1
|
Nguyen T, Vennatt J, Downs L, Surabhi V, Stanietzky N. Advanced Imaging of Hepatocellular Carcinoma: A Review of Current and Novel Techniques. J Gastrointest Cancer 2024; 55:1469-1484. [PMID: 39158837 DOI: 10.1007/s12029-024-01094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary carcinoma arising from the liver. Although HCC can arise de novo, the vast majority of cases develop in the setting of chronic liver disease. Hepatocarcinogenesis follows a well-studied process during which chronic inflammation and cellular damage precipitate cellular and genetic aberrations, with subsequent propagation of precancerous and cancerous lesions. Surveillance of individuals at high risk of HCC, early diagnosis, and individualized treatment are keys to reducing the mortality associated with this disease. Radiological imaging plays a critical role in the diagnosis and management of these patients. HCC is a unique cancer in that it can be diagnosed with confidence by imaging that meets all radiologic criteria, obviating the risks associated with tissue sampling. This article discusses conventional and emerging imaging techniques for the evaluation of HCC.
Collapse
Affiliation(s)
- Trinh Nguyen
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Jaijo Vennatt
- Department of Diagnostic Radiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Lincoln Downs
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Venkateswar Surabhi
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Nir Stanietzky
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Tanahashi Y, Kubota K, Nomura T, Ikeda T, Kutsuna M, Funayama S, Kobayashi T, Ozaki K, Ichikawa S, Goshima S. Improved vascular depiction and image quality through deep learning reconstruction of CT hepatic arteriography during transcatheter arterial chemoembolization. Jpn J Radiol 2024; 42:1243-1254. [PMID: 38888853 PMCID: PMC11522109 DOI: 10.1007/s11604-024-01614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE To evaluate the effect of deep learning reconstruction (DLR) on vascular depiction, tumor enhancement, and image quality of computed tomography hepatic arteriography (CTHA) images acquired during transcatheter arterial chemoembolization (TACE). METHODS Institutional review board approval was obtained. Twenty-seven patients (18 men and 9 women, mean age, 75.7 years) who underwent CTHA immediately before TACE were enrolled. All images were reconstructed using three reconstruction algorithms: hybrid-iterative reconstruction (hybrid-IR), DLR with mild strength (DLR-M), and DLR with strong strength (DLR-S). Vascular depiction, tumor enhancement, feeder visualization, and image quality of CTHA were quantitatively and qualitatively assessed by two radiologists and compared between the three reconstruction algorithms. RESULTS The mean signal-to-noise ratios (SNR) of sub-segmental arteries and sub-sub-segmental arteries, and the contrast-to-noise ratio (CNR) of tumors, were significantly higher on DLR-S than on DLR-M and hybrid-IR (P < 0.001). The mean qualitative score for sharpness of sub-segmental and sub-sub-segmental arteries was significantly better on DLR-S than on DLR-M and hybrid-IR (P < 0.001). There was no significant difference in the feeder artery detection rate of automated feeder artery detection software among three reconstruction algorithms (P = 0.102). The contrast, continuity, and confidence level of feeder artery detection was significantly better on DLR-S than on DLR-M (P = 0.013, 0.005, and 0.001) and hybrid-IR (P < 0.001, P = 0.002, and P < 0.001). The weighted kappa values between two readers for qualitative scores of feeder artery visualization were 0.807-0.874. The mean qualitative scores for sharpness, granulation, and diagnostic acceptability of CTHA were better on DLR-S than on DLR-M and hybrid-IR (P < 0.001). CONCLUSIONS DLR significantly improved the SNR of small hepatic arteries, the CNR of tumor, and feeder artery visualization on CTHA images. DLR-S seems to be better suited to routine CTHA in TACE than does hybrid-IR.
Collapse
Affiliation(s)
- Yukichi Tanahashi
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan.
| | - Koh Kubota
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Takayuki Nomura
- Radiology Service, Hamamatsu University Hospital, Hamamatsu City, Shizuoka, Japan
| | - Takanobu Ikeda
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Masaya Kutsuna
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Satoshi Funayama
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Tatsunori Kobayashi
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Kumi Ozaki
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Shintaro Ichikawa
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Satoshi Goshima
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| |
Collapse
|
3
|
Saleh GA, Denewar FA, Ali KM, Saleh M, Ali MA, Shehta A, Mansour M. Inter-observer reliability and predictive values of triphasic computed tomography for microvascular invasion in hepatocellular carcinoma. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2024; 55:176. [DOI: 10.1186/s43055-024-01354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/28/2024] [Indexed: 02/11/2025] Open
Abstract
Abstract
Background
Hepatocellular carcinoma (HCC) is the most frequent primary liver tumor globally and a leading cause of mortality in cirrhotic patients. Our study aimed to estimate the diagnostic performance of triphasic CT and inter-observer reliability in the preoperative detection of microvascular invasion (MVI) in HCC. Two independent radiologists accomplished a retrospective analysis for 99 patients with HCC to assess the CT features for MVI in each lesion. Postoperative histopathology was considered the gold standard.
Results
Multivariate regression analysis revealed that incomplete or absent tumor capsules, presence of TTPV, and absence of hypodense halo were statistically significant independent predictors of MVI. There was excellent agreement among observers in evaluating peritumoral enhancement, identifying intratumoral arteries, hypodense halo, TTPV, and macrovascular invasion. Also, our results revealed moderate agreement in assessing the tumor margin and tumor capsule.
Conclusion
Triphasic CT features of MVI are reliable imaging predictors that may be helpful for standard preoperative interpretation of HCC.
Collapse
|
4
|
Kobayashi S, Tomokuni A, Takeda Y, Wada H, Katsura Y, Hashimoto K, Tomimaru Y, Asaoka T, Yamada T, Tsujie M, Noda T, Morita S, Nagano H, Mori M, Doki Y, Eguchi H. Exploratory prospective, randomized phase II study of neoadjuvant transcatheter arterial chemoembolization plus surgery versus surgery alone for large hepatocellular carcinoma (CSGO-HBP-005): Clinical Study Group of Osaka University, Hepato-Biliary-Pancreatic Group. Hepatol Res 2024; 54:667-677. [PMID: 38279693 DOI: 10.1111/hepr.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/28/2024]
Abstract
AIM Neoadjuvant transcatheter arterial chemoembolization (TACE) for large tumors is controversial, especially in the minimally invasive surgery era. The aim of this study was to compare features between groups treated with neoadjuvant TACE followed by surgery (TACE + surgery) or upfront surgery for hepatocellular carcinoma >5 cm. METHODS In this exploratory, multicenter, randomized phase I study, the primary measure was 2-year disease-free survival (DFS). Secondary measures were resection rate, necrosis rate by TACE, 2-year overall survival, and site of recurrence. A total of 30 patients were randomly allocated to each arm. RESULTS The two arms did not differ in patient characteristics. The median time to surgery from randomization was 48 days for TACE + surgery and 29 for surgery only (p < 0.001). Postoperative morbidities did not differ between arms. The 2-year DFS, overall survival, and resection rates were 56.7%, 80.0%, and 93.3%, respectively, in the TACE + surgery arm, and 56.1%, 89.9%, and 90.0% in the upfront surgery arm. Minimally invasive surgery was carried out in 35.7% in the TACE + surgery arm and in 29.6% in the upfront surgery arm. The median necrosis rate by TACE was 90.0%. In resected specimens, invasion to the hepatic vein was less with TACE + surgery (3.6% vs. 22.2%, p = 0.0380). In cases of 100% necrosis with TACE, 2-year DFS was 100%. Site of recurrence did not differ between groups. CONCLUSION Neoadjuvant TACE did not improve 2-year DFS, and neoadjuvant TACE allowed delay of surgical treatment without increased morbidity and cancer progress. CLINICAL TRIAL REGISTRATION UMIN: 000005241.
