1
|
Diagnostic Evaluation of Rheumatoid Arthritis (RA) in Finger Joints Based on the Third-Order Simplified Spherical Harmonics (SP3) Light Propagation Model. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This work focuses on the evaluation of third-order simplified spherical harmonics (SP3) model-based image reconstruction with respect to its clinical utility to diagnose rheumatoid arthritis (RA). The existing clinical data of 219 fingers was reconstructed for both absorption and scattering maps in fingers by using the reduced-Hessian sequential quadratic programming (rSQP) algorithm that employs the SP3 model of light propagation. The k-fold cross validation method was used for feature extraction and classification of SP3-based tomographic images. The performance of the SP3 model was compared to the DE and ERT models with respect to diagnostic accuracy and computational efficiency. The results presented here show that the SP3 model achieves clinically relevant sensitivity (88%) and specificity (93%) that compare favorably to the ERT while maintaining significant computational advantage over the ERT (i.e., the SP3 model is 100 times faster than the ERT). Furthermore, it is also shown that the SP3 is similar in speed but superior in diagnostic accuracy to the DE. Therefore, it is expected that the method presented here can greatly aid in the early diagnosis of RA with clinically relevant accuracy in near real-time at a clinical setting.
Collapse
|
2
|
Bauckneht M, Raffa S, Leale G, Sambuceti V, De Cesari M, Donegani MI, Marini C, Drakonaki E, Orlandi D. Molecular imaging in MSK radiology: Where are we going? Eur J Radiol 2021; 140:109737. [PMID: 33951567 DOI: 10.1016/j.ejrad.2021.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/18/2021] [Accepted: 04/25/2021] [Indexed: 11/15/2022]
Abstract
Musculoskeletal (MSK) pathologies are one of the leading causes of disability worldwide. However, treatment options and understanding of pathogenetic processes are still partially unclear, mainly due to a limited ability in early disease detection and response to therapy assessment. In this scenario, thanks to a strong technological advancement, structural imaging is currently established as the gold-standard of diagnosis in many MSK disorders but each single diagnostic modality (plain films, high-resolution ultrasound, computed tomography and magnetic resonance) still suffer by a low specificity regarding the characterization of inflammatory processes, the quantification of inflammatory activity levels, and the degree of response to therapy. To overcome these limitations, molecular imaging techniques may play a promising role. Starting from the strengths and weaknesses of structural anatomical imaging, the present narrative review aims to highlight the promising role of molecular imaging in the assessment of non-neoplastic MSK diseases with a special focus on its role to monitor treatment response.
Collapse
Affiliation(s)
- Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Health Sciences (DISSAL), Genoa University, Genoa, Italy
| | - Stefano Raffa
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Health Sciences (DISSAL), Genoa University, Genoa, Italy
| | - Giacomo Leale
- Private MSK Imaging Institution, Heraklion, Crete, Greece & European University of Cyprus Medical School, Nicosia, Cyprus
| | - Virginia Sambuceti
- Postgraduate School of Radiology, Genoa University, Via Alberti 4, 16132, Genoa, Italy
| | | | - Maria Isabella Donegani
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Health Sciences (DISSAL), Genoa University, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate (MI), Italy
| | - Eleni Drakonaki
- Private MSK Imaging Institution, Heraklion, Crete, Greece & European University of Cyprus Medical School, Nicosia, Cyprus
| | - Davide Orlandi
- Department of Radiology, Ospedale Evangelico Internazionale, Corso Solferino, 1a, 16122, Genoa, Italy.
| |
Collapse
|
3
|
Covington MF, Schwarz SW, Hoffman JM. The Regulatory Process for Imaging Agents and Devices. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
4
|
Klontzas ME, Papadakis GZ, Marias K, Karantanas AH. Musculoskeletal trauma imaging in the era of novel molecular methods and artificial intelligence. Injury 2020; 51:2748-2756. [PMID: 32972725 DOI: 10.1016/j.injury.2020.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
Over the past decade rapid advancements in molecular imaging (MI) and artificial intelligence (AI) have revolutionized traditional musculoskeletal radiology. Molecular imaging refers to the ability of various methods to in vivo characterize and quantify biological processes, at a molecular level. The extracted information provides the tools to understand the pathophysiology of diseases and thus to early detect, to accurately evaluate the extend and to apply and evaluate targeted treatments. At present, molecular imaging mainly involves CT, MRI, radionuclide, US, and optical imaging and has been reported in many clinical and preclinical studies. Although originally MI techniques targeted at central nervous system disorders, later on their value on musculoskeletal disorders was also studied in depth. Meaningful exploitation of the large volume of imaging data generated by molecular and conventional imaging techniques, requires state-of-the-art computational methods that enable rapid handling of large volumes of information. AI allows end-to-end training of computer algorithms to perform tasks encountered in everyday clinical practice including diagnosis, disease severity classification and image optimization. Notably, the development of deep learning algorithms has offered novel methods that enable intelligent processing of large imaging datasets in an attempt to automate decision-making in a wide variety of settings related to musculoskeletal trauma. Current applications of AI include the diagnosis of bone and soft tissue injuries, monitoring of the healing process and prediction of injuries in the professional sports setting. This review presents the current applications of novel MI techniques and methods and the emerging role of AI regarding the diagnosis and evaluation of musculoskeletal trauma.
Collapse
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, Heraklion University Hospital, Crete, 70110, Greece; Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton 70013, Heraklion, Crete, Greece.
| | - Georgios Z Papadakis
- Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton 70013, Heraklion, Crete, Greece; Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013, Heraklion, Crete, Greece; Department of Radiology, School of Medicine, University of Crete, 70110 Greece.
| | - Kostas Marias
- Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013, Heraklion, Crete, Greece; Department of Electrical and Computer Engineering, Hellenic Mediterranean University, 71410, Heraklion, Crete, Greece.
| | - Apostolos H Karantanas
- Department of Medical Imaging, Heraklion University Hospital, Crete, 70110, Greece; Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton 70013, Heraklion, Crete, Greece; Computational Biomedicine Laboratory (CBML), Foundation for Research and Technology Hellas (FORTH), 70013, Heraklion, Crete, Greece; Department of Radiology, School of Medicine, University of Crete, 70110 Greece.
| |
Collapse
|
5
|
Manhas NS, Salehi S, Joyce P, Guermazi A, Ahmadzadehfar H, Gholamrezanezhad A. PET/Computed Tomography Scans and PET/MR Imaging in the Diagnosis and Management of Musculoskeletal Diseases. PET Clin 2020; 15:535-545. [DOI: 10.1016/j.cpet.2020.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Pawaskar A, Basu S, Jahangiri P, Alavi A. In Vivo Molecular Imaging of Musculoskeletal Inflammation and Infection. PET Clin 2018; 14:43-59. [PMID: 30420221 DOI: 10.1016/j.cpet.2018.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In vivo molecular imaging detects biologic processes at molecular level and provides diagnostic information at an earlier time point during disease onset or repair. It offers definite advantage over anatomic imaging in terms of improved sensitivity and ability to quantify. Radionuclide molecular imaging has been widely used in clinical practice. This article discusses the role of radionuclide imaging in various infective and inflammatory diseases affecting musculoskeletal system with a focus on PET. It appears that, as more data become available, combined PET/MR imaging could emerge as a front runner in the imaging of musculoskeletal infection and inflammation.
