1
|
Yan Y, Liu Y, Yao J, Sui L, Chen C, Jiang T, Liu X, Wang Y, Ou D, Chen J, Wang H, Feng L, Pan Q, Su Y, Wang Y, Wang L, Zhou L, Xu D. Deep learning-assisted distinguishing breast phyllodes tumours from fibroadenomas based on ultrasound images: a diagnostic study. Br J Radiol 2024; 97:1816-1825. [PMID: 39288312 DOI: 10.1093/bjr/tqae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/25/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVES To evaluate the performance of ultrasound-based deep learning (DL) models in distinguishing breast phyllodes tumours (PTs) from fibroadenomas (FAs) and their clinical utility in assisting radiologists with varying diagnostic experiences. METHODS We retrospectively collected 1180 ultrasound images from 539 patients (247 PTs and 292 FAs). Five DL network models with different structures were trained and validated using nodule regions annotated by radiologists on breast ultrasound images. DL models were trained using the methods of transfer learning and 3-fold cross-validation. The model demonstrated the best evaluation index in the 3-fold cross-validation was selected for comparison with radiologists' diagnostic decisions. Two-round reader studies were conducted to investigate the value of DL model in assisting 6 radiologists with different levels of experience. RESULTS Upon testing, Xception model demonstrated the best diagnostic performance (area under the receiver-operating characteristic curve: 0.87; 95% CI, 0.81-0.92), outperforming all radiologists (all P < .05). Additionally, the DL model enhanced the diagnostic performance of radiologists. Accuracy demonstrated improvements of 4%, 4%, and 3% for senior, intermediate, and junior radiologists, respectively. CONCLUSIONS The DL models showed superior predictive abilities compared to experienced radiologists in distinguishing breast PTs from FAs. Utilizing the model led to improved efficiency and diagnostic performance for radiologists with different levels of experience (6-25 years of work). ADVANCES IN KNOWLEDGE We developed and validated a DL model based on the largest available dataset to assist in diagnosing PTs. This model has the potential to allow radiologists to discriminate 2 types of breast tumours which are challenging to identify with precision and accuracy, and subsequently to make more informed decisions about surgical plans.
Collapse
Affiliation(s)
- Yuqi Yan
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Wenling Big Data and Artificial Intelligence Institute in Medicine, TaiZhou 317502, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Hangzhou, Zhejiang 310022, China
| | - Yuanzhen Liu
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Wenling Big Data and Artificial Intelligence Institute in Medicine, TaiZhou 317502, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
| | - Jincao Yao
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou 310022, China
| | - Lin Sui
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Wenling Big Data and Artificial Intelligence Institute in Medicine, TaiZhou 317502, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Hangzhou, Zhejiang 310022, China
| | - Chen Chen
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Wenling Big Data and Artificial Intelligence Institute in Medicine, TaiZhou 317502, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
| | - Tian Jiang
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Hangzhou, Zhejiang 310022, China
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou 310022, China
| | - Xiaofang Liu
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
| | - Yifan Wang
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Wenling Big Data and Artificial Intelligence Institute in Medicine, TaiZhou 317502, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou 310022, China
| | - Di Ou
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou 310022, China
| | - Jing Chen
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
| | - Hui Wang
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
| | - Lina Feng
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
| | - Qianmeng Pan
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
| | - Ying Su
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yukai Wang
- Zunyi Medical University, Zunyi 563000, China
| | - Liping Wang
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou 310022, China
| | - Lingyan Zhou
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou 310022, China
| | - Dong Xu
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Wenling Big Data and Artificial Intelligence Institute in Medicine, TaiZhou 317502, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou 317502, China
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou 310022, China
| |
Collapse
|
2
|
Wang C, Shao J, He Y, Wu J, Liu X, Yang L, Wei Y, Zhou XS, Zhan Y, Shi F, Shen D, Li W. Data-driven risk stratification and precision management of pulmonary nodules detected on chest computed tomography. Nat Med 2024; 30:3184-3195. [PMID: 39289570 PMCID: PMC11564084 DOI: 10.1038/s41591-024-03211-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/22/2024] [Indexed: 09/19/2024]
Abstract
The widespread implementation of low-dose computed tomography (LDCT) in lung cancer screening has led to the increasing detection of pulmonary nodules. However, precisely evaluating the malignancy risk of pulmonary nodules remains a formidable challenge. Here we propose a triage-driven Chinese Lung Nodules Reporting and Data System (C-Lung-RADS) utilizing a medical checkup cohort of 45,064 cases. The system was operated in a stepwise fashion, initially distinguishing low-, mid-, high- and extremely high-risk nodules based on their size and density. Subsequently, it progressively integrated imaging information, demographic characteristics and follow-up data to pinpoint suspicious malignant nodules and refine the risk scale. The multidimensional system achieved a state-of-the-art performance with an area under the curve (AUC) of 0.918 (95% confidence interval (CI) 0.918-0.919) on the internal testing dataset, outperforming the single-dimensional approach (AUC of 0.881, 95% CI 0.880-0.882). Moreover, C-Lung-RADS exhibited a superior sensitivity compared with Lung-RADS v2022 (87.1% versus 63.3%) in an independent cohort, which was screened using mobile computed tomography scanners to broaden screening accessibility in resource-constrained settings. With its foundation in precise risk stratification and tailored management, this system has minimized unnecessary invasive procedures for low-risk cases and recommended prompt intervention for extremely high-risk nodules to avert diagnostic delays. This approach has the potential to enhance the decision-making paradigm and facilitate a more efficient diagnosis of lung cancer during routine checkups as well as screening scenarios.