Collapse
Affiliation(s)
- Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Hospital, Suita, Japan
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Suita, Japan
- The Clinical Study Group of Osaka University, Hepato-Biliary-Pancreatic Group, Osaka, Japan
| | - Akira Tomokuni
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Suita, Japan
- The Clinical Study Group of Osaka University, Hepato-Biliary-Pancreatic Group, Osaka, Japan
| | - Yutaka Takeda
- The Clinical Study Group of Osaka University, Hepato-Biliary-Pancreatic Group, Osaka, Japan
- Department of Surgery, Kansai Rosai Hospital, Amagasaki, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Osaka University Hospital, Suita, Japan
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Suita, Japan
- The Clinical Study Group of Osaka University, Hepato-Biliary-Pancreatic Group, Osaka, Japan
| | - Yoshiteru Katsura
- The Clinical Study Group of Osaka University, Hepato-Biliary-Pancreatic Group, Osaka, Japan
- Department of Surgery, Kansai Rosai Hospital, Amagasaki, Japan
| | - Kazuhiko Hashimoto
- The Clinical Study Group of Osaka University, Hepato-Biliary-Pancreatic Group, Osaka, Japan
- Department of Gastroenterological Surgery, Kindai University Nara Hospital, Ikoma, Japan
| | - Yoshito Tomimaru
- The Clinical Study Group of Osaka University, Hepato-Biliary-Pancreatic Group, Osaka, Japan
- Department of Surgery, Toyonaka Municipal Hospital, Toyonaka, Japan
| | - Tadafumi Asaoka
- The Clinical Study Group of Osaka University, Hepato-Biliary-Pancreatic Group, Osaka, Japan
- Department of Surgery, Osaka Police Hospital, Osaka, Japan
| | - Terumasa Yamada
- The Clinical Study Group of Osaka University, Hepato-Biliary-Pancreatic Group, Osaka, Japan
- Department of Gastroenterological Surgery, Higashiosaka City Medical Center, Higashiosaka, Japan
| | - Masanori Tsujie
- The Clinical Study Group of Osaka University, Hepato-Biliary-Pancreatic Group, Osaka, Japan
- Department of Surgery, Osaka Rosai Hospital, Sakai, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Osaka University Hospital, Suita, Japan
- The Clinical Study Group of Osaka University, Hepato-Biliary-Pancreatic Group, Osaka, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, University Graduate School of Medicine, Tyoto, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological Surgery, Osaka University Hospital, Suita, Japan
- The Clinical Study Group of Osaka University, Hepato-Biliary-Pancreatic Group, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University Hospital, Suita, Japan
- The Clinical Study Group of Osaka University, Hepato-Biliary-Pancreatic Group, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Hospital, Suita, Japan
- The Clinical Study Group of Osaka University, Hepato-Biliary-Pancreatic Group, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Hospital, Suita, Japan
- The Clinical Study Group of Osaka University, Hepato-Biliary-Pancreatic Group, Osaka, Japan
| |
Collapse
|
5
|
Gao X, Bian J, Luo J, Guo K, Xiang Y, Liu H, Ding J. Radiomics-based distinction of small (≤2 cm) hepatocellular carcinoma and precancerous lesions based on unenhanced MRI. Clin Radiol 2024; 79:e659-e664. [PMID: 38341345 DOI: 10.1016/j.crad.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/08/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
AIM To assess the feasibility of a radiomics model based on unenhanced magnetic resonance imaging (MRI) to differentiate small hepatocellular carcinoma (S-HCC) (≤2 cm) and pre-hepatocellular carcinoma (Pre-HCC). MATERIALS AND METHODS One hundred and fourteen histopathologically confirmed 114 hepatic nodules were analysed retrospectively. All patients had undergone MRI before surgery using a 3 T MRI system. Each nodule was segmented on unenhanced MRI sequences (T1-weighted imaging [T1] and T2WI with fat-suppression [FS-T2]). Radiomics features were extracted and the optimal features were selected using the least absolute shrinkage and selection operator (LASSO). The support vector machine (SVM) was used to establish the radiomics model. One abdominal radiologist performed the conventional qualitative analysis for classification of S-HCC and Pre-HCC. The diagnostic performances of the radiomics and radiologist models were evaluated using receiver operating characteristic (ROC) analysis. RESULT Radiomics features (n=1,223) were extracted from each sequence and the optimal features were selected from T1, FS-T2, and T1+FS-T2 to construct the radiomics models. The radiomics model based on T1+FS-T2 showed the best performance among the three models, with areas under the ROC curves (AUCs) of 0.95 (95 % confidence interval [CI], 0.875-0.986) and 0.942 (95 % CI, 0.775-0.985), accuracies of 86 % and 88.5 %, sensitivities of 94.12 % and 100 %, and specificities of 85.48 % and 85.19 %, respectively. The radiomics model on FS-T2 showed better performance on a single sequence than that of the T1-based model. The diagnostic performance for the radiomic model was significantly higher than that for the radiologist (AUC = 0.518, p<0.05). CONCLUSION This study suggested that a radiomics model based on unenhanced MRI may serve as a feasible and non-invasive tool to classify S-HCC and Pre-HCC.
Collapse
Affiliation(s)
- X Gao
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China.
| | - J Bian
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| | - J Luo
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| | - K Guo
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| | - Y Xiang
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning, China
| | - H Liu
- Yizhun Medical AI Co., Ltd, Beijing, China
| | - J Ding
- Yizhun Medical AI Co., Ltd, Beijing, China
| |
Collapse
|
6
|
Mendiratta-Lala M, Aslam A, Bai HX, Chapiro J, De Baere T, Miyayama S, Chernyak V, Matsui O, Vilgrain V, Fidelman N. Ethiodized oil as an imaging biomarker after conventional transarterial chemoembolization. Eur Radiol 2024; 34:3284-3297. [PMID: 37930412 PMCID: PMC11126446 DOI: 10.1007/s00330-023-10326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 11/07/2023]
Abstract
Conventional transarterial chemoembolization (cTACE) utilizing ethiodized oil as a chemotherapy carrier has become a standard treatment for intermediate-stage hepatocellular carcinoma (HCC) and has been adopted as a bridging and downstaging therapy for liver transplantation. Water-in-oil emulsion made up of ethiodized oil and chemotherapy solution is retained in tumor vasculature resulting in high tissue drug concentration and low systemic chemotherapy doses. The density and distribution pattern of ethiodized oil within the tumor on post-treatment imaging are predictive of the extent of tumor necrosis and duration of response to treatment. This review describes the multiple roles of ethiodized oil, particularly in its role as a biomarker of tumor response to cTACE. CLINICAL RELEVANCE: With the increasing complexity of locoregional therapy options, including the use of combination therapies, treatment response assessment has become challenging; Ethiodized oil deposition patterns can serve as an imaging biomarker for the prediction of treatment response, and perhaps predict post-treatment prognosis. KEY POINTS: • Treatment response assessment after locoregional therapy to hepatocellular carcinoma is fraught with multiple challenges given the varied post-treatment imaging appearance. • Ethiodized oil is unique in that its' radiopacity can serve as an imaging biomarker to help predict treatment response. • The pattern of deposition of ethiodozed oil has served as a mechanism to detect portions of tumor that are undertreated and can serve as an adjunct to enhancement in order to improve management in patients treated with intraarterial embolization with ethiodized oil.
Collapse
Affiliation(s)
- Mishal Mendiratta-Lala
- Department of Radiology, University of Michigan Medicine, 1500 E Medical Center Dr., UH B2 A209R, Ann Arbor, MI, 48109, USA.
