1
|
Wang MY, Yu Y, Han Y, Yang Y, Jiang W, Liu J, Yan LF, Cui GB. The Diagnostic Value of Conventional MRI Combined With Diffusion-Weighted Imaging in Microprolactinomas. J Magn Reson Imaging 2025; 61:1155-1167. [PMID: 38996369 DOI: 10.1002/jmri.29531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Turbo spin-echo (TSE) diffusion-weighted imaging (DWI) sequences may reduce susceptibility artifacts and image distortion in sellar region, allowing better visualization of small pituitary lesions, and may be used to assist in the diagnosis of pituitary microadenomas. PURPOSE To explore the application value of conventional MRI combined with DWI sequences in the diagnosis of microprolactinomas. STUDY TYPE Prospective. POPULATION Thirty-four patients in microprolactinomas with high signal on T2WI (HT2-PRL) group (34 females, 34 ± 7 years), 26 patients in microprolactinomas with equal or low signal on T2WI (ELT2-PRL) group (21 females, 34 ± 7 years), 35 patients with hyperprolactinemia (33 females, 32 ± 8 years), and 30 normal controls (25 females, 31 ± 7 years). FIELD STRENGTH/SEQUENCE TSE sequence at 3 T. ASSESSMENT Pituitary morphological parameters (such as length and volume), dynamic contrast-enhanced parameters (such as time to peak) and the apparent diffusion coefficients (ADCs) were measured in each group. STATISTICAL TESTS ANOVA and Mann-Whitney U test were used to compare parameters among groups. Spearman's coefficient was used to evaluate the correlation between variables. ROC analysis was used to assess the performance of the parameters. A P-value <0.05 was considered statistically significant. RESULTS The pituitary volume of patients in HT2-PRL, ELT2-PRL, and hyperprolactinemia group were 831.00 (747.60, 887.60), 923.63 ± 219.34, and 737.20 (606.40, 836.80) mm3. The pituitary maximum height in these three groups were 7.03 (6.43, 8.63), 8.03 ± 1.41, and 6.63 ± 1.28 mm, respectively. The lesion ADC value was significantly correlated with T2 relative signal intensity (the ratio of signal intensity of microprolactinoma or anterior pituitary to left temporal cortex) (r = 0.821). Compared with patients with hyperprolactinemia, the diagnostic efficacy of T2 relative signal intensity was higher in HT2-PRL group, with an AUC of 0.954, whereas the ADC value was the highest in ELT2-PRL group, with an AUC of 0.924. CONCLUSION DWI sequences can be used to assist in the diagnosis of pituitary microadenomas. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Min-Yang Wang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Ying Yu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Yu Han
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Yang Yang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Wan Jiang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, Shaanxi, China
- The Affiliated Hospital of Yan'an University School of Medicine, Yan'an, Shaanxi, China
| | - Jin Liu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Lin-Feng Yan
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, Shaanxi, China
| | - Guang-Bin Cui
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Cui Y, Wang X, Wang Y, Meng N, Wu Y, Shen Y, Roberts N, Bai Y, Song X, Shen G, Guo Y, Guo J, Wang M. Restriction Spectrum Imaging and Diffusion Kurtosis Imaging for Assessing Proliferation Status in Rectal Carcinoma. Acad Radiol 2025; 32:201-209. [PMID: 39191564 DOI: 10.1016/j.acra.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVES To investigate the application of the three-compartment restriction spectrum imaging (RSI) model, diffusion kurtosis imaging (DKI), and diffusion-weighted imaging (DWI) in predicting Ki-67 status in rectal carcinoma. METHODS A total of 80 rectal carcinoma patients, including 47 high-proliferation (Ki-67 > 50%) cases and 33 low-proliferation (Ki-67 ≤ 50%) cases, underwent pelvic MRI were enrolled. Parameters derived from RSI (f1, f2, and f3), DKI (MD and MK), and DWI (ADC) were calculated and compared between the two groups. Logistic regression (LR) analysis was conducted to identify independent predictors and assess combined diagnosis. Area under the receiver operating characteristic curve (AUC), DeLong analysis, and calibration curve analyses were performed to evaluate diagnostic performance. RESULTS The patients with high-proliferation rectal carcinoma exhibited significantly higher f1 and MK values and significantly lower ADC, MD, f2, and f3 values than those with low-proliferation rectal carcinoma (P < 0.05). LR analysis showed that MD, MK, and f2 were independent predictors for Ki-67 status in rectal carcinoma. Moreover, the combination of these three parameters achieved an optimal diagnostic efficacy (AUC = 0.877, sensitivity = 80.85%, specificity = 84.85%) that was significantly better than that obtained using ADC (AUC = 0.783, Z = 2.347, P = 0.019), f2 (AUC = 0.732, Z = 2.762, P = 0.006), and f3 (AUC = 0.700, Z = 3.071, P = 0.002). The combined diagnosis also showed good performance (AUC = 0.859) in the internal validation analysis based on 1000 bootstrap samples, while the calibration curve demonstrated that the combined diagnosis provided good stability. CONCLUSION RSI, DKI, and DWI can effectively differentiate between patients with high- and low-proliferation rectal carcinoma. Furthermore, the MD, MK, and f2 imaging parameters may be a novel and promising combination biomarker for examining Ki-67 status in rectal carcinoma.