Collapse
Affiliation(s)
- Alok Pawaskar
- Oncolife Cancer Centre, Satara, Maharashtra 415519, India; Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Parel, Mumbai, Maharashtra 400012, India
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Parel, Mumbai, Maharashtra 400012, India; Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| | - Pegah Jahangiri
- Division of Nuclear Medicine, Hospital of University of Pennsylvania, Philadelphia, PA, USA
| | - Abass Alavi
- Division of Nuclear Medicine, Hospital of University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Anatomical, Physiological, and Molecular Imaging for Pancreatic Cancer: Current Clinical Use and Future Implications. BIOMED RESEARCH INTERNATIONAL 2015; 2015:269641. [PMID: 26146615 PMCID: PMC4471256 DOI: 10.1155/2015/269641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/21/2022]
Abstract
Pancreatic adenocarcinoma is one of the deadliest human malignancies. Early detection is difficult and effective treatment is limited. Verifying the presence of micrometastatic dissemination and vessel invasion remains elusive, limiting radiological staging once this diagnosis is made. Diagnostic imaging provides independent tools to evaluate and characterize the biologic behavior of pancreatic cancer. Conventional anatomic imaging alone with either CT or MRI yields useful information on organ involvement but is limited in providing molecular and physiological information. Molecular imaging techniques such as PET or MRS provide information on metabolic and signaling pathways. Advanced MR sequences that target physiological parameters expand imaging options to characterize these tumors. By considering the parametric data from these three imaging approaches (anatomic, molecular, and physiological) we can better define specific tumor signatures. Such parametric characterization can provide insight into tumor metabolism, cellular density, protein expression, focal perfusion, and vascular permeability of these tumors. Radiogenomics research has already demonstrated ability to obtain information about cancer's genotype and phenotype; this is without invasive procedures or surgery. Further advances in these areas of experimental imaging hold promise to enable future clinical advances in detection and therapy of pancreatic cancer.
Collapse
|
8
|
Lecouvet FE, Talbot JN, Messiou C, Bourguet P, Liu Y, de Souza NM. Monitoring the response of bone metastases to treatment with Magnetic Resonance Imaging and nuclear medicine techniques: a review and position statement by the European Organisation for Research and Treatment of Cancer imaging group. Eur J Cancer 2014; 50:2519-31. [PMID: 25139492 DOI: 10.1016/j.ejca.2014.07.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 12/31/2022]
Abstract
Assessment of the response to treatment of metastases is crucial in daily oncological practice and clinical trials. For soft tissue metastases, this is done using computed tomography (CT), Magnetic Resonance Imaging (MRI) or Positron Emission Tomography (PET) using validated response evaluation criteria. Bone metastases, which frequently represent the only site of metastases, are an exception in response assessment systems, because of the nature of the fixed bony defects, their complexity, which ranges from sclerotic to osteolytic and because of the lack of sensitivity, specificity and spatial resolution of the previously available bone imaging methods, mainly bone scintigraphy. Techniques such as MRI and PET are able to detect the early infiltration of the bone marrow by cancer, and to quantify this infiltration using morphologic images, quantitative parameters and functional approaches. This paper highlights the most recent developments of MRI and PET, showing how they enable early detection of bone lesions and monitoring of their response. It reviews current knowledge, puts the different techniques into perspective, in terms of indications, strengths, weaknesses and complementarity, and finally proposes recommendations for the choice of the most adequate imaging technique.
Collapse
Affiliation(s)
- F E Lecouvet
- MRI Unit, Dept of Radiology, Centre du Cancer and Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium.
| | - J N Talbot
- Dept of Nuclear Medicine, Hôpital Tenon, AP-HP & Université Pierre et Marie Curie, Paris, France
| | - C Messiou
- Dept of Radiology, Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom
| | - P Bourguet
- Dept of Nuclear Medicine, Cancer Center Eugène Marquis and University of Rennes 1, Rennes, France
| | - Y Liu
- EORTC, TR, Radiotherapy and Imaging Department, EORTC Headquarters, Brussels, Belgium
| | - N M de Souza
- Dept of Radiology, Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom; MRI Unit, Institute of Cancer Research and Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, United Kingdom
| |
Collapse
|
9
|
Mhlanga JC, Carrino JA, Lodge M, Wang H, Wahl RL. 18F-FDG PET of the hands with a dedicated high-resolution PEM system (arthro-PET): correlation with PET/CT, radiography and clinical parameters. Eur J Nucl Med Mol Imaging 2014; 41:2337-45. [PMID: 25134669 DOI: 10.1007/s00259-014-2856-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 07/03/2014] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with (18)F-FDG. METHODS Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological (18)F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. RESULTS Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73 ± 7.7 years). Six patients served as the control group (53.7 ± 9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r = 0.86. p = 0.007; r = 0.94, p = 0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7 ± 6.6 vs. 32.2 ± 0.4, p = 0.02; 37.5 ± 5.4 vs. 32.2 ± 0.4, p = 0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8 ± 4.2 vs. 18 ± 1.8, p = 0.13; 22.8 ± 5.38 vs. 20.1 ± 1.54, p = 0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9 ± 31.3 vs. 0, p = 0.03). CONCLUSION Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted.
Collapse
Affiliation(s)
- Joyce C Mhlanga
- Division of Nuclear Medicine, The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
10
|
Strobel K, Steurer-Dober I, Da Silva AJ, Huellner MW, del Sol Pérez Lago M, Bodmer E, von Wartburg U, Veit-Haibach P, Tornquist K, Hug U. Feasibility and preliminary results of SPECT/CT arthrography of the wrist in comparison with MR arthrography in patients with suspected ulnocarpal impaction. Eur J Nucl Med Mol Imaging 2013; 41:548-55. [DOI: 10.1007/s00259-013-2584-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/23/2013] [Indexed: 11/27/2022]
|
11
|
Abstract
OBJECTIVE A review of the innovative role molecular imaging plays in musculoskeletal radiology is provided. Musculoskeletal molecular imaging is under development in four key areas: imaging the activity of osteoblasts and osteoclasts, imaging of molecular and cellular biomarkers of arthritic joint destruction, cellular imaging of osteomyelitis, and imaging generators of musculoskeletal pain. CONCLUSION Together, these applications suggest that next-generation musculoskeletal radiology will facilitate quantitative visualization of molecular and cellular biomarkers, an advancement that appeared futuristic just a decade ago.