| | - Anum Aslam
- Department of Radiology, University of Michigan Medicine, 1500 E Medical Center Dr., UH B2 A209R, Ann Arbor, MI, 48109, USA
| | - Harrison X Bai
- Department of Radiology and Radiological Sciences, John Hopkins University, 601 N Caroline St, Baltimore, MD, 21287, USA
| | - Julius Chapiro
- Department of Radiology & Biomedical Imaging Yale University School of Medicine, 300 Cedar Street - TAC N312A, New Haven, CT, 06520, USA
| | - Thiery De Baere
- Gustave Roussy University of Paris Saclay, Villejuif, France
- Interventional Radiology, Gustave Roussy Cancer Center, Villejuif, France
- Département d'Anesthésie, Chirurgie et Imagerie Interventionnelle, Gustave Roussy Cancer Center, Villejuif, France
| | - Shiro Miyayama
- Department of Diagnostic Radiology, Fukui-ken Saiseikai Hospital 7-1, Funabashi, Wadanaka-cho, Fukui, 918-8503, Japan
| | - Victoria Chernyak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Osamu Matsui
- Department of Radiology, Kananzawa University, Japan, 2-21-9 Asahi-machi, Kanazawa, 920-0941, Japan
| | - Valerie Vilgrain
- Department of Radiology, Hospital Beaujon APHP.Nord, Université Paris Cité, CRI INSERM 1149, Paris, France
| | - Nicholas Fidelman
- University of California San Francisco, 505 Parnassus Avenue, Room M-361, San Francisco, CA, 94143, USA
| |
Collapse
|
7
|
Shi R, Wang J, Zeng X, Luo H, Yang X, Guo Y, Yi L, Deng H, Yang P. Effect of anatomical liver resection on early postoperative recurrence in patients with hepatocellular carcinoma assessed based on a nomogram: a single-center study in China. Front Oncol 2024; 14:1365286. [PMID: 38476367 PMCID: PMC10929612 DOI: 10.3389/fonc.2024.1365286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction We aimed to investigate risk factors for early postoperative recurrence in patients with hepatocellular carcinoma (HCC) and determine the effect of surgical methods on early recurrence to facilitate predicting the risk of early postoperative recurrence in such patients and the selection of appropriate treatment methods. Methods We retrospectively analyzed clinical data concerning 428 patients with HCC who had undergone radical surgery at Mianyang Central Hospital between January 2015 and August 2022. Relevant routine preoperative auxiliary examinations and regular postoperative telephone or outpatient follow-ups were performed to identify early postoperative recurrence. Risk factors were screened, and predictive models were constructed, including patients' preoperative ancillary tests, intra- and postoperative complications, and pathology tests in relation to early recurrence. The risk of recurrence was estimated for each patient based on a prediction model, and patients were categorized into low- and high-risk recurrence groups. The effect of anatomical liver resection (AR) on early postoperative recurrence in patients with HCC in the two groups was assessed using survival analysis. Results In total, 353 study patients were included. Multifactorial logistic regression analysis findings suggested that tumor diameter (≥5/<5 cm, odds ratio [OR] 2.357, 95% confidence interval [CI] 1.368-4.059; P = 0.002), alpha fetoprotein (≥400/<400 ng/L, OR 2.525, 95% CI 1.334-4.780; P = 0.004), tumor number (≥2/<2, OR 2.213, 95% CI 1.147-4.270; P = 0.018), microvascular invasion (positive/negative, OR 3.230, 95% CI 1.880-5.551; P < 0.001), vascular invasion (positive/negative, OR 4.472, 95% CI 1.395-14.332; P = 0.012), and alkaline phosphatase level (>125/≤125 U/L, OR 2.202, 95% CI 1.162-4.173; P = 0.016) were risk factors for early recurrence following radical HCC surgery. Model validation and evaluation showed that the area under the curve was 0.813. Hosmer-Lemeshow test results (X 2 = 1.225, P = 0.996 > 0.05), results from bootstrap self-replicated sampling of 1,000 samples, and decision curve analysis showed that the model also discriminated well, with potentially good clinical utility. Using this model, patients were stratified into low- and high-risk recurrence groups. One-year disease-free survival was compared between the two groups with different surgical approaches. Both groups benefited from AR in terms of prevention of early postoperative recurrence, with AR benefits being more pronounced and intraoperative bleeding less likely in the high-risk recurrence group. Discussion With appropriate surgical techniques and with tumors being realistically amenable to R0 resection, AR is a potentially useful surgical procedure for preventing early recurrence after radical surgery in patients with HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pei Yang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
8
|
Kim JH, Kim HS, Yoon JH, Joo I, Yoon JH, Kim YJ, Yu SJ, Lee JM. Anatomical ablation for small hepatocellular carcinomas using multiple applicators: a preliminary study. Cancer Imaging 2023; 23:78. [PMID: 37605251 PMCID: PMC10440891 DOI: 10.1186/s40644-023-00597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Anatomical ablation, defined as thermal ablation of tumor-bearing small portal territories, may provide excellent local tumor control in peripherally-located small hepatocellular carcinomas (HCC), which has been a major concern with percutaneous ablation alone. PURPOSE To evaluate the technical feasibility and therapeutic outcomes of anatomical ablation using multiple radiofrequency (RF) applicators for the ablation of tumor-bearing small portal territories of peripherally-located small (≤ 4 cm) HCCs. MATERIALS AND METHODS Patients with peripherally-located single HCCs (≤ 4 cm) to be treated with anatomical ablation using multiple RF applicators between January 2020 and March 2022 were enrolled in this prospective study. Anatomical ablation was performed for the index tumor under real-time US-CT/MR fusion imaging guidance, with one or two clustered electrode needles placed across the tumor-bearing portal vein branches. Technical success and complications of anatomical ablations were assessed. Cumulative incidence of local tumor progression (LTP) and recurrence-free survival were estimated using the Kaplan-Meier method. RESULTS Fifty-five HCCs (mean size, 1.77 ± 0.59 cm) in 55 participants (mean age, 66.4 ± 7.7 years; 39 men, 16 women) were treated with anatomical ablation; 98.2% (54/55) technical success was achieved. No major complications were noted. Among the 55 participants, LTP occurred in only one patient who had experienced technical failure of anatomical ablation. Estimated 1- and 2-year cumulative incidences of LTP were 0% and 3.7%, respectively. Five patients developed intrahepatic remote recurrence during the median follow-up period of 19.2 months (range, 3.7-28.8 months); therefore, estimated 1- and 2-year recurrence-free survival was 91.7% and 85.0%, respectively. CONCLUSION Anatomical ablation using multiple RF applicators provided the excellent results of local tumor control in patients with peripherally-located small (≤ 4 cm) HCCs. TRIAL REGISTRATION clinicaltrial.gov identifier: NCT05397860.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Radiology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hee Soo Kim
- Department of Radiology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoon Jun Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Su Jong Yu
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
9
|
MRI features of histologic subtypes of hepatocellular carcinoma: correlation with histologic, genetic, and molecular biologic classification. Eur Radiol 2022; 32:5119-5133. [PMID: 35258675 DOI: 10.1007/s00330-022-08643-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023]
Abstract
HCC is a heterogeneous group of tumors in terms of histology, genetic aberration, and protein expression. Advancements in imaging techniques have allowed imaging diagnosis to become a critical part of managing HCC in the clinical setting, even without pathologic diagnosis. With the identification of many HCC subtypes, there is increasing correlative evidence between imaging phenotypes and histologic, molecular, and genetic characteristics of various HCC subtypes. In this review, current knowledge of histologic heterogeneity of HCC correlated to features on gadolinium-enhanced dynamic liver MRI will be discussed. In addition, HCC subtype classification according to transcriptomic profiles will be outlined with descriptions of histologic, genetic, and molecular characteristics of some relatively well-established morphologic subtypes, namely the low proliferation class (steatohepatitic HCC and CTNNB1-mutated HCC) and the high proliferation class (macrotrabecular-massive HCC (MTM-HCC), scirrhous HCC, and CK19-positive HCC). Characteristics of sarcomatoid HCC and fibrolamellar HCC will also be discussed. Further research on radiological characteristics of HCC subtypes may ultimately enable non-invasive diagnosis and serve as a biomarker in predicting prognosis, molecular characteristics, and therapeutic response. In the era of precision medicine, a multidisciplinary effort to develop an integrated radiologic and clinical diagnostic system of various HCC subtypes is necessary. KEY POINTS: • HCC is a heterogeneous group of tumors in terms of histology, genetic aberration, and protein expression, which can be divided into many subtypes according to transcriptome profiles. • There is increasing evidence of a correlation between imaging phenotypes and histologic, genetic, and molecular biologic characteristics of various HCC subtypes. • Imaging characteristics may ultimately enable non-invasive diagnosis and subtype characterization, serving as a biomarker for predicting prognosis, molecular characteristics, and therapeutic response.
Collapse
|
10
|
Wu Y, Zhu M, Liu Y, Cao X, Zhang G, Yin L. Peritumoral Imaging Manifestations on Gd-EOB-DTPA-Enhanced MRI for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:907076. [PMID: 35814461 PMCID: PMC9263828 DOI: 10.3389/fonc.2022.907076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose The aim was to investigate the association between microvascular invasion (MVI) and the peritumoral imaging features of gadolinium ethoxybenzyl DTPA-enhanced magnetic resonance imaging (Gd-EOB-DTPA-enhanced MRI) in hepatocellular carcinoma (HCC). Methods Up until Feb 24, 2022, the PubMed, Embase, and Cochrane Library databases were carefully searched for relevant material. The software packages utilized for this meta-analysis were Review Manager 5.4.1, Meta-DiSc 1.4, and Stata16.0. Summary results are presented as sensitivity (SEN), specificity (SPE), diagnostic odds ratios (DORs), area under the receiver operating characteristic curve (AUC), and 95% confidence interval (CI). The sources of heterogeneity were investigated using subgroup analysis. Results An aggregate of nineteen articles were remembered for this meta-analysis: peritumoral enhancement on the arterial phase (AP) was described in 13 of these studies and peritumoral hypointensity on the hepatobiliary phase (HBP) in all 19 studies. The SEN, SPE, DOR, and AUC of the 13 investigations on peritumoral enhancement on AP were 0.59 (95% CI, 0.41−0.58), 0.80 (95% CI, 0.75−0.85), 4 (95% CI, 3−6), and 0.73 (95% CI, 0.69−0.77), respectively. The SEN, SPE, DOR, and AUC of 19 studies on peritumoral hypointensity on HBP were 0.55 (95% CI, 0.45−0.64), 0.87 (95% CI, 0.81−0.91), 8 (95% CI, 5−12), and 0.80 (95% CI, 0.76−0.83), respectively. The subgroup analysis of two imaging features identified ten and seven potential factors for heterogeneity, respectively. Conclusion The results of peritumoral enhancement on the AP and peritumoral hypointensity on HBP showed high SPE but low SEN. This indicates that the peritumoral imaging features on Gd-EOB-DTPA-enhanced MRI can be used as a noninvasive, excluded diagnosis for predicting hepatic MVI in HCC preoperatively. Moreover, the results of this analysis should be updated when additional data become available. Additionally, in the future, how to improve its SEN will be a new research direction.