Collapse
Affiliation(s)
- Yingying Cui
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (Y.C., X.W., Y.W., N.M., Y.W., Y.S., Y.B., M.W.)
| | - Xinhui Wang
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (Y.C., X.W., Y.W., N.M., Y.W., Y.S., Y.B., M.W.)
| | - Ying Wang
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (Y.C., X.W., Y.W., N.M., Y.W., Y.S., Y.B., M.W.)
| | - Nan Meng
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (Y.C., X.W., Y.W., N.M., Y.W., Y.S., Y.B., M.W.)
| | - Yaping Wu
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (Y.C., X.W., Y.W., N.M., Y.W., Y.S., Y.B., M.W.)
| | - Yu Shen
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (Y.C., X.W., Y.W., N.M., Y.W., Y.S., Y.B., M.W.)
| | - Neil Roberts
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK (N.R.); Biomedical Research Institute, Henan Academy of Sciences, Zhengzhou, China (N.R., X.S., M.W.)
| | - Yan Bai
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (Y.C., X.W., Y.W., N.M., Y.W., Y.S., Y.B., M.W.)
| | - Xiaosheng Song
- Biomedical Research Institute, Henan Academy of Sciences, Zhengzhou, China (N.R., X.S., M.W.)
| | - Guofeng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (G.S.); Shanghai Shende Green Medical Era Healthcare Technology Co., Ltd., Shanghai, China (G.S.)
| | - Yongjun Guo
- Henan Academy of Innovations in Medical Science, Zhengzhou, China (Y.G.)
| | - Jinxia Guo
- MR Research China, GE Healthcare, Beijing, China (J.G.)
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China (Y.C., X.W., Y.W., N.M., Y.W., Y.S., Y.B., M.W.); Biomedical Research Institute, Henan Academy of Sciences, Zhengzhou, China (N.R., X.S., M.W.).
| |
Collapse
|
3
|
Foesleitner O, Sulaj A, Sturm V, Kronlage M, Preisner F, Kender Z, Bendszus M, Szendroedi J, Heiland S, Schwarz D. Diffusion tensor imaging in anisotropic tissues: application of reduced gradient vector schemes in peripheral nerves. Eur Radiol Exp 2024; 8:37. [PMID: 38561526 PMCID: PMC10984907 DOI: 10.1186/s41747-024-00444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/23/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND In contrast to the brain, fibers within peripheral nerves have distinct monodirectional structure questioning the necessity of complex multidirectional gradient vector schemes for DTI. This proof-of-concept study investigated the diagnostic utility of reduced gradient vector schemes in peripheral nerve DTI. METHODS Three-Tesla magnetic resonance neurography of the tibial nerve using 20-vector DTI (DTI20) was performed in 10 healthy volunteers, 12 patients with type 2 diabetes, and 12 age-matched healthy controls. From the full DTI20 dataset, three reduced datasets including only two or three vectors along the x- and/or y- and z-axes were built to calculate major parameters. The influence of nerve angulation and intraneural connective tissue was assessed. The area under the receiver operating characteristics curve (ROC-AUC) was used for analysis. RESULTS Simplified datasets achieved excellent diagnostic accuracy equal to DTI20 (ROC-AUC 0.847-0.868, p ≤ 0.005), but compared to DTI20, the reduced models yielded mostly lower absolute values of DTI scalars: median fractional anisotropy (FA) ≤ 0.12; apparent diffusion coefficient (ADC) ≤ 0.25; axial diffusivity ≤ 0.96, radial diffusivity ≤ 0.07). The precision of FA and ADC with the three-vector model was closest to DTI20. Intraneural connective tissue was negatively correlated with FA and ADC (r ≥ -0.49, p < 0.001). Small deviations of nerve angulation had little effect on FA accuracy. CONCLUSIONS In peripheral nerves, bulk tissue DTI metrics can be approximated with only three predefined gradient vectors along the scanner's main axes, yielding similar diagnostic accuracy as a 20-vector DTI, resulting in substantial scan time reduction. RELEVANCE STATEMENT DTI bulk tissue parameters of peripheral nerves can be calculated with only three predefined gradient vectors at similar diagnostic performance as a standard DTI but providing a substantial scan time reduction. KEY POINTS • In peripheral nerves, DTI parameters can be approximated using only three gradient vectors. • The simplified model achieves a similar diagnostic performance as a standard DTI. • The simplified model allows for a significant acceleration of image acquisition. • This can help to introduce multi-b-value DTI techniques into clinical practice.
