1
|
Matsui Y, Ueda D, Fujita S, Fushimi Y, Tsuboyama T, Kamagata K, Ito R, Yanagawa M, Yamada A, Kawamura M, Nakaura T, Fujima N, Nozaki T, Tatsugami F, Fujioka T, Hirata K, Naganawa S. Applications of artificial intelligence in interventional oncology: An up-to-date review of the literature. Jpn J Radiol 2024:10.1007/s11604-024-01668-3. [PMID: 39356439 DOI: 10.1007/s11604-024-01668-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Interventional oncology provides image-guided therapies, including transarterial tumor embolization and percutaneous tumor ablation, for malignant tumors in a minimally invasive manner. As in other medical fields, the application of artificial intelligence (AI) in interventional oncology has garnered significant attention. This narrative review describes the current state of AI applications in interventional oncology based on recent literature. A literature search revealed a rapid increase in the number of studies relevant to this topic recently. Investigators have attempted to use AI for various tasks, including automatic segmentation of organs, tumors, and treatment areas; treatment simulation; improvement of intraprocedural image quality; prediction of treatment outcomes; and detection of post-treatment recurrence. Among these, the AI-based prediction of treatment outcomes has been the most studied. Various deep and conventional machine learning algorithms have been proposed for these tasks. Radiomics has often been incorporated into prediction and detection models. Current literature suggests that AI is potentially useful in various aspects of interventional oncology, from treatment planning to post-treatment follow-up. However, most AI-based methods discussed in this review are still at the research stage, and few have been implemented in clinical practice. To achieve widespread adoption of AI technologies in interventional oncology procedures, further research on their reliability and clinical utility is necessary. Nevertheless, considering the rapid research progress in this field, various AI technologies will be integrated into interventional oncology practices in the near future.
Collapse
Affiliation(s)
- Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
| | - Daiju Ueda
- Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, Abeno-Ku, Osaka, Japan
| | - Shohei Fujita
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Kobe University Graduate School of Medicine, Chuo-Ku, Kobe, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Akira Yamada
- Medical Data Science Course, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Chuo-Ku, Kumamoto, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Kita-Ku, Sapporo, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Shinjuku-Ku, Tokyo, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Minami-Ku, Hiroshima, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita-Ku, Sapporo, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, Japan
| |
Collapse
|
2
|
Sobhani N, D'Angelo A, Pittacolo M, Mondani G, Generali D. Future AI Will Most Likely Predict Antibody-Drug Conjugate Response in Oncology: A Review and Expert Opinion. Cancers (Basel) 2024; 16:3089. [PMID: 39272947 PMCID: PMC11394064 DOI: 10.3390/cancers16173089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The medical research field has been tremendously galvanized to improve the prediction of therapy efficacy by the revolution in artificial intelligence (AI). An earnest desire to find better ways to predict the effectiveness of therapy with the use of AI has propelled the evolution of new models in which it can become more applicable in clinical settings such as breast cancer detection. However, in some instances, the U.S. Food and Drug Administration was obliged to back some previously approved inaccurate models for AI-based prognostic models because they eventually produce inaccurate prognoses for specific patients who might be at risk of heart failure. In light of instances in which the medical research community has often evolved some unrealistic expectations regarding the advances in AI and its potential use for medical purposes, implementing standard procedures for AI-based cancer models is critical. Specifically, models would have to meet some general parameters for standardization, transparency of their logistic modules, and avoidance of algorithm biases. In this review, we summarize the current knowledge about AI-based prognostic methods and describe how they may be used in the future for predicting antibody-drug conjugate efficacy in cancer patients. We also summarize the findings of recent late-phase clinical trials using these conjugates for cancer therapy.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alberto D'Angelo
- Department of Medicine, Northern General Hospital, Sheffield S5 7AT, UK
| | - Matteo Pittacolo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
| | - Giuseppina Mondani
- Royal Infirmary Hospital, Foresterhill Health Campus, Aberdeen AB25 2ZN, UK
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34100 Trieste, Italy
| |
Collapse
|
3
|
Li Y, Fan N, He X, Zhu J, Zhang J, Lu L. Research Progress in Predicting Hepatocellular Carcinoma with Portal Vein Tumour Thrombus in the Era of Artificial Intelligence. J Hepatocell Carcinoma 2024; 11:1429-1438. [PMID: 39050809 PMCID: PMC11268770 DOI: 10.2147/jhc.s474922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Hepatocellular Carcinoma (HCC) is a condition associated with significant morbidity and mortality. The presence of Portal Vein Tumour Thrombus (PVTT) typically signifies advanced disease stages and poor prognosis. Artificial intelligence (AI), particularly Machine Learning (ML) and Deep Learning (DL), has emerged as a promising tool for extracting quantitative data from medical images. AI is increasingly integrated into the imaging omics workflow and has become integral to various medical disciplines. This paper provides a comprehensive review of the mechanisms underlying the formation and progression of PVTT, as well as its impact on clinical management and prognosis. Additionally, it outlines the advancements in AI for predicting the diagnosis of HCC and the development of PVTT. The limitations of existing studies are critically evaluated, and potential future research directions in the realm of imaging for the diagnostic prediction of HCC and PVTT are discussed, with the ultimate goal of enhancing survival outcomes for PVTT patients.