Collapse
Affiliation(s)
- Ying Wu
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Meilin Zhu
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiming Liu
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xinyue Cao
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Guojin Zhang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Longlin Yin
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Longlin Yin,
| |
Collapse
|
11
|
Comparison of local recurrence in transcatheter arterial chemoembolization of hepatocellular carcinoma with or without accumulation of iodized oil beyond corona enhancement area: Short-term results. Radiol Oncol 2021; 56:69-75. [PMID: 34957733 PMCID: PMC8884859 DOI: 10.2478/raon-2021-0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/01/2021] [Indexed: 12/21/2022] Open
Abstract
Background Local tumor recurrence of hepatocellular carcinoma (HCC) often occurs in blood drainage areas. Corona enhancement is determined by computed tomography during hepatic arteriography (CTHA) and is considered to represent the blood drainage area. This study aimed to investigate the relationship between embolization of corona enhancement area and local tumor recurrence of patients with HCC who underwent transcatheter arterial chemoembolization (TACE). Patients and methods The study retrospectively selected 53 patients with 60 HCC nodules that showed corona enhancement area on late-phase CTHA and showed homogenous accumulation of iodized oil throughout the nodule on non-contrast-enhanced CT performed immediately after TACE. We divided the nodules into two groups, according to whether the accumulation of iodized oil covered the entire corona enhancement area (group A) or not (group B). Local tumor recurrence was compared between the two groups. Results The cumulative local tumor recurrence rates for group A (n = 36) were 2.8%, 2.8%, 8.3% at 3, 6, and 12 months, respectively, whereas the recurrence rates for group B (n = 24) were 20.8%, 45.8%, 75% at 3, 6, and 12 months, respectively. The cumulative local tumor recurrence rates for group A were significantly lower than those for group B (hazard ratio, 0.079; 95% confidence interval, 0.026–0.24; p < 0.001). Conclusions The results of the study suggest that the corona enhancement area may be an accurate safety margin in TACE which should be performed until the embolic area covers the entire corona enhancement area.
Collapse
|
12
|
Efficacy of Superselective Conventional Transarterial Chemoembolization Using Guidance Software for Hepatocellular Carcinoma within Three Lesions Smaller Than 3 cm. Cancers (Basel) 2021; 13:cancers13246370. [PMID: 34944990 PMCID: PMC8699350 DOI: 10.3390/cancers13246370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Although transarterial chemoebolization (TACE) is indicated for small hepatocellular carcinoma (HCC) as a second choice, TACE for small HCC is frequently difficult and less effective because of less hypervascularity and the presence of tumor portions receiving a dual blood supply. The aim of this study was to evaluate the efficacy of superselective cTACE under guidance software for patients with HCC within three lesions smaller than 3 cm. By using TACE guidance software, 81.2% of HCC lesions could be completely embolized and the cumulative local tumor progression rates in 303 tumors at 1, 3, 5, and 7 years were 17.8, 27.8, 32.0, and 36.0%, respectively. The 1-, 3-, 5-, and 7-year overall and recurrence-free survival rates in 175 patients were 97.1 and 68.7, 82.8 and 34.9, 64.8 and 20.2, and 45.3 and 17.3%, respectively. Our results indicate the efficacy of superselective cTACE using guidance software for HCC within three lesions smaller than 3 cm. Abstract The indication of transarterial chemoembolization (TACE) has advanced to hepatocellular carcinoma (HCC) of Barcelona Clinic Liver Cancer (BCLC) stage A when surgical resection (SR), thermal ablation, and bridging to transplantation are contraindicated; however, TACE for small HCC is frequently difficult and ineffective because of less hypervascularity and the presence of tumor portions receiving a dual blood supply. Here, we report outcomes of superselective conventional TACE (cTACE) for 259 patients with HCCs within three lesions smaller than 3 cm using guidance software. Automated tumor feeder detection (AFD) functionality was applied to identify tumor feeders on cone-beam computed tomography during hepatic arteriography (CBCTHA) data. When it failed, the feeder was identified by manual feeder detection functionality and/or selective angiography and CBCTHA. Regarding the technical success in 382 tumors (mean diameter, 17.2 ± 5.9 mm), 310 (81.2%) were completely embolized with a safety margin (5 mm wide for HCC ≤25 mm and 10 mm wide for HCC >25 mm). In 61 (16.0%), the entire tumor was embolized but the safety margin was not uniformly obtained. The entire tumor was not embolized in 11 (2.9%). Regarding the tumor response at 2–3 months after cTACE in 303 tumors excluding those treated with combined radiofrequency ablation (RFA) or SR and lost to follow-up, 287 (94.7%) were classified into complete response, seven (2.3%) into partial response, and nine (3.0%) into stable disease. The mean follow-up period was 44.9 ± 27.6 months (range, 1–109) and the cumulative local tumor progression rates at 1, 3, 5, and 7 years were 17.8, 27.8, 32.0, and 36.0%, respectively. The 1-, 3-, 5-, and 7-year overall and recurrence-free survival rates in 175 patients, excluding those with Child–Pugh C class, who died of other malignancies, or who underwent combined RFA or hepatic resection, were 97.1 and 68.7, 82.8 and 34.9, 64.8 and 20.2, and 45.3 and 17.3%, respectively. Our results indicate the efficacy of superselective cTACE using guidance software for HCC within three lesions smaller than 3 cm.
Collapse
|
13
|
Yu SCH. Blood Flow Diversion Within Hepatocellular Carcinoma (HCC) after Selective Occlusion of Feeding Arteries (SOFA) and Feasibility of Utilizing the SOFA Technique in Transarterial Chemoembolization (SOFA-TACE). Cardiovasc Intervent Radiol 2021; 45:121-126. [PMID: 34604919 DOI: 10.1007/s00270-021-02973-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/09/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Arterial feeders supplying a hepatocellular carcinoma are known to be interconnected through the sinusoid-like tumor vasculature. It was observed angiographically that when one of the feeders is selectively catheterized for drug delivery in transarterial chemoembolization (TACE), the whole tumor vasculature will be filled up, if the arterial inflow from all the other feeders is temporarily arrested with selective occlusion of feeding arteries (SOFA) using an additional catheter (balloon catheter). The feasibility of using the SOFA technique in TACE (SOFA-TACE) is discussed. MATERIALS AND METHODS In this prospective, monocentric feasibility study, with informed consent obtained, 8 consecutive patients of median age 64.5 years (60-68.8) and tumor dimension 4.7 cm (3.2-6.1), having specific tumor features (solitary, hypervascularity, well-defined, ≤ 7 cm, multiple tumor feeders), received SOFA-TACE using ethiodized oil-cisplatin suspension. Tumor response was assessed with 3-monthly CT using modified RECIST. RESULTS A single tumor feeder was catheterized for drug delivery (8 cases). All other tumor feeders were successfully occluded with a balloon at one site (8 cases). Complete filling of the vasculature of the whole tumor was achieved in 7 of 8 cases with the SOFA technique as shown on arteriogram and CT, except in a case with an intratumoral septum. There was no complication. Surveillance CT (median 25 months, range 22-28) showed complete response in all cases. CONCLUSION SOFA-TACE is feasible with reasonable safety and favorable treatment outcome; it may be a valuable technical option that may facilitate the procedures of selective TACE in technically challenging cases.