Collapse
|
12
|
Strachna O, Torrecilla D, Reumann MK, Serganova I, Kim J, Gieschler S, Boskey AL, Blasberg RG, Mayer-Kuckuk P. Molecular imaging of expression of vascular endothelial growth factor a (VEGF a) in femoral bone grafts transplanted into living mice. Cell Transplant 2013; 23:901-12. [PMID: 23582187 PMCID: PMC5477423 DOI: 10.3727/096368912x667015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The biology of cells transplanted with bone grafts is incompletely understood. Focusing on the early angiogenic response postgrafting, we report a mouse femur graft model in which grafts were derived from mice transgenic for a firefly luciferase (FLuc) bioluminescence reporter gene driven by a promoter for the angiogenic signaling molecule vascular endothelial growth factor (VEGF). Upon transplantation into wild-type (wt) mice, in vivo bioluminescence imaging (BLI) permitted longitudinal visualization and measurements of VEGF promoter activity in the transplanted graft cells and demonstrated a lag period of 7 days posttransplantation prior to robust induction of the promoter. To determine cellular mediators of VEGF induction in graft bone, primary graft-derived osteoblastic cells (GDOsts) were characterized. In vitro BLI on GDOsts showed hypoxia-induced VEGF expression and that this induction depended on PI3K signaling and, to a lesser degree, on the MEK pathway. This transcriptional regulation correlated with VEGF protein production and was validated in GDOsts seeded on demineralized bone matrix (DBM), a bone graft substitute material. Together, combined imaging of VEGF expression in living animals and in live cells provided clues about the regulation of VEGF in cells post-bone grafting. These data are particularly significant toward the development of future smart bone graft substitutes.
Collapse
Affiliation(s)
- Olga Strachna
- Research Division, Hospital for Special Surgery, New York, NY, USA
| | | | | | - Inna Serganova
- Center for Molecular Imaging in Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jihye Kim
- Research Division, Hospital for Special Surgery, New York, NY, USA
| | - Simone Gieschler
- Research Division, Hospital for Special Surgery, New York, NY, USA
| | - Adele L. Boskey
- Mineralized Tissue Laboratory, Hospital for Special Surgery, New York, NY, USA
| | - Ronald G. Blasberg
- Center for Molecular Imaging in Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Philipp Mayer-Kuckuk
- Bone Cell Biology and Imaging Laboratory, Department of Orthopedics, MRI, Technical University Munich, Munich, Germany
| |
Collapse
|
13
|
Byun S, Sinskey YL, Lu YCS, Ort T, Kavalkovich K, Sivakumar P, Hunziker EB, Frank EH, Grodzinsky AJ. Transport of anti-IL-6 antigen binding fragments into cartilage and the effects of injury. Arch Biochem Biophys 2013; 532:15-22. [PMID: 23333631 DOI: 10.1016/j.abb.2012.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/05/2012] [Accepted: 12/19/2012] [Indexed: 12/15/2022]
Abstract
The efficacy of biological therapeutics against cartilage degradation in osteoarthritis is restricted by the limited transport of macromolecules through the dense, avascular extracellular matrix. The availability of biologics to cell surface and matrix targets is limited by steric hindrance of the matrix, and the microstructure of matrix itself can be dramatically altered by joint injury and the subsequent inflammatory response. We studied the transport into cartilage of a 48 kDa anti-IL-6 antigen binding fragment (Fab) using an in vitro model of joint injury to quantify the transport of Fab fragments into normal and mechanically injured cartilage. The anti-IL-6 Fab was able to diffuse throughout the depth of the tissue, suggesting that Fab fragments can have the desired property of achieving local delivery to targets within cartilage, unlike full-sized antibodies which are too large to penetrate beyond the cartilage surface. Uptake of the anti-IL-6 Fab was significantly increased following mechanical injury, and an additional increase in uptake was observed in response to combined treatment with TNFα and mechanical injury, a model used to mimic the inflammatory response following joint injury. These results suggest that joint trauma leading to cartilage degradation can further alter the transport of such therapeutics and similar-sized macromolecules.
Collapse
Affiliation(s)
- Sangwon Byun
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Park KS, Kang JH, Sa KH, Koo HB, Cho HJ, Nam EJ, Youn IC, Kim KM, Kim IS, Kwon IC, Choi KW, Kang YM. In Vivo Quantitative Measurement of Arthritis Activity Based on Hydrophobically Modified Glycol Chitosan in Inflammatory Arthritis: More Active than Passive Accumulation. Mol Imaging 2012; 11:7290.2011.00056. [DOI: 10.2310/7290.2011.00056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Kyeong Soon Park
- From the Biomedical Research Center, Korea Institute of Science and Technology, Hawolgok-dong, Seongbuk-gu, Seoul, and the Division of Rheumatology, Department of Internal Medicine, Department of Biochemistry and Cell Biology, and Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Dongin 2-Ga, Junggu, Daegu, Republic of Korea
| | - Jin Hee Kang
- From the Biomedical Research Center, Korea Institute of Science and Technology, Hawolgok-dong, Seongbuk-gu, Seoul, and the Division of Rheumatology, Department of Internal Medicine, Department of Biochemistry and Cell Biology, and Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Dongin 2-Ga, Junggu, Daegu, Republic of Korea
| | - Keum Hee Sa
- From the Biomedical Research Center, Korea Institute of Science and Technology, Hawolgok-dong, Seongbuk-gu, Seoul, and the Division of Rheumatology, Department of Internal Medicine, Department of Biochemistry and Cell Biology, and Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Dongin 2-Ga, Junggu, Daegu, Republic of Korea
| | - Hee Beom Koo
- From the Biomedical Research Center, Korea Institute of Science and Technology, Hawolgok-dong, Seongbuk-gu, Seoul, and the Division of Rheumatology, Department of Internal Medicine, Department of Biochemistry and Cell Biology, and Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Dongin 2-Ga, Junggu, Daegu, Republic of Korea
| | - Hyun Jung Cho
- From the Biomedical Research Center, Korea Institute of Science and Technology, Hawolgok-dong, Seongbuk-gu, Seoul, and the Division of Rheumatology, Department of Internal Medicine, Department of Biochemistry and Cell Biology, and Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Dongin 2-Ga, Junggu, Daegu, Republic of Korea
| | - Eon Jeong Nam
- From the Biomedical Research Center, Korea Institute of Science and Technology, Hawolgok-dong, Seongbuk-gu, Seoul, and the Division of Rheumatology, Department of Internal Medicine, Department of Biochemistry and Cell Biology, and Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Dongin 2-Ga, Junggu, Daegu, Republic of Korea
| | - In Chan Youn
- From the Biomedical Research Center, Korea Institute of Science and Technology, Hawolgok-dong, Seongbuk-gu, Seoul, and the Division of Rheumatology, Department of Internal Medicine, Department of Biochemistry and Cell Biology, and Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Dongin 2-Ga, Junggu, Daegu, Republic of Korea
| | - Kwang Meyung Kim