Collapse
Affiliation(s)
- Olivia Foesleitner
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, 69120, Heidelberg, Germany
| | - Alba Sulaj
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, INF 410, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Volker Sturm
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, 69120, Heidelberg, Germany
| | - Moritz Kronlage
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, 69120, Heidelberg, Germany
| | - Fabian Preisner
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, 69120, Heidelberg, Germany
| | - Zoltan Kender
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, INF 410, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, 69120, Heidelberg, Germany
| | - Julia Szendroedi
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, INF 410, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, 69120, Heidelberg, Germany
| | - Daniel Schwarz
- Department of Neuroradiology, Heidelberg University Hospital, INF 400, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Foesleitner O, Sturm V, Hayes J, Weiler M, Sam G, Wildemann B, Wick W, Bendszus M, Heiland S, Jäger LB. Microstructural changes of peripheral nerves in early multiple sclerosis: A prospective magnetic resonance neurography study. Eur J Neurol 2024; 31:e16126. [PMID: 37932921 PMCID: PMC11236022 DOI: 10.1111/ene.16126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND AND PURPOSE Multiple sclerosis (MS) is a demyelinating disorder of the central nervous system (CNS). However, there is increasing evidence of peripheral nerve involvement. This study aims to characterize the pattern of peripheral nerve changes in patients with newly diagnosed MS using quantitative magnetic resonance (MR) neurography. METHODS In this prospective study, 25 patients first diagnosed with MS according to the revised McDonald criteria (16 female, mean age = 32.8 ± 10.6 years) and 14 healthy controls were examined with high-resolution 3-T MR neurography of the sciatic nerve using diffusion kurtosis imaging (DKI; 20 diffusional directions, b = 0, 700, 1200 s/mm2 ) and magnetization transfer imaging (MTI). In total, 15 quantitative MR biomarkers were analyzed and correlated with clinical symptoms, intrathecal immunoglobulin synthesis, electrophysiology, and lesion load on brain and spine MR imaging. RESULTS Patients showed decreased fractional anisotropy (mean = 0.51 ± 0.04 vs. 0.56 ± 0.03, p < 0.001), extra-axonal tortuosity (mean = 2.32 ± 0.17 vs. 2.49 ± 0.17, p = 0.008), and radial kurtosis (mean = 1.40 ± 0.23 vs. 1.62 ± 0.23, p = 0.014) and higher radial diffusivity (mean = 1.09 ∙ 10-3 mm2 /s ± 0.16 vs. 0.98 ± 0.11 ∙ 10-3 mm2 /s, p = 0.036) than controls. Groups did not differ in MTI. No significant association was found between MR neurography markers and clinical/laboratory parameters or CNS lesion load. CONCLUSIONS This study provides further evidence of peripheral nerve involvement in MS already at initial diagnosis. The characteristic pattern of DKI parameters indicates predominant demyelination and suggests a primary coaffection of the peripheral nervous system in MS. This first human study using DKI for peripheral nerves shows its potential and clinical feasibility in providing novel biomarkers.