Collapse
Affiliation(s)
- Simon Chun Ho Yu
- Department of Imaging and Interventional Radiology, Vascular and Interventional Radiology Foundation Clinical Science Center, The Chinese University of Hong Kong, c/o Rm 2A061, 2/F, Main Clinical Block and Trauma Centre, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong SAR.
| |
Collapse
|
14
|
Consul N, Sirlin CB, Chernyak V, Fetzer DT, Masch WR, Arora SS, Do RKG, Marks RM, Fowler KJ, Borhani AA, Elsayes KM. Imaging Features at the Periphery: Hemodynamics, Pathophysiology, and Effect on LI-RADS Categorization. Radiographics 2021; 41:1657-1675. [PMID: 34559586 DOI: 10.1148/rg.2021210019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Liver lesions have different enhancement patterns at dynamic contrast-enhanced imaging. The Liver Imaging Reporting and Data System (LI-RADS) applies the enhancement kinetic of liver observations in its algorithms for imaging-based diagnosis of hepatocellular carcinoma (HCC) in at-risk populations. Therefore, careful analysis of the spatial and temporal features of these enhancement patterns is necessary to increase the accuracy of liver mass characterization. The authors focus on enhancement patterns that are found at or around the margins of liver observations-many of which are recognized and defined by LI-RADS, such as targetoid appearance, rim arterial phase hyperenhancement, peripheral washout, peripheral discontinuous nodular enhancement, enhancing capsule appearance, nonenhancing capsule appearance, corona enhancement, and periobservational arterioportal shunts-as well as peripheral and periobservational enhancement in the setting of posttreatment changes. Many of these are considered major or ancillary features of HCC, ancillary features of malignancy in general, features of non-HCC malignancy, features associated with benign entities, or features related to treatment response. Distinction between these different patterns of enhancement can help with achieving a more specific diagnosis of HCC and better assessment of response to local-regional therapy. ©RSNA, 2021.
Collapse
Affiliation(s)
- Nikita Consul
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Claude B Sirlin
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Victoria Chernyak
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - David T Fetzer
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - William R Masch
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Sandeep S Arora
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Richard K G Do
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Robert M Marks
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Kathryn J Fowler
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Amir A Borhani
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Khaled M Elsayes
- From the Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 (N.C.); University of California San Diego Health, San Diego, Calif (C.B.S., K.J.F.); Montefiore Medical Center, Bronx, NY (V.C.); University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); University of Michigan Medical School, Ann Arbor, Mich (W.R.M.); Yale School of Medicine, New Haven, Conn (S.S.A.); Memorial Sloan Kettering Cancer Center, New York, NY (R.K.G.D.); Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Northwestern University, Chicago, Ill (A.A.B.); and University of Texas MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| |
Collapse
|
15
|
Efficacy of Combined Therapy with Drug-Eluting Beads-Transcatheter Arterial Chemoembolization Followed by Conventional Transcatheter Arterial Chemoembolization for Unresectable Hepatocellular Carcinoma: A Multi-Center Study. Cancers (Basel) 2021; 13:cancers13184605. [PMID: 34572832 PMCID: PMC8468113 DOI: 10.3390/cancers13184605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Drug-eluting beads-transcatheter chemoembolization (DEB-TACE) has recently been performed. However, local recurrence of HCC at the tumor margins is often observed. Conventional transcatheter chemoembolization (cTACE) comprises accumulating lipiodol-containing anticancer drugs into the drainage area, which is the first invasive site of hepatocellular carcinoma (HCC). We evaluate the therapeutic effect of DEB-TACE followed by cTACE in patients with intermediate stage HCC. HCC patients were divided into two groups: one group received DEB-TACE followed by cTACE (cTACE group) and the other group received only DEB-TACE (non-cTACE group). The complete response (CR) rate was significantly higher in the cTACE group than in the non-TACE group. The only factor that increased the complete response rate in the cTACE group was the number of tumors. The overall survival (OS) rate of CR patients was higher than that of non-CR patients in the cTACE group. cTACE group adverse events included severe thrombocytopenia but only in one patient. The combined therapy with DEB-TACE followed by cTACE may be useful for HCC patients. Abstract EB-TACE has recently been performed because of its lower hepatotoxicity compared to cTACE in less advanced HCC. However, local recurrence at the tumor margins is often observed after DEB-TACE. cTACE involves filling the intratumoral sinusoids with lipiodol-containing anticancer drugs and accumulating in the drainage area, which is the first site of HCC recurrence. The aim of this study is to evaluate the therapeutic effect of DEB-TACE followed by cTACE in HCC patients. Between 2014 and 2020, 65 patients with Barcelona clinic liver cancer (BCLC) stage B (intermediate stage) of HCC were enrolled and divided into two groups: one group received DEB-TACE followed by cTACE (cTACE group) and the other group received only DEB-TACE (non-cTACE group). Sixty-five patients were medically followed. The median observation time was 14 ± 13.1 months after the first DEB-TACE and outcomes were analyzed for multiple factors. Results: The complete response rate was significantly higher in the cTACE group than in the non-TACE group. The analysis showed that the only factor that increased the CR rate in the cTACE group was the total tumor number (less than four). The OS rate of CR patients was higher than that of non-CR patients in the cTACE group. Adverse events in the cTACE group included severe thrombocytopenia but only in one of twenty-seven patients. Conclusions: The combined therapy with DEB-TACE followed by cTACE may be a new effective therapeutic strategy for the intermediate stage of HCC patients.
Collapse
|
16
|
Kong D, Jiang T, Liu J, Jiang X, Liu B, Lou C, Zhao B, Carroll SL, Feng G. Chemoembolizing hepatocellular carcinoma with microsphere cored with arsenic trioxide microcrystal. Drug Deliv 2021; 27:1729-1740. [PMID: 33307843 PMCID: PMC7738295 DOI: 10.1080/10717544.2020.1856219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chemoembolization for hepatocellular carcinoma (HCC) is often suboptimal due to multiple involved signaling and lack of effective drugs. Arsenic trioxide (ATO) is a potent chemotherapeutic agent, which can target multiple signaling and have substantial efficacy on HCC. However, its usage is limited due to systemic toxicity. Using ATO-eluting beads/microspheres for chemoembolization can have locoregional drug delivery and avoid systemic exposure but will require high drug load, which has not been achieved due to low solubility of ATO. Through an innovative approach, we generated the transiently formed ATO microcrystals via micronization and stabilized these microcrystals by solvent exchange. By encapsulating ATO microcrystals, but not individual molecules, with poly(lactide-co-glycolic acid) (PLGA), we developed microspheres cored with extremely high dense ATO. The molar ratio between ATO and PLGA was 157.4:1 and drug load was 40.1%, which is 4–20 fold higher than that of reported ATO nano/microparticles. These microspheres sustainably induced reactive oxygen species, apoptosis, and cytotoxicity on HCC cells and reduced tumor growth by 80% via locoregional delivery. Chemoembolization on mice model showed that ATO-microcrystal loaded microspheres, but not ATO, inhibited HCC growth by 60–75%, which indicates ATO within these microspheres gains the chemoembolizing function via our innovative approach.
Collapse
Affiliation(s)
- Degang Kong
- Department of Hepatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Tao Jiang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of General Surgery, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jian Liu
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Xinyi Jiang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Bei Liu
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Cheng Lou
- Department of Hepatobiliary Surgery, Third Central Hospital of Tianjin, Tianjin, China
| | - Baobing Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Gong Feng
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of Pathology and Laboratory Medicine Residency Program, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
17
|
What is the optimal surgical treatment for hepatocellular carcinoma beyond the debate between anatomical versus non-anatomical resection? Surg Today 2021; 52:871-880. [PMID: 34392420 DOI: 10.1007/s00595-021-02352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
The optimal type of hepatectomy for hepatocellular carcinoma (HCC)-anatomical or non-anatomical resection-remains controversial despite numerous comparative studies. There are common fundamental issues in published studies comparing anatomical resection with non-anatomical resection: (1) confounding by indication, (2) setting primary outcomes, and (3) a lack of a clear definition of non-anatomical resection. This degrades the quality of the comparison of the two types of surgery. To measure the therapeutic effect of hepatectomy, it is essential to understand the accumulated knowledge underlying these issues, such as the mechanism of hepatocellular carcinoma spread, tumor blood flow drainage theory, and the three patterns of hepatocellular carcinoma recurrence: (1) local intrahepatic metastasis, (2) systemic metastasis, and (3) multicentric carcinogenesis recurrence. Based on evidence that the incidence of local intrahepatic metastasis was so low it was almost negligible, the therapeutic effect of anatomical resection on the oncological survival was determined to be similar to that of non-anatomical resection. Recent research progress demonstrating the clinical impact of subclinical dissemination of HCC after surgery may stimulate new debate on the optimal surgical treatment for HCC beyond the comparison of anatomical and non-anatomical resection.