- From the Biomedical Research Center, Korea Institute of Science and Technology, Hawolgok-dong, Seongbuk-gu, Seoul, and the Division of Rheumatology, Department of Internal Medicine, Department of Biochemistry and Cell Biology, and Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Dongin 2-Ga, Junggu, Daegu, Republic of Korea
| | - In San Kim
- From the Biomedical Research Center, Korea Institute of Science and Technology, Hawolgok-dong, Seongbuk-gu, Seoul, and the Division of Rheumatology, Department of Internal Medicine, Department of Biochemistry and Cell Biology, and Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Dongin 2-Ga, Junggu, Daegu, Republic of Korea
| | - Ick Chan Kwon
- From the Biomedical Research Center, Korea Institute of Science and Technology, Hawolgok-dong, Seongbuk-gu, Seoul, and the Division of Rheumatology, Department of Internal Medicine, Department of Biochemistry and Cell Biology, and Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Dongin 2-Ga, Junggu, Daegu, Republic of Korea
| | - Kui Won Choi
- From the Biomedical Research Center, Korea Institute of Science and Technology, Hawolgok-dong, Seongbuk-gu, Seoul, and the Division of Rheumatology, Department of Internal Medicine, Department of Biochemistry and Cell Biology, and Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Dongin 2-Ga, Junggu, Daegu, Republic of Korea
| | - Young Mo Kang
- From the Biomedical Research Center, Korea Institute of Science and Technology, Hawolgok-dong, Seongbuk-gu, Seoul, and the Division of Rheumatology, Department of Internal Medicine, Department of Biochemistry and Cell Biology, and Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Dongin 2-Ga, Junggu, Daegu, Republic of Korea
| |
Collapse
|
15
|
Kircher MF, Willmann JK. Molecular body imaging: MR imaging, CT, and US. part I. principles. Radiology 2012; 263:633-43. [PMID: 22623690 DOI: 10.1148/radiol.12102394] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Molecular imaging, generally defined as noninvasive imaging of cellular and subcellular events, has gained tremendous depth and breadth as a research and clinical discipline in recent years. The coalescence of major advances in engineering, molecular biology, chemistry, immunology, and genetics has fueled multi- and interdisciplinary innovations with the goal of driving clinical noninvasive imaging strategies that will ultimately allow disease identification, risk stratification, and monitoring of therapy effects with unparalleled sensitivity and specificity. Techniques that allow imaging of molecular and cellular events facilitate and go hand in hand with the development of molecular therapies, offering promise for successfully combining imaging with therapy. While traditionally nuclear medicine imaging techniques, in particular positron emission tomography (PET), PET combined with computed tomography (CT), and single photon emission computed tomography, have been the molecular imaging methods most familiar to clinicians, great advances have recently been made in developing imaging techniques that utilize magnetic resonance (MR), optical, CT, and ultrasonographic (US) imaging. In the first part of this review series, we present an overview of the principles of MR imaging-, CT-, and US-based molecular imaging strategies.
Collapse
Affiliation(s)
- Moritz F Kircher
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
16
|
Skotland T. Molecular imaging: challenges of bringing imaging of intracellular targets into common clinical use. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:1-6. [PMID: 22344874 DOI: 10.1002/cmmi.458] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular imaging (MI) takes advantage of several new techniques to detect biomarkers or biochemical and cellular processes, with the goal of obtaining high sensitivity, specificity and signal-to-noise ratio imaging of disease. The imaging modalities bearing the most promise for MI are positron emission tomography (PET), single photon emission computer tomography (SPECT) and different optical imaging techniques with high sensitivity. Also magnetic resonance imaging (MRI) with contrast agents like ultra-small superparamagnetic iron oxide particles (USPIO), magnetic resonance spectroscopy and ultrasound imaging with contrast agents may be useful approaches. MI techniques have been used in the clinic for many years, i.e. PET imaging using (18) F-labeled fluorodeoxyglucose. Animal studies have during the last years revealed great potential for MI also with several other agents. The focus of the present article is the challenges of clinical imaging of intracellular targets following intravenous injection of the agents. Thus, the great challenge of getting enough contrast agent into the cytosol and at the same time obtaining a low signal from tissue just outside the diseased area is discussed.
Collapse
Affiliation(s)
- Tore Skotland
- Centre for Cancer Biomedicine, Faculty Division, Norwegian Radium Hospital, University of Oslo, Montebello, Olso, Norway.
| |
Collapse
|
17
|
Balducci A, Helfer BM, Ahrens ET, O'Hanlon CF, Wesa AK. Visualizing arthritic inflammation and therapeutic response by fluorine-19 magnetic resonance imaging (19F MRI). JOURNAL OF INFLAMMATION-LONDON 2012; 9:24. [PMID: 22721447 PMCID: PMC3506445 DOI: 10.1186/1476-9255-9-24] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 06/05/2012] [Indexed: 12/05/2022]
Abstract
Background Non-invasive imaging of inflammation to measure the progression of autoimmune diseases, such as rheumatoid arthritis (RA), and to monitor responses to therapy is critically needed. V-Sense, a perfluorocarbon (PFC) contrast agent that preferentially labels inflammatory cells, which are then recruited out of systemic circulation to sites of inflammation, enables detection by 19F MRI. With no 19F background in the host, detection is highly-specific and can act as a proxy biomarker of the degree of inflammation present. Methods Collagen-induced arthritis in rats, a model with many similarities to human RA, was used to study the ability of the PFC contrast agent to reveal the accumulation of inflammation over time using 19F MRI. Disease progression in the rat hind limbs was monitored by caliper measurements and 19F MRI on days 15, 22 and 29, including the height of clinically symptomatic disease. Naïve rats served as controls. The capacity of the PFC contrast agent and 19F MRI to assess the effectiveness of therapy was studied in a cohort of rats administered oral prednisolone on days 14 to 28. Results Quantification of 19F signal measured by MRI in affected limbs was linearly correlated with disease severity. In animals with progressive disease, increases in 19F signal reflected the ongoing recruitment of inflammatory cells to the site, while no increase in 19F signal was observed in animals receiving treatment which resulted in clinical resolution of disease. Conclusion These results indicate that 19F MRI may be used to quantitatively and qualitatively evaluate longitudinal responses to a therapeutic regimen, while additionally revealing the recruitment of monocytic cells involved in the inflammatory process to the anatomical site. This study may support the use of 19F MRI to clinically quantify and monitor the severity of inflammation, and to assess the effectiveness of treatments in RA and other diseases with an inflammatory component.