Collapse
Affiliation(s)
- Olivia Foesleitner
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - Volker Sturm
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - Jennifer Hayes
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - Markus Weiler
- Department of NeurologyHeidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit Neuro‐oncology, German Cancer ConsortiumGerman Cancer Research CenterHeidelbergGermany
| | - Georges Sam
- Department of NeurologyHeidelberg University HospitalHeidelbergGermany
| | | | - Wolfgang Wick
- Department of NeurologyHeidelberg University HospitalHeidelbergGermany
- Clinical Cooperation Unit Neuro‐oncology, German Cancer ConsortiumGerman Cancer Research CenterHeidelbergGermany
| | - Martin Bendszus
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | - Sabine Heiland
- Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
| | | |
Collapse
|
5
|
Yoon D, Lutz AM. Diffusion Tensor Imaging of Peripheral Nerves: Current Status and New Developments. Semin Musculoskelet Radiol 2023; 27:641-648. [PMID: 37935210 DOI: 10.1055/s-0043-1775742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Diffusion tensor imaging (DTI) is an emerging technique for peripheral nerve imaging that can provide information about the microstructural organization and connectivity of these nerves and complement the information gained from anatomical magnetic resonance imaging (MRI) sequences. With DTI it is possible to reconstruct nerve pathways and visualize the three-dimensional trajectory of nerve fibers, as in nerve tractography. More importantly, DTI allows for quantitative evaluation of peripheral nerves by the calculation of several important parameters that offer insight into the functional status of a nerve. Thus DTI has a high potential to add value to the work-up of peripheral nerve pathologies, although it is more technically demanding. Peripheral nerves pose specific challenges to DTI due to their small diameter and DTI's spatial resolution, contrast, location, and inherent field inhomogeneities when imaging certain anatomical locations. Numerous efforts are underway to resolve these technical challenges and thus enable wider acceptance of DTI in peripheral nerve MRI.
Collapse
Affiliation(s)
- Daehyun Yoon
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California at San Francisco, San Francisco, California
| | - Amelie M Lutz
- Department of Radiology, Kantonal Hospital Thurgau, Muensterlingen, Switzerland
| |
Collapse
|
6
|
Jung JY, Lin Y, Carrino JA. An Updated Review of Magnetic Resonance Neurography for Plexus Imaging. Korean J Radiol 2023; 24:1114-1130. [PMID: 37899521 PMCID: PMC10613850 DOI: 10.3348/kjr.2023.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 10/31/2023] Open
Abstract
Magnetic resonance neurography (MRN) is increasingly used to visualize peripheral nerves in vivo. However, the implementation and interpretation of MRN in the brachial and lumbosacral plexi are challenging because of the anatomical complexity and technical limitations. The purpose of this article was to review the clinical context of MRN, describe advanced magnetic resonance (MR) techniques for plexus imaging, and list the general categories of utility of MRN with pertinent imaging examples. The selection and optimization of MR sequences are centered on the homogeneous suppression of fat and blood vessels while enhancing the visibility of the plexus and its branches. Standard 2D fast spin-echo sequences are essential to assess morphology and signal intensity of nerves. Moreover, nerve-selective 3D isotropic images allow improved visualization of nerves and multiplanar reconstruction along their course. Diffusion-weighted and diffusion-tensor images offer microscopic and functional insights into peripheral nerves. The interpretation of MRN in the brachial and lumbosacral plexi should be based on a thorough understanding of their anatomy and pathophysiology. Anatomical landmarks assist in identifying brachial and lumbosacral plexus components of interest. Thus, understanding the varying patterns of nerve abnormalities facilitates the interpretation of aberrant findings.
Collapse
Affiliation(s)
- Joon-Yong Jung
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yenpo Lin
- Department of Radiology and Imaging, Hospital for Special Surgery, Weill Cornell Medicine, New York, NY, USA
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - John A Carrino
- Department of Radiology and Imaging, Hospital for Special Surgery, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Zhang X, Zhang F. Peripheral Neuropathy in Diabetes: What Can MRI Do? Diabetes 2023; 72:1060-1069. [PMID: 37471598 DOI: 10.2337/db22-0912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/24/2023] [Indexed: 07/22/2023]
Abstract
Diabetes peripheral neuropathy (DPN) is commonly asymptomatic in the early stage. However, once symptoms and obvious defects appear, recovery is not possible. Diagnosis of neuropathy is based on physical examinations, questionnaires, nerve conduction studies, skin biopsies, and so on. However, the diagnosis of DPN is still challenging, and early diagnosis and immediate intervention are very important for prevention of the development and progression of diabetic neuropathy. The advantages of MRI in the diagnosis of DPN are obvious: the peripheral nerve imaging is clear, the lesions can be found intuitively, and the quantitative evaluation of the lesions is the basis for the diagnosis, classification, and follow-up of DPN. With the development of magnetic resonance technology, more and more studies have been conducted on detection of DPN. This article reviews the research field of MRI in DPN.
