumor infiltration and decrease in stroma, will influence the observed diffusion signal in a voxel due to impeded random motion of water molecules. The amount of restricted diffusion can be assessed quantitatively by measuring the apparent diffusion coefficient (ADC) value. This is traditionally calculated using a monoexponential decay formula represented by the slope of a line produced between the logarithm of signal intensity decay plotted against selected b-values. However, the choice and number of b-values and their distribution, has a significant effect on the measured ADC values. There have been many models that attempt to use higher-order functions to better describe the observed diffusion signal decay, requiring an increased number and range of b-values. While ADC can probe heterogeneity on a macroscopic level, there is a need to optimize advanced diffusion techniques to better interrogate prostate tissue microstructure. This could be of benefit in clinical challenges such as identifying sparse tumors in normal prostate tissue or better defining tumor margins. This paper reviews the principles of diffusion MRI and novel higher order diffusion signal analysis techniques to improve the detection of prostate cancer.
Collapse
Affiliation(s)
- Fiona M Fennessy
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Stephan E Maier
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Lee G, Chatterjee A, Harmath C, Karademir I, Engelmann R, Yousuf A, Islam S, Karczmar G, Oto A, Giurcanu M, Antic T, Eggener S. Improving reader accuracy and specificity with the addition of hybrid multidimensional-MRI to multiparametric-MRI in diagnosing clinically significant prostate cancers. Abdom Radiol (NY) 2023; 48:3216-3228. [PMID: 37358605 DOI: 10.1007/s00261-023-03969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/27/2023]
Abstract
PURPOSE Compare reader performance when adding the Hybrid Multidimensional-MRI (HM-MRI) map to multiparametric MRI (mpMRI+HM-MRI) versus mpMRI alone and inter-reader agreement in diagnosing clinically significant prostate cancers (CSPCa). METHODS All 61 patients who underwent mpMRI (T2-, diffusion-weighted (DWI), and contrast-enhanced scans) and HM-MRI (with multiple TE/b-value combinations) before prostatectomy or MRI-fused-transrectal ultrasound-guided biopsy between August, 2012 and February, 2020, were retrospectively analyzed. Two experienced readers (R1, R2) and two less-experienced readers (less than 6-year MRI prostate experience) (R3, R4) interpreted mpMRI without/with HM-MRI in the same sitting. Readers recorded the PI-RADS 3-5 score, lesion location, and change in score after adding HM-MRI. Each radiologist's mpMRI+HM-MRI and mpMRI performance measures (AUC, sensitivity, specificity, PPV, NPV, and accuracy) based on pathology, and Fleiss' kappa inter-reader agreement was calculated and compared. RESULTS Per-sextant R3 and R4 mpMRI+HM-MRI accuracy (82% 81% vs. 77%, 71%; p=.006, <.001) and specificity (89%, 88% vs. 84%, 75%; p=.009, <.001) were higher than with mpMRI. Per-patient R4 mpMRI+HM-MRI specificity improved (48% from 7%; p<.001). R1 and R2 mpMRI+HM-MRI specificity per-sextant (80%, 93% vs. 81%, 93%; p=.51,>.99) and per-patient (37%, 41% vs. 48%, 37%; p=.16, .57) remained similar to mpMRI. R1 and R2 per-patient AUC with mpMRI+HM-MRI (0.63, 0.64 vs. 0.67, 0.61; p=.33, .36) remained similar to mpMRI, but R3 and R4 mpMRI+HM-MRI AUC (0.73, 0.62) approached R1 and R2 AUC. Per-patient inter-reader agreement, mpMRI+HM-MRI Fleiss Kappa, was higher than mpMRI (0.36 [95% CI 0.26, 0.46] vs. 0.17 [95% CI 0.07, 0.27]); p=.009). CONCLUSION Adding HM-MRI to mpMRI (mpMRI+HM-MRI) improved specificity and accuracy for less-experienced readers, improving overall inter-reader agreement.