Collapse
Affiliation(s)
- Anthony Balducci
- Department of Research and Development, Celsense, Inc,, Pittsburgh, PA 15222, USA.
| | | | | | | | | |
Collapse
|
18
|
Michoux N, Simoni P, Tombal B, Peeters F, Machiels JP, Lecouvet F. Evaluation of DCE-MRI postprocessing techniques to assess metastatic bone marrow in patients with prostate cancer. Clin Imaging 2012; 36:308-15. [PMID: 22726969 DOI: 10.1016/j.clinimag.2011.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/07/2011] [Indexed: 11/18/2022]
Abstract
Dynamic contrast-enhanced magnetic resonance imaging was performed in control patients with normal bone marrow and patients with untreated bone metastases of prostate cancer (PCa). Perfusion data were assessed using region of interest-based and pixel-wise current standard postprocessing techniques (signal intensity pattern, increase in signal intensity, upslope, time to peak, extended Kety model, k-means clustering). Bone marrow perfusion is significantly increased in bone metastases of PCa compared to normal bone marrow. Pixel-wise kinetic modeling should be recommended to assess tumoral processes affecting bone marrow microcirculation.
Collapse
Affiliation(s)
- Nicolas Michoux
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
19
|
Miot-Noirault E, Gouin F, Dauplat MM, Heymann D, Chezal JM, Redini F. Relevance of the POS-1 orthotopic model as an "imaging model" for in vivo and simultaneous monitoring of tumor proliferation and bone remodeling in osteosarcoma. Cancer Biother Radiopharm 2012; 27:96-103. [PMID: 22217151 DOI: 10.1089/cbr.2011.1059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Osteosarcoma (OS) management requires a better understanding of tumor/bone interactions in vivo during disease progression. Using [(18)F]-FDG and [(99m)Tc]-HMDP imaging, we assessed a methodology for an in vivo quantitative characterization of an orthotopic model of osteolytic OS on the basis of (1) tumor proliferation, (2) tumor and bone metabolic activities, and (3) bone remodeling. METHODS POS-1 tumor bearing mice were monitored in vivo over a 26-day period, with tumor and bone metabolic volumes (TMV and BMV, respectively) being determined from [(18)F]-FDG, bone remodeling from [(99m)Tc]-HMDP, and tumoral volume from micro- computed tomography scans. RESULTS From day 10, [(18)F]-FDG strongly accumulated within POS-1 tumor, with a tumor/muscle ratio of 3.7 ± 0.8. TMV and BMV increased as pathology progressed: TMV increased at early stage of pathology (from 56%) whereas BMV strongly increased (from 113%) during late stage. From [(99m)Tc]-HMDP imaging, bone remodeling features were evidenced within the distal region of tibia bearing the tumor, with a mean scintigraphic ratio of 1.36 ± 0.11 at day 12, that reached value of 2.53 ± 0.19 at day 26. CONCLUSIONS Our results validated the POS-1 orthotopic model as "OS imaging model," that could serve for evaluating in vivo therapies targeting tumor proliferation and/or bone remodeling in OS.
Collapse
|
20
|
Miot-Noirault E, Vidal A, Auzeloux P, Peyrode C, Madelmont JC, Chezal JM. In vivo scintigraphic imaging of proteoglycans. Methods Mol Biol 2012; 836:183-198. [PMID: 22252636 DOI: 10.1007/978-1-61779-498-8_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this chapter, we present the methods developed in our lab for the scintigraphic imaging and direct quantitative evaluation of proteoglycan (PG) distribution in vivo. These methods relate to (1) the synthesis and radiolabeling of the NTP 15-5 with (99m)Tc, (2) preclinical scintigraphic imaging using laboratory animals, and (3) quantitative analysis of scintigraphic images.
Collapse
|
21
|
Shire NJ, Dardzinski BJ. Picture-perfect: imaging techniques in juvenile idiopathic arthritis. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/iim.11.63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Hielscher AH, Kim HK, Montejo LD, Blaschke S, Netz UJ, Zwaka PA, Illing G, Muller GA, Beuthan J. Frequency-domain optical tomographic imaging of arthritic finger joints. IEEE TRANSACTIONS ON MEDICAL IMAGING 2011; 30:1725-36. [PMID: 21964730 DOI: 10.1109/tmi.2011.2135374] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We are presenting data from the largest clinical trial on optical tomographic imaging of finger joints to date. Overall we evaluated 99 fingers of patients affected by rheumatoid arthritis (RA) and 120 fingers from healthy volunteers. Using frequency-domain imaging techniques we show that sensitivities and specificities of 0.85 and higher can be achieved in detecting RA. This is accomplished by deriving multiple optical parameters from the optical tomographic images and combining them for the statistical analysis. Parameters derived from the scattering coefficient perform slightly better than absorption derived parameters. Furthermore we found that data obtained at 600 MHz leads to better classification results than data obtained at 0 or 300 MHz.
Collapse
Affiliation(s)
- Andreas H Hielscher
- Department of Biomedical Engineering, Columbia University, New York 10027, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Larson PEZ, Gold GE. Science to practice: Can inflammatory arthritis be monitored by using MR imaging with injected hyperpolarized 13C-pyruvate? Radiology 2011; 259:309-10. [PMID: 21502386 DOI: 10.1148/radiol.11110376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peder E Z Larson
- Dept. of Radiology and Biomedical Imaging, University of California-San Francisco, 1700 4th St, Suite 102, San Francisco, CA 94158-2512, USA
| | | |
Collapse
|
24
|
Gade TP, Motley MW, Beattie BJ, Bhakta R, Boskey AL, Koutcher JA, Mayer-Kuckuk P. Imaging of alkaline phosphatase activity in bone tissue. PLoS One 2011; 6:e22608. [PMID: 21799916 PMCID: PMC3143164 DOI: 10.1371/journal.pone.0022608] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/26/2011] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to develop a paradigm for quantitative molecular imaging of bone cell activity. We hypothesized the feasibility of non-invasive imaging of the osteoblast enzyme alkaline phosphatase (ALP) using a small imaging molecule in combination with 19Flourine magnetic resonance spectroscopic imaging (19FMRSI). 6, 8-difluoro-4-methylumbelliferyl phosphate (DiFMUP), a fluorinated ALP substrate that is activatable to a fluorescent hydrolysis product was utilized as a prototype small imaging molecule. The molecular structure of DiFMUP includes two Fluorine atoms adjacent to a phosphate group allowing it and its hydrolysis product to be distinguished using 19Fluorine magnetic resonance spectroscopy (19FMRS) and 19FMRSI. ALP-mediated hydrolysis of DiFMUP was tested on osteoblastic cells and bone tissue, using serial measurements of fluorescence activity. Extracellular activation of DiFMUP on ALP-positive mouse bone precursor cells was observed. Concurringly, DiFMUP was also activated on bone derived from rat tibia. Marked inhibition of the cell and tissue activation of DiFMUP was detected after the addition of the ALP inhibitor levamisole. 19FMRS and 19FMRSI were applied for the non-invasive measurement of DiFMUP hydrolysis. 19FMRS revealed a two-peak spectrum representing DiFMUP with an associated chemical shift for the hydrolysis product. Activation of DiFMUP by ALP yielded a characteristic pharmacokinetic profile, which was quantifiable using non-localized 19FMRS and enabled the development of a pharmacokinetic model of ALP activity. Application of 19FMRSI facilitated anatomically accurate, non-invasive imaging of ALP concentration and activity in rat bone. Thus, 19FMRSI represents a promising approach for the quantitative imaging of bone cell activity during bone formation with potential for both preclinical and clinical applications.