Collapse
|
18
|
Hirooka M, Koizumi Y, Tanaka T, Sunago K, Nakamura Y, Watanabe T, Yoshida O, Tokumoto Y, Abe M, Hiasa Y. Radiofrequency Ablation Covering the Entire Tumor Blood Drainage Area Improves Survival in Hepatocellular Carcinoma. Hepatol Commun 2021; 5:1300-1309. [PMID: 34278177 PMCID: PMC8279463 DOI: 10.1002/hep4.1703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/29/2020] [Accepted: 02/15/2021] [Indexed: 11/10/2022] Open
Abstract
Hepatocellular carcinoma has been considered to disseminate through the tumor blood drainage area. To improve curation rates, treatment should cover this area as it may contain satellite lesions. This retrospective study aimed to investigate whether radiofrequency ablation (RFA) completely covering the blood drainage area can improve the overall and disease-free survival. We enrolled 526 patients who underwent computed tomography during hepatic arteriography following RFA from April 2001 to May 2019. Patients were categorized into a covered group in which the blood drainage area was completely covered by RFA and a noncovered group in which coverage was incomplete. The primary endpoint was the overall survival rate; secondary outcomes included disease-free survival rate, distant intrahepatic and local recurrence rate, and changes in the Child-Pugh score. There were no significant differences in baseline characteristics between the two groups. Cumulative overall survival rates were significantly higher in the covered group than in the noncovered group (hazard ratio, 0.63; 95% confidence interval, 0.48-0.84; P = 0.002). On multivariate Cox proportional hazard model analysis, age <65 years, Child-Pugh class A, and coverage of the entire drainage area were independent protective factors. Child-Pugh worsened in 11 (4.2%) patients in the covered group compared to 18 (6.7%) patients in the noncovered group. Conclusion: RFA covering the complete drainage area improved overall survival without decreasing liver function.
Collapse
Affiliation(s)
- Masashi Hirooka
- Department of Gastroenterology and MetabologyEhime University Graduate School of MedicineTouon, EhimeJapan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pang G, Shao C, Lv Y, Zhao F. Tumor attenuation and quantitative analysis of perfusion parameters derived from tri-phasic CT scans in hepatocellular carcinoma: Relationship with histological grade. Medicine (Baltimore) 2021; 100:e25627. [PMID: 33879737 PMCID: PMC8078312 DOI: 10.1097/md.0000000000025627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/01/2021] [Indexed: 01/04/2023] Open
Abstract
The aim of the current study was to explore the value of tumor attenuation and quantitative analysis of perfusion parameters obtained from traditional tri-phasic CT scans in grading hepatocellular carcinoma (HCC).Totally 39 patients (42 lesion samples) with pathologically confirmed HCC who underwent tri-phasic CT scans were enrolled. HCC lesions were divided into non-poorly differentiated HCC (NP-HCC; n = 31) and poorly differentiated HCC (pHCC; n = 11). All lesions were divided into 5 groups according to the attenuation on different CT enhancement phase. The values of tumor attenuation on different scanning phases were measured. The following parameters were calculated: arterial enhancement fraction (AEF), portal venous supply coefficient (PVC), and hepatic arterial supply coefficient (HAC). The relationship of perfusion parameters with the histological grade of HCC was analyzed. Receiver operating characteristic curves were generated.No significant correlation was observed between the perfusion parameters and tumor grading. Only HAC showed a non-significant trend in different grades of HCC (pHCC < NP-HCC; P = .07). The pHCC cases had significantly decreased values of tumor attenuation on the unenhanced phase (TAu), tumor attenuation on the portal phase portal phase (TAp), and equilibrium phase (TAe) (P < .01). The difference of tumor attenuation between the portal phase and the unenhanced phase (TAp-TAu) of the pHCC cases was decreased than that of the NP-HCC cases (P < .01), whereas the difference of attenuation between the equilibrium phase and portal phase (TAe-TAp) was significantly higher in the pHCC cases than that in the NP-HCC cases (P < .01). TAe-TAp had the highest area under the curve. The number of tumor enhancement pattern in Group 5 of HCCs with a diameter of 3 cm or more was significantly more than that of HCCs with a diameter of less than 3 cm or with other different enhancement patterns (P < .01).Histological HCC grading cannot be predicted by the perfusion parameters derived from traditional tri-phasic CT scans, whereas the tumor attenuation on different phases and the tumor attenuation differences among different phases, especially the mean value of TAe-TAp, might be useful for non-invasive prediction on the degree of HCC differentiation.
Collapse
Affiliation(s)
| | - Chunchun Shao
- Department of Evidence-Based Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan
| | - Yao Lv
- Department of Orthopedics, The Affiliated Hospital of Taishan Medical University, Tai’an
| | - Fang Zhao
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| |
Collapse
|
20
|
Corona enhancement can substitute enhancing capsule in the imaging diagnosis of small (≤ 3 cm) HCCs on gadoxetic acid-enhanced MRI. Eur Radiol 2021; 31:8628-8637. [PMID: 33891153 DOI: 10.1007/s00330-021-07911-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES This study aimed to elucidate the relationship between gadoxetic acid-enhanced magnetic resonance imaging (MRI) features-enhancing capsule, corona enhancement or hypointense rim-observed in hepatocellular carcinomas (HCCs). METHODS Of the HCCs surgically confirmed during a 5-year period (2013-2017), ≤ 3-cm lesions (n = 83) in 78 patients were evaluated. Presence of corona enhancement and enhancing capsule on multiphasic dynamic imaging and presence of hypointense rim on hepatobiliary phase imaging were determined retrospectively by two independent observers. The relationship among the three imaging features was statistically analysed and correlated with the presence of histologic fibrous capsules, tumour differentiation and gross morphologic type. RESULTS There was substantial overall interobserver agreement in determining the presence of the three imaging features. Sixty (72.3%) lesions had histologic fibrous capsule positively correlated with all three imaging features (p < 0.05). Corona enhancement was the most common (66.3%) feature followed by enhancing capsule (61.4%) and hypointense rim (33.7%), and the correspondence rate of enhancing capsule to corona enhancement was 68.6% (p = 0.004). Corona enhancement was more frequently observed in moderately differentiated HCCs than other lesions (p = 0.012) and not dependent (p = 0.465) on the tumour size, while enhancing capsule was significantly dependent on tumour size, as indicated by univariate (p < 0.001) and multivariate analyses (odds ratio, 4.241; p = 0.002). CONCLUSIONS Among the capsular features, corona enhancement might closely relate to enhancing capsule in HCCs. Corona enhancement was not dependent on tumour size and had the highest incidence of appearance on gadoxetic acid-enhanced multiphasic dynamic MRI. KEY POINTS • Enhancing capsule has a limited role in the LI-RADS categorisation during gadoxetic acid-enhanced MRI. • Appearance of corona enhancement is closely related to enhancing capsule and is not dependent on size of HCCs. • Corona enhancement can substitute enhancing capsule in the diagnosis of HCCs during multiple arterial and portal venous phase gadoxetic acid-enhanced MRI.
Collapse
|
21
|
Higashihara H, Osuga K, Onishi H, Nakamoto A, Tsuboyama T, Tomiyama N. The diagnostic value of dual-phase cone-beam CT during hepatic arteriography in transarterial chemoembolization for hepatocellular carcinoma. Medicine (Baltimore) 2021; 100:e24902. [PMID: 33761647 PMCID: PMC9281990 DOI: 10.1097/md.0000000000024902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/01/2021] [Indexed: 01/05/2023] Open
Abstract
To evaluate the diagnostic value of dual-phase cone beam CT during hepatic arteriography (CBCTHA) for hepatocellular carcinoma (HCC).Thirty seven patients with unresectable HCC underwent the dual-phase CBCTHA prior to transarterial chemoembolization (TACE). Three blinded observers independently reviewed and compared the first phase CBCTHA images alone and the dual phase CBCTHA images. Diagnostic accuracy was evaluated by the alternative free-response receiver operating characteristic method (Area under the curve: Az value). Sensitivities were analyzed with the paired t test. The analysis was performed for overall HCCs, HCCs up to 1 cm and those larger than 1 cm.For all HCCs and HCCs up to 1 cm, Az value and sensitivity showed no significant difference between the first-phase CBCTHA alone and the dual-phase CBCTHA (Az: 0.81 vs 0.88, P = .07, 0.79 and 0.85, P = .14, sensitivity: 0.61 and 0.73, P = .11, 0.41 and 0.52, P = .33, respectively). For HCCs larger than 1 cm, the mean Az value and sensitivity for the dual-phase CBCTHA were significantly higher than those for the first phase CBCTHA alone (Az: 0.96 vs 0.92, P = .008, sensitivity: 0.85 vs 0.75, P = .013, respectively).The diagnostic accuracy of the dual-phase CBCTHA was superior to that of the first phase CBCTHA alone in the diagnosis of HCC larger than 1 cm.