Collapse
Affiliation(s)
- Yaduo Li
- Medical Imaging Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Ningning Fan
- Medical Imaging Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Xu He
- Department of Interventional Medicine, Guangzhou First People’s Hospital, Guangzhou, People’s Republic of China
| | - Jianjun Zhu
- R&D Department, Hanglok-Tech Co., Ltd., Hengqin, People’s Republic of China; Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People’s Republic of China
| | - Jie Zhang
- Medical Imaging Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
| | - Ligong Lu
- Medical Imaging Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, People’s Republic of China
- Department of Interventional Medicine, Guangzhou First People’s Hospital, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Qian H, Huang Y, Xu L, Fu H, Lu B. Role of peritumoral tissue analysis in predicting characteristics of hepatocellular carcinoma using ultrasound-based radiomics. Sci Rep 2024; 14:11538. [PMID: 38773179 PMCID: PMC11109225 DOI: 10.1038/s41598-024-62457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
Predicting the biological characteristics of hepatocellular carcinoma (HCC) is essential for personalized treatment. This study explored the role of ultrasound-based radiomics of peritumoral tissues for predicting HCC features, focusing on differentiation, cytokeratin 7 (CK7) and Ki67 expression, and p53 mutation status. A cohort of 153 patients with HCC underwent ultrasound examinations and radiomics features were extracted from peritumoral tissues. Subgroups were formed based on HCC characteristics. Predictive modeling was carried out using the XGBOOST algorithm in the differentiation subgroup, logistic regression in the CK7 and Ki67 expression subgroups, and support vector machine learning in the p53 mutation status subgroups. The predictive models demonstrated robust performance, with areas under the curves of 0.815 (0.683-0.948) in the differentiation subgroup, 0.922 (0.785-1) in the CK7 subgroup, 0.762 (0.618-0.906) in the Ki67 subgroup, and 0.849 (0.667-1) in the p53 mutation status subgroup. Confusion matrices and waterfall plots highlighted the good performance of the models. Comprehensive evaluation was carried out using SHapley Additive exPlanations plots, which revealed notable contributions from wavelet filter features. This study highlights the potential of ultrasound-based radiomics, specifically the importance of peritumoral tissue analysis, for predicting HCC characteristics. The results warrant further validation of peritumoral tissue radiomics in larger, multicenter studies.
Collapse
Affiliation(s)
- Hongwei Qian
- Department of Hepatobiliary and Pancreatic Surgery, Shaoxing People's Hospital, 568 Zhongxing North Road, Shaoxing, 312000, People's Republic of China
- Shaoxing Key Laboratory of Minimally Invasive Abdominal Surgery and Precise Treatment of Tumor, Shaoxing, People's Republic of China
| | - Yanhua Huang
- Department of Ultrasound, Shaoxing People's Hospital, Shaoxing, People's Republic of China
| | - Luohang Xu
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, People's Republic of China
| | - Hong Fu
- Department of Hepatobiliary and Pancreatic Surgery, Shaoxing People's Hospital, 568 Zhongxing North Road, Shaoxing, 312000, People's Republic of China
- Shaoxing Key Laboratory of Minimally Invasive Abdominal Surgery and Precise Treatment of Tumor, Shaoxing, People's Republic of China
| | - Baochun Lu
- Department of Hepatobiliary and Pancreatic Surgery, Shaoxing People's Hospital, 568 Zhongxing North Road, Shaoxing, 312000, People's Republic of China.
- Shaoxing Key Laboratory of Minimally Invasive Abdominal Surgery and Precise Treatment of Tumor, Shaoxing, People's Republic of China.
| |
Collapse
|
5
|
Bo Z, Song J, He Q, Chen B, Chen Z, Xie X, Shu D, Chen K, Wang Y, Chen G. Application of artificial intelligence radiomics in the diagnosis, treatment, and prognosis of hepatocellular carcinoma. Comput Biol Med 2024; 173:108337. [PMID: 38547656 DOI: 10.1016/j.compbiomed.2024.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/17/2024] [Indexed: 04/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, with an increasing incidence and poor prognosis. In the past decade, artificial intelligence (AI) technology has undergone rapid development in the field of clinical medicine, bringing the advantages of efficient data processing and accurate model construction. Promisingly, AI-based radiomics has played an increasingly important role in the clinical decision-making of HCC patients, providing new technical guarantees for prediction, diagnosis, and prognostication. In this review, we evaluated the current landscape of AI radiomics in the management of HCC, including its diagnosis, individual treatment, and survival prognosis. Furthermore, we discussed remaining challenges and future perspectives regarding the application of AI radiomics in HCC.
Collapse
Affiliation(s)
- Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiatao Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qikuan He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziyan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozai Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danyang Shu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaiyu Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Nezami N, Mirza-Aghazadeh-Attari M. The Evolution of AI in Predicting Response to Minimally Invasive Image-guided Therapies. Radiol Imaging Cancer 2024; 6:e249004. [PMID: 38276905 PMCID: PMC10825698 DOI: 10.1148/rycan.249004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
|