Collapse
Affiliation(s)
- Terence P. Gade
- Bone Cell Biology and Imaging Laboratory, Hospital for Special Surgery, New York, New York, United States of America
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Matthew W. Motley
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Bradley J. Beattie
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Roshni Bhakta
- Bone Cell Biology and Imaging Laboratory, Hospital for Special Surgery, New York, New York, United States of America
| | - Adele L. Boskey
- Mineralized Tissue Laboratory, Hospital for Special Surgery, New York, New York, United States of America
| | - Jason A. Koutcher
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Philipp Mayer-Kuckuk
- Bone Cell Biology and Imaging Laboratory, Hospital for Special Surgery, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
MacKenzie JD, Yen YF, Mayer D, Tropp JS, Hurd RE, Spielman DM. Detection of inflammatory arthritis by using hyperpolarized 13C-pyruvate with MR imaging and spectroscopy. Radiology 2011; 259:414-20. [PMID: 21406626 DOI: 10.1148/radiol.10101921] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To examine the feasibility of using magnetic resonance (MR) spectroscopy with hyperpolarized carbon 13 ((13)C)-labeled pyruvate to detect inflammation. MATERIALS AND METHODS The animal care and use committee approved all work with animals. Arthritis was induced in the right hind paw of six rats; the left hind paw served as an internal control. The lactate dehydrogenase-catalyzed conversion of pyruvate to lactate was measured in inflamed and control paws by using (13)C MR spectroscopy. Clinical and histologic data were obtained to confirm the presence and severity of arthritis. Hyperpolarized (13)C-pyruvate was intravenously injected into the rats before simultaneous imaging of both paws with (13)C MR spectroscopy. The Wilcoxon signed rank test was used to test for differences in metabolites between the control and arthritic paws. RESULTS All animals showed findings of inflammation in the affected paws and no signs of arthritis in the control paws at both visible inspection (clinical index of 3 for arthritic paws and 0 for control paws) and histologic examination (histologic score of 3-5 for arthritic paws and 0 for control paws). Analysis of the spectroscopic profiles of (13)C-pyruvate and converted (13)C-lactate showed an increase in the amount of (13)C-lactate in inflamed paws (median lactate-to-pyruvate ratio, 0.50; mean lactate-to-pyruvate ratio ± standard deviation, 0.52 ± 0.16) versus control paws (median lactate-to-pyruvate ratio, 0.27; mean lactate-to-pyruvate ratio, 0.32 ± 0.11) (P < .03). The ratio of (13)C-lactate to total (13)C was also significantly increased in inflamed paws compared with control paws (P < .03). CONCLUSION These results suggest that alterations in the conversion of pyruvate to lactate as detected with (13)C-MR spectroscopy may be indicative of the presence of inflammatory arthritis.
Collapse
Affiliation(s)
- John D MacKenzie
- Department of Radiology, Stanford University, Stanford, Calif, USA
| | | | | | | | | | | |
Collapse
|
26
|
Gompels LL, Madden L, Lim NH, Inglis JJ, McConnell E, Vincent TL, Haskard DO, Paleolog EM. In vivo fluorescence imaging of E-selectin: quantitative detection of endothelial activation in a mouse model of arthritis. ACTA ACUST UNITED AC 2011; 63:107-17. [PMID: 20954188 DOI: 10.1002/art.30082] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE In vivo optical imaging can delineate at the macroscopic level processes that are occurring at the cellular and molecular levels. E-selectin, a leukocyte adhesion molecule expressed on endothelium, is induced by tumor necrosis factor α (TNFα) and other cytokines involved in the pathogenesis of rheumatoid arthritis (RA). Collagen-induced arthritis (CIA) in mice is widely used to study the disease mechanisms and identify new treatments for RA. The purpose of this study was to demonstrate E-selectin-targeted fluorescence imaging in vivo in a mouse model of paw edema generated by local injection of TNFα as well as in mice with CIA. METHODS Animals with either CIA or TNFα-induced paw edema were injected with anti-E-selectin or control antibodies labeled with a DyLight 750-nm near-infrared (NIR) probe. In vivo imaging studies were undertaken using an NIR optical imaging system, and images were coregistered with plain radiographic images. RESULTS The mean fluorescence intensity measured over the time-course of TNFα-induced edema demonstrated a 1.97-fold increase (P<0.001) in signal in inflamed paws at 8 hours following injection of anti-E-selectin antibody, as compared to that in the isotype control. In the CIA model, a 2.34-fold increase in E-selectin-targeted signal was demonstrated (P<0.01). Furthermore, significant E-selectin-targeted signal was observed in the paws of animals immunized with collagen that did not display overt signs of arthritis. CONCLUSION E-selectin-targeted fluorescence in vivo imaging is a quantifiable method of detecting endothelial activation in arthritis and can potentially be applied to the quantification of disease and the investigation of the effects of new therapies. Importantly, this approach may also be useful for the detection of subclinical disease in RA.