Collapse
Affiliation(s)
- Xianchen Zhang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Fulong Zhang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Shandong, China
| |
Collapse
|
8
|
Boonsuth R, Battiston M, Grussu F, Samlidou CM, Calvi A, Samson RS, Gandini Wheeler-Kingshott CAM, Yiannakas MC. Feasibility of in vivo multi-parametric quantitative magnetic resonance imaging of the healthy sciatic nerve with a unified signal readout protocol. Sci Rep 2023; 13:6565. [PMID: 37085693 PMCID: PMC10121559 DOI: 10.1038/s41598-023-33618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/15/2023] [Indexed: 04/23/2023] Open
Abstract
Magnetic resonance neurography (MRN) has been used successfully over the years to investigate the peripheral nervous system (PNS) because it allows early detection and precise localisation of neural tissue damage. However, studies demonstrating the feasibility of combining MRN with multi-parametric quantitative magnetic resonance imaging (qMRI) methods, which provide more specific information related to nerve tissue composition and microstructural organisation, can be invaluable. The translation of emerging qMRI methods previously validated in the central nervous system to the PNS offers real potential to characterise in patients in vivo the underlying pathophysiological mechanisms involved in a plethora of conditions of the PNS. The aim of this study was to assess the feasibility of combining MRN with qMRI to measure diffusion, magnetisation transfer and relaxation properties of the healthy sciatic nerve in vivo using a unified signal readout protocol. The reproducibility of the multi-parametric qMRI protocol as well as normative qMRI measures in the healthy sciatic nerve are reported. The findings presented herein pave the way to the practical implementation of joint MRN-qMRI in future studies of pathological conditions affecting the PNS.
Collapse
Affiliation(s)
- Ratthaporn Boonsuth
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK.
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| | - Marco Battiston
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Francesco Grussu
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Christina Maria Samlidou
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Alberto Calvi
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Center of Neuroimmunology, Hospital Clinic Barcelona, Fundació Clinic Per a La Recerca Biomedica, Barcelona, Spain
| | - Rebecca S Samson
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- Brain Connectivity Research Centre, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Marios C Yiannakas
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
9
|
Wade RG, Lu F, Poruslrani Y, Karia C, Feltbower RG, Plein S, Bourke G, Teh I. Meta-analysis of the normal diffusion tensor imaging values of the peripheral nerves in the upper limb. Sci Rep 2023; 13:4852. [PMID: 36964186 PMCID: PMC10039047 DOI: 10.1038/s41598-023-31307-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
Peripheral neuropathy affects 1 in 10 adults over the age of 40 years. Given the absence of a reliable diagnostic test for peripheral neuropathy, there has been a surge of research into diffusion tensor imaging (DTI) because it characterises nerve microstructure and provides reproducible proxy measures of myelination, axon diameter, fibre density and organisation. Before researchers and clinicians can reliably use diffusion tensor imaging to assess the 'health' of the major nerves of the upper limb, we must understand the "normal" range of values and how they vary with experimental conditions. We searched PubMed, Embase, medRxiv and bioRxiv for studies which reported the findings of DTI of the upper limb in healthy adults. Four review authors independently triple extracted data. Using the meta suite of Stata 17, we estimated the normal fractional anisotropy (FA) and diffusivity (mean, MD; radial, RD; axial AD) values of the median, radial and ulnar nerve in the arm, elbow and forearm. Using meta-regression, we explored how DTI metrics varied with age and experimental conditions. We included 20 studies reporting data from 391 limbs, belonging to 346 adults (189 males and 154 females, ~ 1.2 M:1F) of mean age 34 years (median 31, range 20-80). In the arm, there was no difference in the FA (pooled mean 0.59 mm2/s [95% CI 0.57, 0.62]; I2 98%) or MD (pooled mean 1.13 × 10-3 mm2/s [95% CI 1.08, 1.18]; I2 99%) of the median, radial and ulnar nerves. Around the elbow, the ulnar nerve had a 12% lower FA than the median and radial nerves (95% CI - 0.25, 0.00) and significantly higher MD, RD and AD. In the forearm, the FA (pooled mean 0.55 [95% CI 0.59, 0.64]; I2 96%) and MD (pooled mean 1.03 × 10-3 mm2/s [95% CI 0.94, 1.12]; I2 99%) of the three nerves were similar. Multivariable meta regression showed that the b-value, TE, TR, spatial resolution and age of the subject were clinically important moderators of DTI parameters in peripheral nerves. We show that subject age, as well as the b-value, TE, TR and spatial resolution are important moderators of DTI metrics from healthy nerves in the adult upper limb. The normal ranges shown here may inform future clinical and research studies.