Collapse
Affiliation(s)
- Grace Lee
- Department of Diagnostic Radiology, University of Chicago, Chicago, Illinois, 60637, USA.
| | - Aritrick Chatterjee
- Department of Diagnostic Radiology, University of Chicago, Chicago, Illinois, 60637, USA
| | - Carla Harmath
- Department of Diagnostic Radiology, University of Chicago, Chicago, Illinois, 60637, USA
| | - Ibrahim Karademir
- Department of Diagnostic Radiology, University of Chicago, Chicago, Illinois, 60637, USA
| | - Roger Engelmann
- Department of Diagnostic Radiology, University of Chicago, Chicago, Illinois, 60637, USA
| | - Ambereen Yousuf
- Department of Diagnostic Radiology, University of Chicago, Chicago, Illinois, 60637, USA
| | - Salman Islam
- Department of Diagnostic Radiology, University of Chicago, Chicago, Illinois, 60637, USA
| | - Gregory Karczmar
- Department of Diagnostic Radiology, University of Chicago, Chicago, Illinois, 60637, USA
| | - Aytekin Oto
- Department of Diagnostic Radiology, University of Chicago, Chicago, Illinois, 60637, USA
| | - Mihai Giurcanu
- Department of Public Health, University of Chicago, Chicago, Illinois, 60637, USA
| | - Tatjana Antic
- Department of Pathology, University of Chicago, Chicago, Illinois, 60637, USA
| | - Scott Eggener
- Department of Surgery, Section of Urology, University of Chicago, Chicago, Illinois, 60637, USA
| |
Collapse
|
18
|
de Oliveira Correia ET, Qiao PL, Griswold MA, Chen Y, Bittencourt LK. Magnetic resonance fingerprinting based comprehensive quantification of T1 and T2 values of the background prostatic peripheral zone: Correlation with clinical and demographic features. Eur J Radiol 2023; 164:110883. [PMID: 37209463 DOI: 10.1016/j.ejrad.2023.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
PURPOSE To quantify and assess the distribution of MR fingerprinting (MRF)-derived T1 and T2 values of the whole prostatic peripheral zone (PZ), and perform subgroup analyses according to clinical and demographic features. METHOD One hundred and twenty-four patients with prostate MR exams and MRF-based T1 and T2 maps of the prostatic apex, mid gland, and base were identified from our database and included. Regions of interest encompassing the right and left lobes of the PZ were drawn for each axial slice on the T2 map and copied to the T1 map. Clinical data were obtained from medical records. Kruskal-Wallis test was used for assessing differences between subgroups and the Spearman coefficient was used for assessing any correlations. RESULTS Mean T1 and T2 values were 1941 and 88 ms, respectively, for the whole-gland, 1884 and 83 ms for the apex, 1974 and 92 ms for the mid-gland, 1966 and 88 ms for the base. T1 values were weakly negatively correlated with PSA values, while T1 and T2 values were weakly positively correlated with prostate weight and moderately positively correlated with PZ width. Finally, patients with PI-RADS 1 scores had higher T1 and T2 values of the whole PZ, compared with those with scores 2-5. CONCLUSION Mean T1 and T2 values of the background PZ of the whole gland were 1941 ± 313 and 88 ± 39 ms, respectively. Among clinical and demographic factors, there was a significant positive correlation between T1 and T2 values and PZ width.
Collapse
Affiliation(s)
| | - Peter L Qiao
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.
| | - Mark A Griswold
- University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH 44106, USA; Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.
| | - Yong Chen
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.
| | - Leonardo Kayat Bittencourt
- University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH 44106, USA; Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.