Collapse
Affiliation(s)
- Luke L Gompels
- Kennedy Institute of Rheumatology, Imperial College London, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sutton EJ, Henning TD, Boddington S, Demos S, Krug C, Meier R, Kornak J, Zhao S, Baehner R, Sharifi S, Daldrup-Link H. In Vivo Magnetic Resonance Imaging and Optical Imaging Comparison of Viable and Nonviable Mesenchymal Stem Cells with a Bifunctional Label. Mol Imaging 2010. [DOI: 10.2310/7290.2010.00029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Elizabeth Jane Sutton
- From the Departments of Radiology and Pathology, Mount Auburn Hospital, Cambridge, MA; Departments of Radiology and Biomedical Imaging, and Pathology, University of California, San Francisco, CA; Department of Radiology, Technical University of Munich, Munich, Germany; Lawrence Livermore National Laboratory, Livermore, CA
| | - Tobias D. Henning
- From the Departments of Radiology and Pathology, Mount Auburn Hospital, Cambridge, MA; Departments of Radiology and Biomedical Imaging, and Pathology, University of California, San Francisco, CA; Department of Radiology, Technical University of Munich, Munich, Germany; Lawrence Livermore National Laboratory, Livermore, CA
| | - Sophie Boddington
- From the Departments of Radiology and Pathology, Mount Auburn Hospital, Cambridge, MA; Departments of Radiology and Biomedical Imaging, and Pathology, University of California, San Francisco, CA; Department of Radiology, Technical University of Munich, Munich, Germany; Lawrence Livermore National Laboratory, Livermore, CA
| | - Stavros Demos
- From the Departments of Radiology and Pathology, Mount Auburn Hospital, Cambridge, MA; Departments of Radiology and Biomedical Imaging, and Pathology, University of California, San Francisco, CA; Department of Radiology, Technical University of Munich, Munich, Germany; Lawrence Livermore National Laboratory, Livermore, CA
| | - Christian Krug
- From the Departments of Radiology and Pathology, Mount Auburn Hospital, Cambridge, MA; Departments of Radiology and Biomedical Imaging, and Pathology, University of California, San Francisco, CA; Department of Radiology, Technical University of Munich, Munich, Germany; Lawrence Livermore National Laboratory, Livermore, CA
| | - Reinhardt Meier
- From the Departments of Radiology and Pathology, Mount Auburn Hospital, Cambridge, MA; Departments of Radiology and Biomedical Imaging, and Pathology, University of California, San Francisco, CA; Department of Radiology, Technical University of Munich, Munich, Germany; Lawrence Livermore National Laboratory, Livermore, CA
| | - John Kornak
- From the Departments of Radiology and Pathology, Mount Auburn Hospital, Cambridge, MA; Departments of Radiology and Biomedical Imaging, and Pathology, University of California, San Francisco, CA; Department of Radiology, Technical University of Munich, Munich, Germany; Lawrence Livermore National Laboratory, Livermore, CA
| | - Shoujun Zhao
- From the Departments of Radiology and Pathology, Mount Auburn Hospital, Cambridge, MA; Departments of Radiology and Biomedical Imaging, and Pathology, University of California, San Francisco, CA; Department of Radiology, Technical University of Munich, Munich, Germany; Lawrence Livermore National Laboratory, Livermore, CA
| | - Rick Baehner
- From the Departments of Radiology and Pathology, Mount Auburn Hospital, Cambridge, MA; Departments of Radiology and Biomedical Imaging, and Pathology, University of California, San Francisco, CA; Department of Radiology, Technical University of Munich, Munich, Germany; Lawrence Livermore National Laboratory, Livermore, CA
| | - Sheida Sharifi
- From the Departments of Radiology and Pathology, Mount Auburn Hospital, Cambridge, MA; Departments of Radiology and Biomedical Imaging, and Pathology, University of California, San Francisco, CA; Department of Radiology, Technical University of Munich, Munich, Germany; Lawrence Livermore National Laboratory, Livermore, CA
| | - Heike Daldrup-Link
- From the Departments of Radiology and Pathology, Mount Auburn Hospital, Cambridge, MA; Departments of Radiology and Biomedical Imaging, and Pathology, University of California, San Francisco, CA; Department of Radiology, Technical University of Munich, Munich, Germany; Lawrence Livermore National Laboratory, Livermore, CA
| |
Collapse
|
28
|
Gompels LL, Lim NH, Vincent T, Paleolog EM. In vivo optical imaging in arthritis--an enlightening future? Rheumatology (Oxford) 2010; 49:1436-46. [PMID: 20338885 DOI: 10.1093/rheumatology/keq012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In vivo molecular optical imaging has significant potential to delineate and measure, at the macroscopic level, in vivo biological processes that are occurring at the cellular and molecular level. Optical imaging has already been developed for in vitro and ex vivo applications in molecular and cellular biology (e.g. fluorescence confocal microscopy), but is still at an early stage of development as a whole-animal in vivo imaging technique. Both sensitivity and spatial resolution remain incompletely defined. Rapid advances in hardware technology and highly innovative reporter probes and dyes will be expected to deliver significant insight into perturbations of molecular pathways that occur in disease, ultimately with the potential of translating into future molecular imaging techniques for patients with arthritis. This review will focus on currently available technologies for live in vivo animal optical imaging, including fluorescence reflectance imaging, potential novel tomographic techniques, bioluminescence reporter technology and potential novel labelling techniques, highlighting in particular the potential application of in vivo fluorescence imaging in arthritis.
Collapse
Affiliation(s)
- Luke L Gompels
- Kennedy Institute of Rheumatology, Imperial College London, Faculty of Medicine, 65 Aspenlea Road, London W6 8LH, UK.
| | | | | | | |
Collapse
|
29
|
Abstract
In clinical practice the imaging of bone tissue is based almost exclusively on x-ray or radiochemical methods. Alternative methods, such as MRI and optical imaging, can provide not only anatomical, but also physiological information, due to their ability to reflect the properties of body fluids (temperature, pH and concentration of ions). In this article we review bone targeting probes for MRI and fluorescence imaging. As bone targeting is mainly associated with phosphonate and bisphosphonate derivatives, we also focus on their sorption behavior. Also discussed in detail is the limitation of using bone-targeting probes for MRI and optical imaging mainly due to their long-time retention in bone tissue and the low permeability of tissues for light.
Collapse
|
30
|
Reumann MK, Weiser MC, Mayer-Kuckuk P. Musculoskeletal molecular imaging: a comprehensive overview. Trends Biotechnol 2010; 28:93-101. [PMID: 20045210 DOI: 10.1016/j.tibtech.2009.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 10/26/2009] [Accepted: 11/12/2009] [Indexed: 01/01/2023]
Abstract
Molecular imaging permits non-invasive visualization and measurement of molecular and cell biology in living subjects, thereby complementing conventional anatomical imaging. Herein, we review the emerging application of molecular imaging for the study of musculoskeletal biology. Utilizing mainly bioluminescence and fluorescence techniques, molecular imaging has enabled in-vivo studies of (i) the activity of osteoblasts, osteoclasts, and hormones, (ii) the mechanisms of pathological cartilage and bone destruction, (iii) skeletal gene and cell therapy with and without biomaterial support, and (iv) the cellular processes in osteolysis and osteomyelitis. In these applications, musculoskeletal molecular imaging demonstrated feasibility for research in a myriad of musculoskeletal conditions ranging from bone fracture and arthritis to skeletal cancer. Importantly, these advances herald great potential for innovative clinical imaging in orthopedics, rheumatology, and oncology.