Collapse
Affiliation(s)
- Ryckie G Wade
- Leeds Institute for Medical Research, The Advanced Imaging Centre, Leeds General Infirmary, University of Leeds, Leeds, LS1 3EX, UK.
- Department of Plastic and Reconstructive Surgery, Leeds Teaching Hospitals Trust, Leeds, UK.
| | - Fangqing Lu
- Leeds Institute for Medical Research, The Advanced Imaging Centre, Leeds General Infirmary, University of Leeds, Leeds, LS1 3EX, UK
| | - Yohan Poruslrani
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Chiraag Karia
- Department of Plastic and Reconstructive Surgery, Leeds Teaching Hospitals Trust, Leeds, UK
| | | | - Sven Plein
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- The Advanced Imaging Centre, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Grainne Bourke
- Leeds Institute for Medical Research, The Advanced Imaging Centre, Leeds General Infirmary, University of Leeds, Leeds, LS1 3EX, UK
- Department of Plastic and Reconstructive Surgery, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Irvin Teh
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- The Advanced Imaging Centre, Leeds Teaching Hospitals Trust, Leeds, UK
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW To review advances in the diagnostic evaluation and management of traumatic peripheral nerve injuries. RECENT FINDINGS Serial multimodal assessment of peripheral nerve injuries facilitates assessment of spontaneous axonal regeneration and selection of appropriate patients for early surgical intervention. Novel surgical and rehabilitative approaches have been developed to complement established strategies, particularly in the area of nerve grafting, targeted rehabilitation strategies and interventions to promote nerve regeneration. However, several management challenges remain, including incomplete reinnervation, traumatic neuroma development, maladaptive central remodeling and management of fatigue, which compromise functional recovery. SUMMARY Innovative approaches to the assessment and treatment of peripheral nerve injuries hold promise in improving the degree of functional recovery; however, this remains a complex and evolving area.
Collapse
|
11
|
Martín-Noguerol T, Montesinos P, Hassankhani A, Bencardino DA, Barousse R, Luna A. Technical Update on MR Neurography. Semin Musculoskelet Radiol 2022; 26:93-104. [PMID: 35609571 DOI: 10.1055/s-0042-1742753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Imaging evaluation of peripheral nerves (PNs) is challenging. Magnetic resonance imaging (MRI) and ultrasonography are the modalities of choice in the imaging assessment of PNs. Both conventional MRI pulse sequences and advanced techniques have important roles. Routine MR sequences are the workhorse, with the main goal to provide superb anatomical definition and identify focal or diffuse nerve T2 signal abnormalities. Selective techniques, such as three-dimensional (3D) cranial nerve imaging (CRANI) or 3D NerveVIEW, allow for a more detailed evaluation of normal and pathologic states. These conventional pulse sequences have a limited role in the comprehensive assessment of pathophysiologic and ultrastructural abnormalities of PNs. Advanced functional MR neurography sequences, such as diffusion tensor imaging tractography or T2 mapping, provide useful and robust quantitative parameters that can be useful in the assessment of PNs on a microscopic level. This article offers an overview of various technical parameters, pulse sequences, and protocols available in the imaging of PNs and provides tips on avoiding potential pitfalls.
Collapse
Affiliation(s)
| | | | - Alvand Hassankhani
- Department of Radiology, Division of Neuroradiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | | | - Rafael Barousse
- Peripheral Nerve and Plexus Department, Centro Rossi, Buenos Aires, Argentina
| | - Antonio Luna
- MRI Unit, Radiology Department, HT Médica, Jaén, Spain
| |
Collapse
|
12
|
Mori N, Inoue C, Tamura H, Nagasaka T, Ren H, Sato S, Mori Y, Miyashita M, Mugikura S, Takase K. Apparent diffusion coefficient and intravoxel incoherent motion-diffusion kurtosis model parameters in invasive breast cancer: Correlation with the histological parameters of whole-slide imaging. Magn Reson Imaging 2022; 90:53-60. [DOI: 10.1016/j.mri.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/04/2022] [Accepted: 04/12/2022] [Indexed: 01/18/2023]
|
13
|
Jang H, Du J. Optimizing Diffusion-weighted MRI of Peripheral Nerves. Radiology 2021; 302:162-163. [PMID: 34665038 DOI: 10.1148/radiol.2021211907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hyungseok Jang
- From the Department of Radiology, University of California, 9500 Gilman Dr, San Diego, CA 92093
| | - Jiang Du
- From the Department of Radiology, University of California, 9500 Gilman Dr, San Diego, CA 92093
| |
Collapse
|