Collapse
Affiliation(s)
- Hiroki Higashihara
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita
| | - Keigo Osuga
- Department of Radiology, Osaka Medical College, 2-7 Daigakucho, Takatsuki, Osaka, Japan
| | - Hiromitsu Onishi
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita
| | - Atsushi Nakamoto
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita
| | - Takahiro Tsuboyama
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita
| | - Noriyuki Tomiyama
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita
| |
Collapse
|
22
|
Liver Imaging and Data System (LI-RADS) Version 2018 and Other Imaging Features in Intrahepatic Cholangiocarcinoma in Chinese Adults with vs. without Chronic Hepatitis B Viral Infection. Can J Gastroenterol Hepatol 2021; 2021:6639600. [PMID: 33748033 PMCID: PMC7952186 DOI: 10.1155/2021/6639600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/08/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To describe liver imaging reporting and data system (LI-RADS) version 2018 and other MRI imaging features in intrahepatic mass-forming cholangiocarcinoma (iCCA) in Chinese adults with vs. without chronic hepatitis B viral (HBV) infection. METHODS We retrospectively enrolled 89 patients with pathologically proven iCCA after multiphase imaging performed between 2004 and 2017 at a tertiary medical center in southern China. Based on whether patients had chronic HBV, iCCA was divided into two subgroups: HBV-positive (n = 50 patients, including 9 with cirrhosis) vs. HBV-negative (n = 39 patients, including 14 with hepatolithiasis and 25 with no identifiable risk factor for iCCA; none had cirrhosis). Two independent abdominal radiologists in consensus reviewed the largest mass in each patient to assign LI-RADS v2018 features; they also scored each observation's shape and location. Imaging features were compared using chi-square or Fisher's exact tests. RESULTS Most iCCAs in HBV-positive (88% (44/50)) and HBV-negative (97% (38/39)) patients had at least one LR-M feature. Compared to iCCAs in HBV-negative patients, iCCAs in HBV-positive patients were more likely to have at least one major feature of HCC (46% (23/50) vs. 8% (3/39), P < 0.001) and more likely to be smooth (42% (21/50) vs. 10% (4/39), P = 0.001). Six of 50 (12%) iCCAs in HBV-positive patients and 1/39 (3%) iCCAs in HBV-negative patients had at least one major feature of HCC without any LR-M feature. CONCLUSIONS In this retrospective single-center study in Chinese adults, iCCAs in HBV-positive patients were more likely to resemble HCCs than iCCAs in HBV-negative patients.
Collapse
|
23
|
Miyayama S, Yamashiro M, Ikeda R, Matsumoto J, Ogawa N, Sakuragawa N. Usefulness of virtual parenchymal perfusion software visualizing embolized areas to determine optimal catheter position in superselective conventional transarterial chemoembolization for hepatocellular carcinoma. Hepatol Res 2021; 51:313-322. [PMID: 33368873 DOI: 10.1111/hepr.13611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
AIM To determine the optimal catheter position during superselective conventional transarterial chemoembolization (cTACE) for hepatocellular carcinoma (HCC) using virtual parenchymal perfusion software. METHODS Patients who had newly developed HCC nodules ≤6 cm and five or fewer lesions were eligible. The virtual catheter tip was placed on a tumor-feeder identified by TACE guidance software using cone-beam computed tomography during hepatic arteriography to minimize the virtual embolized area (VEA), including the tumor with a safety margin. Conventional transarterial chemoembolization was then carried out at the same position. The VEA and real embolized area where iodized oil was retained on cone-beam computed tomography after cTACE were compared using the dice similarity coefficient, linear regression analysis, and mean surface distance. Technical success of cTACE and therapeutic effects by the modified Response Evaluation Criteria in Solid Tumors were also evaluated. RESULTS Ninety-one tumors in 56 patients were embolized. The mean dice similarity coefficient values in 80 VEAs and real embolized areas were 0.78 ± 0.01. Both volumes were well correlated (r = 0.957, p < 0.001) with a mean surface distance of 2.78 ± 2.11 mm. Eighty-four (92.3%) tumors were embolized with a safety margin. Regarding the early response of 82 tumors, complete response was achieved in 72 (87.8%), partial response in six (7.3%), and stable disease in four (4.9%). Regarding responses of 81 tumors during the follow-up (mean, 20 ± 4.9 months), complete response was maintained in 62 (76.5%), whereas 19 (23.5%), including six that were incompletely embolized, locally progressed. CONCLUSION Virtual parenchymal perfusion software can determine the optimal catheter position in superselective cTACE.
Collapse
Affiliation(s)
- Shiro Miyayama
- Department of Diagnostic Radiology, Fukui-ken Saiseikai Hospital, Fukui, Japan
| | - Masashi Yamashiro
- Department of Diagnostic Radiology, Fukui-ken Saiseikai Hospital, Fukui, Japan
| | - Rie Ikeda
- Department of Diagnostic Radiology, Fukui-ken Saiseikai Hospital, Fukui, Japan
| | - Junichi Matsumoto
- Department of Diagnostic Radiology, Fukui-ken Saiseikai Hospital, Fukui, Japan
| | - Nobuhiko Ogawa
- Department of Diagnostic Radiology, Fukui-ken Saiseikai Hospital, Fukui, Japan
| | - Naoko Sakuragawa
- Department of Diagnostic Radiology, Fukui-ken Saiseikai Hospital, Fukui, Japan
| |
Collapse
|
24
|
Kang HJ, Lee JM, Jeon SK, Jang S, Park S, Joo I, Yoon JH, Han JK. Intra-individual comparison of dual portal venous phases for non-invasive diagnosis of hepatocellular carcinoma at gadoxetic acid-enhanced liver MRI. Eur Radiol 2020; 31:824-833. [PMID: 32845387 DOI: 10.1007/s00330-020-07162-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To compare the diagnostic performances of first and second portal venous phases (PVP1 and PVP2) in revealing washout and capsule appearance for non-invasive HCC diagnoses in gadoxetic acid-enhanced MRI (Gd-EOB-MRI). METHODS This retrospective study included 123 at-risk patients with 160 hepatic observations (HCCs, n = 116; non-HCC malignancies, n = 18; benign, n = 26) showing arterial phase hyper-enhancement (APHE) ≥ 1 cm at Gd-EOB-MRI. The mean time intervals from gadoxetic acid injection to PVP1 and PVP2 acquisitions were 53 ± 2 s and 73 ± 3 s, respectively. After evaluating image findings independently, imaging findings and diagnoses were finalized by a consensus of two radiologists using either PVP1 or PVP2 image sets according to the LI-RADS v2018 or EASL criteria. Sensitivity, specificity, and accuracy were compared. RESULTS Among HCCs, more washout and enhancing capsule were observed in PVP2 (83.6% and 27.6%) than in PVP1 (50.9% and 19.8%) (p < 0.001, both). The PVP2 set presented significantly higher sensitivity (83.6% vs. 53.5%, LI-RADS; 82.8% vs. 50.0%, EASL; p < 0.001, both) and accuracy (0.88 vs. 0.73, LI-RADS; 0.88 vs. 0.72, EASL; p < 0.001, both) than the PVP1 set without significant specificity loss (93.2% vs. 93.2%, by LI-RADS or EASL; p = 0.32, both). None of the non-HCC malignancy was non-invasively diagnosed as HCC in both PVP image sets. CONCLUSION Late acquisition of PVP detected washout and enhancing capsule of HCC more sensitively than early acquisition, enabling accurate diagnoses of HCC, according to LI-RADS or EASL criteria. KEY POINTS • Among HCCs, more washout and enhancing capsules were observed in PVP2 than PVP1, quantitatively and qualitatively. • The portal venous phase acquired at around 70 s after contrast media administration (PVP2) provided significantly higher sensitivity and AUC value than PVP1 by using LI-RADS v2018 or EASL criteria. • More HCCs were categorized as LR-5 in PVP2 than in PVP1 images, and the specificity of PVP2 (93.5%) was comparable with PVP1 (93.5%).