Collapse
Affiliation(s)
- Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Jun Shao
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yichu He
- Department of Research and Development, United Imaging Intelligence, Shanghai, China
| | - Jiaojiao Wu
- Department of Research and Development, United Imaging Intelligence, Shanghai, China
| | - Xingting Liu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Liuqing Yang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Ying Wei
- Department of Research and Development, United Imaging Intelligence, Shanghai, China
| | - Xiang Sean Zhou
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Yiqiang Zhan
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Feng Shi
- Department of Research and Development, United Imaging Intelligence, Shanghai, China.
| | - Dinggang Shen
- School of Biomedical Engineering and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| |
Collapse
|
3
|
Wang Z, Wang F, Yang Y, Fan W, Wen L, Zhang D. Development of a nomogram-based model incorporating radiomic features from follow-up longitudinal lung CT images to distinguish invasive adenocarcinoma from benign lesions: a retrospective study. BMC Pulm Med 2024; 24:534. [PMID: 39455958 PMCID: PMC11515265 DOI: 10.1186/s12890-024-03360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
PURPOSE To develop and validate a radiomic model for differentiating pulmonary invasive adenocarcinomas from benign lesions based on follow-up longitudinal CT images. METHODS This is a retrospective study including 336 patients (161 with invasive adenocarcinomas and 175 with benign lesions) who underwent baseline (T0) and follow-up (T1) CT scans from January 2016 to June 2022. The patients were randomized in a 7:3 ratio into training and test sets. Radiomic features were extracted from lesion volumes of interest on longitudinal CT images at T0 and T1. Differences in radiomic features between T1 and T0 were defined as delta-radiomic features. Logistic regression was used to build models based on clinicoradiological (CR), T0, T1, and delta radiomic features and compute signatures. Finally, a nomogram based on the CR, T0, T1 and delta signatures was constructed. Model performance was evaluated for calibration, discrimination, and clinical utility. RESULTS The T1 radiomic model was superior to the other independent models. In the training set, it had an area under the curve (AUC) of 0.858), superior to the CR model (AUC 0.694), the T0 radiomic model (AUC 0.825), and the delta radiomic model (AUC 0.734). In the test set, it had an AUC of 0.817, again outperforming the CR model (AUC 0.578), the T0 radiomic model (AUC 0.789), and the delta radiomic model (AUC 0.647). The nomogram incorporating the CR, T0, T1 and delta signatures showed the best predictive performance in both the training (AUC: 0.906) and test sets (AUC: 0.856), and it exhibited excellent fit with calibration curves. Decision curve analysis provided additional validation of the clinical utility of the nomogram. CONCLUSION A nomogram utilizing radiomic features extracted from longitudinal CT images can enhance the discriminative capability between pulmonary invasive adenocarcinomas and benign lesions.
Collapse
Affiliation(s)
- Zhengming Wang
- Department of Radiology, XinQiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Fei Wang
- Department of Radiology, XinQiao Hospital of Army Medical University, Chongqing, 400037, China
- Department of Medical imaging, Luzhou People's Hospital, Luzhou, 646000, China
| | - Yan Yang
- Department of Radiology, XinQiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Weijie Fan
- Department of Radiology, XinQiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Li Wen
- Department of Radiology, XinQiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Dong Zhang
- Department of Radiology, XinQiao Hospital of Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
4
|
Wang L, Maolan A, Luo Y, Li Y, Liu R. Knowledge mapping analysis of ground glass nodules: a bibliometric analysis from 2013 to 2023. Front Oncol 2024; 14:1469354. [PMID: 39381043 PMCID: PMC11458373 DOI: 10.3389/fonc.2024.1469354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024] Open
Abstract
Background In recent years, the widespread use of computed tomography (CT) in early lung cancer screening has led to an increase in the detection rate of lung ground glass nodules (GGNs). The persistence of GGNs, which may indicate early lung adenocarcinoma, has been a focus of attention for scholars in the field of lung cancer prevention and treatment in recent years. Despite the rapid development of research into GGNs, there is a lack of intuitive content and trend analyses in this field, as well as a lack of detailed elaboration on possible research hotspots. The objective of this study was to conduct a comprehensive analysis of the knowledge structure and research hotspots of lung ground glass nodules over the past decade, employing bibliometric methods. Method The Web of Science Core Collection (WoSCC) database was searched for relevant ground-glass lung nodule literature published from 2013-2023. Bibliometric analyses were performed using VOSviewer, CiteSpace, and the R package "bibliometrix". Results A total of 2,218 articles from 75 countries and 2,274 institutions were included in this study. The number of publications related to GGNs has been high in recent years. The United States has led in GGNs-related research. Radiology has one of the highest visibilities as a selected journal and co-cited journal. Jin Mo Goo has published the most articles. Travis WD has been cited the most frequently. The main topics of research in this field are Lung Cancer, CT, and Deep Learning, which have been identified as long-term research hotspots. The GGNs-related marker is a major research trend in this field. Conclusion This study represents the inaugural bibliometric analysis of applied research on ground-glass lung nodules utilizing three established bibliometric software. The bibliometric analysis of this study elucidates the prevailing research themes and trends in the field of GGNs over the past decade. It also furnishes pertinent recommendations for researchers to provide objective descriptions and comprehensive guidance for future related research.
Collapse
Affiliation(s)
| | | | | | | | - Rui Liu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical
Sciences, Beijing, China
| |
Collapse
|