Collapse
Affiliation(s)
- Marie K Reumann
- Bone Cell Biology and Imaging Laboratory, Caspary Research Building, Rm. 623, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | | | | |
Collapse
|
31
|
Early detection of bony alterations in rheumatoid and erosive arthritis of finger joints with high-resolution single photon emission computed tomography, and differentiation between them. Skeletal Radiol 2010; 39:55-61. [PMID: 19669137 DOI: 10.1007/s00256-009-0761-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/15/2009] [Accepted: 07/10/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate high-resolution multi-pinhole single photon emission computed tomography (MPH-SPECT) for the detection of bony alterations in early rheumatoid arthritis (ERA), early osteoarthritis (EOA) of the fingers and healthy controls. METHODS The clinically dominant hands of 27 patients (13 ERA, nine EOA, five healthy controls) were examined by MPH-SPECT and bone scintigraphy. Additionally, magnetic resonance imaging (MRI) was performed in the ERA patients. Number of affected joints, localisation, pattern of tracer distribution and joint involvement were scored. Quantitative analysis was achieved by measurement of the region of interest (ROI) in all patients. The MPH-SPECT and MR images were fused in the ERA group. RESULTS Bone scintigraphy detected fewer joints (26 joints,13/22 patients) with increased tracer uptake than did MPH-SPECT (80 joints, 21/22 patients). Bone scintigraphy did not show recognisable uptake patterns in any group of patients. With MPH-SPECT central tracer distribution was typical in ERA (10/13 patients, EOA 2/9). In contrast, an eccentric pattern was found predominantly in EOA (7/9, ERA 2/13). Normalised counts were 4.5 in unaffected joints and up to 222.7 in affected joints. The mean uptake values in affected joints were moderately higher in the EOA patients (78.75, and 62.16 in ERA). The mean tracer uptake in affected joints was approximately three-times higher than in unaffected joints in both groups (ERA 3.64-times higher, EOA 3.58). Correlation with MR images revealed that bone marrow oedema and erosions matched pathological tracer accumulation of MPH-SPECT in 11/13. MPH-SPECT demonstrated increased activity in 2/13 patients with normal bone marrow signal intensity and synovitis seen on MR images. CONCLUSION MPH-SPECT is sensitive to early changes in ERA and EOA and permits them to be distinguished by their patterns of uptake.
Collapse
|
32
|
Sutton EJ, Boddington SE, Nedopil AJ, Henning TD, Demos SG, Baehner R, Sennino B, Lu Y, Daldrup-Link HE. An optical imaging method to monitor stem cell migration in a model of immune-mediated arthritis. OPTICS EXPRESS 2009; 17:24403-24413. [PMID: 20052149 PMCID: PMC2888495 DOI: 10.1364/oe.17.024403] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The objective of this work is to establish an optical imaging technique that would enable monitoring of the integration of mesenchymal stem cells (MSC) in arthritic joints. Our approach is based on first developing a labeling technique of MSC with the fluorescent dye DiD followed by tracking the cell migration kinetics from the spatial distribution of the DiD fluorescence in optical images (OI). The experimental approach involves first the in vitro OI of MSC labeled with DiD accompanied by fluorescence microscopy measurements to establish localization of the signal within the cells. Thereafter, DiD-labeled MSC were injected into polyarthritic, athymic rats and the signal localization within the experimental animals was monitored over several days. The experimental results indicate that DiD integrated into the cell membrane. DiD-labeled MSC localization in the arthritic ankle joints was observed with OI indicating that this method can be applied to monitor MSC in arthritic joints.
Collapse
Affiliation(s)
- Elizabeth J. Sutton
- Department of Radiology, University of California, San Francisco, 185 Berry Street, Suite 350, San Francisco, CA, 94107-0946, USA
- Department of Radiology, Mount Auburn Hospital, Harvard University, Boston, 330 Mount Auburn St, Cambridge, MA 02138, USA
| | - Sophie E. Boddington
- Department of Radiology, University of California, San Francisco, 185 Berry Street, Suite 350, San Francisco, CA, 94107-0946, USA
| | - Alexander J. Nedopil
- Department of Radiology, University of California, San Francisco, 185 Berry Street, Suite 350, San Francisco, CA, 94107-0946, USA
| | - Tobias D. Henning
- Department of Radiology, University of California, San Francisco, 185 Berry Street, Suite 350, San Francisco, CA, 94107-0946, USA
| | - Stavros G. Demos
- Lawrence Livermore National Laboratory, Livermore, 7000 East Avenue, Livermore, CA 94550, USA
| | - Rick Baehner
- Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0511, USA
| | - Barbara Sennino
- Department of Anatomy and the Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0511, USA
| | - Ying Lu
- Department of Radiology, University of California, San Francisco, 185 Berry Street, Suite 350, San Francisco, CA, 94107-0946, USA
- Biostatistics Core Facility, Comprehensive Cancer Center, University of California, San Francisco, CA 94143-0981, USA
| | - Heike E. Daldrup-Link
- Department of Radiology, University of California, San Francisco, 185 Berry Street, Suite 350, San Francisco, CA, 94107-0946, USA
| |
Collapse
|
33
|
Muellner A, Glazer GM, Reiser MF, Bradley WG, Krestin GP, Hricak H, Thrall JH. Advancing radiology through informed leadership: summary of the proceedings of the Seventh Biannual Symposium of the International Society for Strategic Studies in Radiology (IS(3)R), 23-25 August 2007. Eur Radiol 2009; 19:1827-36. [PMID: 19277668 PMCID: PMC2705708 DOI: 10.1007/s00330-009-1370-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 01/18/2009] [Indexed: 01/21/2023]
Abstract
The International Society for Strategic Studies in Radiology (IS3R) brings together thought leaders from academia and industry from around the world to share ideas, points of view and new knowledge. This article summarizes the main concepts presented at the 2007 IS3R symposium, providing a window onto trends shaping the future of radiology. Topics addressed include new opportunities and challenges in the field of interventional radiology; emerging techniques for evaluating and improving quality and safety in radiology; and factors impeding progress in molecular imaging and nanotechnology and possible ways to overcome them. Regulatory hurdles to technical innovation and drug development are also discussed more broadly, along with proposals for addressing regulators’ concerns and streamlining the regulatory process.
Collapse
Affiliation(s)
- Ada Muellner
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, room C-278, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|