| |
Collapse
|
19
|
Kallis K, Conlin CC, Zhong AY, Hussain TS, Chatterjee A, Karczmar GS, Rakow-Penner R, Dale A, Seibert T. Comparison of synthesized and acquired high b -value diffusion-weighted MRI for detection of prostate cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.17.23286100. [PMID: 36824958 PMCID: PMC9949172 DOI: 10.1101/2023.02.17.23286100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Background High b -value diffusion-weighted images (DWI) are used for detection of clinically significant prostate cancer (csPCa). To decrease scan time and improve signal-to-noise ratio, high b -value (>1000 s/mm 2 ) images are often synthesized instead of acquired. Purpose Qualitatively and quantitatively compare synthesized DWI (sDWI) to acquired (aDWI) for detection of csPCa. Study Type Retrospective. Subjects 151 consecutive patients who underwent prostate MRI and biopsy. Sequence Axial DWI with b =0, 500, 1000, and 2000 s/mm 2 using a 3T clinical scanner using a 32-channel phased-array body coil. Assessment We synthesized DWI for b =2000 s/mm 2 via extrapolation based on monoexponential decay, using b =0 and b =500 s/mm 2 (sDWI 500 ) and b =0, b =500, and b =1000 s/mm 2 (sDWI 1000 ). Differences between sDWI and aDWI were evaluated within regions of interest (ROIs). The maximum DWI value within each ROI was evaluated for prediction of csPCa. Classification accuracy was also compared to Restriction Spectrum Imaging restriction score (RSIrs), a previously validated biomarker based on multi-exponential DWI. Statistical Tests Discrimination of csPCa was evaluated via area under the receiver operating characteristic curve (AUC). Statistical significance was assessed using bootstrap difference (two-sided α=0.05). Results Within the prostate, mean ± standard deviation of percent mean differences between sDWI and aDWI signal were -46±35% for sDWI 1000 and -67±24% for sDWI 500 . AUC for aDWI, sDWI 500, sDWI 1000 , and RSIrs within the prostate 0.62[95% confidence interval: 0.53, 0.71], 0.63[0.54, 0.72], 0.65[0.56, 0.73] and 0.78[0.71, 0.86], respectively. When considering the whole field of view, classification accuracy and qualitative image quality decreased notably for sDWI compared to aDWI and RSIrs. Data Conclusion sDWI is qualitatively comparable to aDWI within the prostate. However, hyperintense artifacts are introduced with sDWI in the surrounding pelvic tissue that interfere with quantitative cancer detection and might mask metastases. In the prostate, RSIrs yields superior quantitative csPCa detection than sDWI or aDWI.
Collapse
|
20
|
Wei X, Zhu L, Zeng Y, Xue K, Dai Y, Xu J, Liu G, Liu F, Xue W, Wu D, Wu G. Detection of prostate cancer using diffusion-relaxation correlation spectrum imaging with support vector machine model - a feasibility study. Cancer Imaging 2022; 22:77. [PMID: 36575555 PMCID: PMC9795630 DOI: 10.1186/s40644-022-00516-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND To evaluate the performance of diffusion-relaxation correlation spectrum imaging (DR-CSI) with support vector machine (SVM) in detecting prostate cancer (PCa). METHODS In total, 114 patients (mean age, 66 years, range, 48-87 years) who received a prostate MRI and underwent biopsy were enrolled in three stages. Thirty-nine were assigned for the exploration stage to establish the model, 18 for the validation stage to choose the appropriate scale for mapping and 57 for the test stage to compare the diagnostic performance of the DR-CSI and PI-RADS. RESULTS In the exploration stage, the DR-CSI model was established and performed better than the ADC and T2 values (both P < 0.001). The validation result shows that at least 2 pixels were required for both the long-axis and short-axis in the mapping procedure. In the test stage, DR-CSI had higher accuracy than PI-RADS ≥ 3 as a positive finding based on patient (84.2% vs. 63.2%, P = 0.004) and lesion (78.8% vs. 57.6%, P = 0.001) as well as PI-RADS ≥ 4 on lesion (76.5% vs. 64.7%, P = 0.029), while there was no significant difference between DR-CSI and PI-RADS ≥ 4 based on patient (P = 0.508). For clinically significant PCa, DR-CSI had higher accuracy than PI-RADS ≥ 3 based on patients (84.2% vs. 63.2%, P = 0.004) and lesions (62.4% vs. 48.2%, P = 0.036). There was no significant difference between DR-CSI and PI-RADS ≥ 4 (P = 1.000 and 0.845 for the patient and lesion levels, respectively). CONCLUSIONS DR-CSI combined with the SVM model may improve the diagnostic accuracy of PCa. TRIAL REGISTRATION This study was approved by the Ethics Committee of our institute (Approval No. KY2018-213). Written informed consent was obtained from all participants.
Collapse
Affiliation(s)
- Xiaobin Wei
- grid.16821.3c0000 0004 0368 8293Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Zhu
- grid.16821.3c0000 0004 0368 8293Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyan Zeng
- Quanzhou Maternity and Children’s Hospital, Fujian, China
| | - Ke Xue
- grid.497849.fCentral Research Institute, MR Collaboration, United Imaging Healthcare, Shanghai, China
| | - Yongming Dai
- grid.497849.fCentral Research Institute, MR Collaboration, United Imaging Healthcare, Shanghai, China
| | - Jianrong Xu
- grid.16821.3c0000 0004 0368 8293Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guiqin Liu
- grid.16821.3c0000 0004 0368 8293Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Liu
- grid.16821.3c0000 0004 0368 8293Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xue
- grid.16821.3c0000 0004 0368 8293Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dongmei Wu
- grid.22069.3f0000 0004 0369 6365Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronics Science, East China Normal University, Shanghai, China
| | - Guangyu Wu
- grid.16821.3c0000 0004 0368 8293Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Turkbey B. Hybrid Multidimensional Prostate MRI: A Quantitative Step in the Right Direction. Radiology 2022; 305:408-409. [PMID: 35880986 PMCID: PMC9619198 DOI: 10.1148/radiol.221452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Baris Turkbey
- From the Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, 10 Center Dr, Room B3B85, Bethesda, MD 20892
| |
Collapse
|
22
|
Chatterjee A, Oto A. Prostate Tissue Microstructural Estimates Using Time-Dependent Diffusion MRI. Radiology 2022; 303:588-589. [PMID: 35258378 PMCID: PMC9131166 DOI: 10.1148/radiol.220056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Aritrick Chatterjee
- From the Department of Radiology and Sanford J. Grossman Center of
Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago,
5841 S Maryland Ave, MC 2026, Chicago, IL 60637
| | - Aytekin Oto
- From the Department of Radiology and Sanford J. Grossman Center of
Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago,
5841 S Maryland Ave, MC 2026, Chicago, IL 60637
| |
Collapse
|
23
|
Chatterjee A, Antic T, Gallan AJ, Paner GP, Lin LIK, Karczmar GS, Oto A. Histological validation of prostate tissue composition measurement using hybrid multi-dimensional MRI: agreement with pathologists' measures. Abdom Radiol (NY) 2022; 47:801-813. [PMID: 34878579 PMCID: PMC8916544 DOI: 10.1007/s00261-021-03371-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE To validate prostate tissue composition measured using hybrid multi-dimensional MRI (HM-MRI) by comparing with reference standard (ground truth) results from pathologists' interpretation of clinical histopathology slides following whole mount prostatectomy. MATERIALS AND METHODS 36 prospective participants with biopsy-confirmed prostate cancer underwent 3 T MRI prior to radical prostatectomy. Axial HM-MRI was acquired with all combinations of echo times of 57, 70, 150, 200 ms and b-values of 0, 150, 750, 1500 s/mm2 and data were fitted using a 3-compartment signal model using custom software to generate volumes for each tissue component (stroma, epithelium, lumen). Three experienced genitourinary pathologists independently as well as in consensus reviewed each histology image and provide an estimate of percentage of epithelium and lumen for regions-of-interest corresponding to MRI (n = 165; 64 prostate cancers and 101 benign tissue). Agreement statistics using total deviation index (TDI0.9) was performed for tissue composition measured using HM-MRI and reference standard results from pathologists' consensus. RESULTS Based on the initial results showing typical variation among pathologists TDI0.9 = 25%, we determined we will declare acceptable agreement if the 95% one-sided upper confident limit of TDI0.9 is less than 30%. The results of tissue composition measurement from HM-MRI compared to ground truth results from the consensus of 3 pathologists, reveal that ninety percent of absolute paired differences (TDI0.9) were within 18.8% and 22.4% in measuring epithelium and lumen, respectively. We are 95% confident that 90% of absolute paired differences were within 20.6% and 24.2% in measuring epithelium and lumen, respectively. These were less than our criterion of 30% and inter-pathologists' agreement (22.3% for epithelium and 24.2% for lumen) and therefore we accept the agreement performance of HM-MRI. The results revealed excellent area under the ROC curve for differentiating cancer from benign tissue based on epithelium (HM-MRI: 0.87, pathologists: 0.97) and lumen volume (HM-MRI: 0.85, pathologists: 0.77). CONCLUSION The agreement in tissue composition measurement using hybrid multidimensional MRI and consensus of pathologists is on par with the inter-raters (pathologists) agreement.
Collapse
Affiliation(s)
- Aritrick Chatterjee
- Department of Radiology, University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, IL, 60637, USA.
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL, USA.
| | - Tatjana Antic
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Alexander J Gallan
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gladell P Paner
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | | - Gregory S Karczmar
- Department of Radiology, University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, IL, 60637, USA
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL, USA
| | - Aytekin Oto
- Department of Radiology, University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, IL, 60637, USA
- Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL, USA
| |
Collapse
|