Collapse
Affiliation(s)
- Hyo-Jin Kang
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea.,Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul, 03080, South Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea. .,Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul, 03080, South Korea. .,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea.
| | - Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea.,Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul, 03080, South Korea
| | - Siwon Jang
- Department of Radiology, Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Sungeun Park
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea.,Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul, 03080, South Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea.,Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul, 03080, South Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea.,Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul, 03080, South Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea.,Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul, 03080, South Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea
| |
Collapse
|
25
|
Saito K, Ledsam J, Sourbron S, Araki Y. Validation study of perfusion parameter in hypervascular hepatocellular carcinoma and focal nodular hyperplasia using dynamic susceptibility magnetic resonance imaging with super-paramagnetic iron oxide: comparison with single level dynamic CT arteriography. Quant Imaging Med Surg 2020; 10:1298-1306. [PMID: 32550138 DOI: 10.21037/qims-18-233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Dynamic susceptibility contrast MR imaging (DSC-MRI) offers direct evaluation of neo-vascularity. Ferucarbotran does not accumulate in the interstitial space, instead remaining in the intravascular space during early phase imaging. We investigate tracer kinetic analysis with DSC-MRI with ferucarbotran and single level CT during hepatic arteriography (SL-CTHA) in assessment of hypervascular hepatocellular lesions and evaluate the usefulness of DSC-MRI with ferucarbotran. Methods Six patients having hypervascular hepatocellular carcinoma (HCC) and 3 patients having focal nodular hyperplasia (FNH) were included in the study. SL-CTHA was performed with the infusion of 3 mL of contrast media at a rate of 1 mL/s and scanned at a rate of 0.8 second per rotation. DSC-MRI was acquired with the echo-planar method at 1.5T system. A total dose of 1.4 mL (0.5 mol Fe/L) of ferucarbotran was used. Ferucarbotran was injected at a rate of 2 mL/s with 40 mL of physiological saline. Imaging was obtained at a temporal resolution of 1.2 or 0.46 seconds in 5 and 4 patients, respectively. For both CT and MRI modalities, a model-free analysis method was used to derive region of interest-based perfusion parameters. Plasma flow, distribution volume (DV) of contrast agent and estimated mean transit time (EMTT) were estimated. Results A strong correlation was obtained with plasma flow (r=0.8231, P=0.0064) between DSC-MRI and SL-CTHA. No significant correlation was obtained for DV and EMTT between DSC-MRI and SL-CTHA. All perfusion parameters showed no significant difference between SL-CTHA and DSC-MRI in FNH. On the other hand, in HCC, DV and EMTT showed significant differences (P=0.046 and 0.046), and plasma flow showed no significant difference between DSC-MRI and SL-CTHA. Conclusions This pilot study demonstrates the possibility of quantitative analysis of liver tumor using superparamagnetic iron oxide (SPIO)-based agent and highlights the potential for SPIO-based agent in more precisely assessing the perfusion characteristic of hypervascular liver tumors than by using extracellular contrast media.
Collapse
Affiliation(s)
- Kazuhiro Saito
- Department of Radiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Joseph Ledsam
- Division of Biomedical Imaging, Leeds University, Leeds, UK
| | | | - Yoichi Araki
- Department of Radiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
26
|
Watanabe J, Endo K, Tanaka Y, Goto K, Urushibara S, Osaki T, Tatebe S, Nakamura S, Hirooka Y, Ikeguchi M. Investigation of the Utility and Safety of Dynamic Computed Tomography with Vasodilators. Yonago Acta Med 2020; 63:47-54. [PMID: 32158333 DOI: 10.33160/yam.2020.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/17/2020] [Indexed: 01/10/2023]
Abstract
Background Dynamic computed tomography (CT) angiography is useful for evaluating of hepatic vascularity. Although vasodilators increase hepatic blood flow, the utility of dynamic CT with vasodilators is unclear. Here we investigated the utility and safety of dynamic CT with vasodilators. Methods A prospective case-control radiographic evaluation using abdominal dynamic CT with and without vasodilator was performed at a single center between October 2015 and September 2016. We compared the CT values in Hounsfield units of the aorta; celiac artery; and common, right, and left hepatic arteries in the arterial phase and the main trunk; right and left branches of the portal vein; and right, middle, and left hepatic veins in the portal phase with and without vasodilators. The region of interest was set in each element of the liver vasculature. Four radiological technologists independently and visually compared the scores of the portal vein (P-score) and hepatic vein (V-score) on a 5-point scale with and without vasodilators. Results The CT values of arteries and veins using vasodilators were significantly higher than those without vasodilators. With and without vasodilators, the P-scores were 3.1 ± 1.2 and 4.0 ± 1.1 (P < 0.05) and the V-scores were 3.3 ± 1.4 and 4.3 ± 1.0 (P < 0.05). Only one patient with vasodilator use had transient hypotension and recovered immediately without medication. Conclusion Dynamic CT with vasodilators can provides better visualization of vascular structures.
Collapse
Affiliation(s)
- Jun Watanabe
- Department of Surgery, Tottori Prefectural Central Hospital, Tottori 680-0901, Japan
| | - Kanenori Endo
- Department of Surgery, Tottori Prefectural Central Hospital, Tottori 680-0901, Japan
| | - Yasutaka Tanaka
- Department of Radiology, Tottori Prefectural Central Hospital, Tottori 680-0901, Japan
| | - Keisuke Goto
- Department of Surgery, Tottori Prefectural Central Hospital, Tottori 680-0901, Japan
| | - Shoichi Urushibara
- Department of Surgery, Tottori Prefectural Central Hospital, Tottori 680-0901, Japan
| | - Tomohiro Osaki
- Department of Surgery, Tottori Prefectural Central Hospital, Tottori 680-0901, Japan
| | - Shigeru Tatebe
- Department of Surgery, Tottori Prefectural Central Hospital, Tottori 680-0901, Japan
| | - Seiichi Nakamura
- Department of Surgery, Tottori Prefectural Central Hospital, Tottori 680-0901, Japan
| | - Yasuaki Hirooka
- Department of Surgery, Tottori Prefectural Central Hospital, Tottori 680-0901, Japan
| | - Masahide Ikeguchi
- Department of Surgery, Tottori Prefectural Central Hospital, Tottori 680-0901, Japan
| |
Collapse
|
27
|
Sakon M, Kobayashi S, Wada H, Eguchi H, Marubashi S, Takahashi H, Akita H, Gotoh K, Yamada D, Asukai K, Hasegawa S, Ohue M, Yano M, Nagano H. "Logic-Based Medicine" Is More Feasible than "Evidence-Based Medicine" in the Local Treatment for Hepatocellular Carcinoma. Oncology 2020; 98:259-266. [PMID: 32045926 DOI: 10.1159/000505554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/12/2019] [Indexed: 01/18/2023]
Abstract
The optimal type of surgery (e.g., anatomic or non-anatomic resection) or radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC) is still under debate despite numerous comparative studies based on overall survival. This debate continues not only because these endpoints are influenced by non-surgical factors, such as liver function, but because the definition of non-anatomic resection for HCC has remained unclear. The optimal surgery could be logically determined based on the mechanism of local intrahepatic metastasis, that is, the drainage of tumour blood flow (TBF), because HCC spreads locally through tumour blood flowing to the peri-tumourous liver parenchyma. Since TBF is clearly demonstrated by CT scan under hepatic arteriography, the surgical margin can be determined individually based on the drainage of TBF without deteriorating local curability. Controversy regarding RFA and surgery does not result from the curability of treatment itself but from the lack of scientific evidence on safety margins. Based on proper concepts and self-evident truths, an algorithm of loco-regional treatment for HCC is proposed.
Collapse
Affiliation(s)
- Masato Sakon
- Department of Surgery, Osaka International Cancer Institute, Osaka, Japan,
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroshi Wada
- Department of Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shigeru Marubashi
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University, Fukushima, Japan
| | - Hidenori Takahashi
- Department of Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Daisaku Yamada
- Department of Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Kei Asukai
- Department of Surgery, Osaka International Cancer Institute, Osaka, Japan
| | | | - Masayuki Ohue
- Department of Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Masahiko Yano
- Department of Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
28
|
A case of primary clear cell hepatocellular carcinoma comprised mostly of clear cells. Radiol Case Rep 2019; 14:1377-1381. [PMID: 31695824 PMCID: PMC6823767 DOI: 10.1016/j.radcr.2019.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 01/26/2023] Open
Abstract
Clear cell hepatocellular carcinoma (CHCC) is defined as a tumor which contains more than 50% of clear cells. However, CHCC with more than 90% of clear cells are extremely rare. We report a case of a 65-year-old woman who was found to have a solitary mass, which was histologically diagnosed as clear cell hepatocellular carcinoma composed of 90% or more clear cells. The tumor presented rim arterial phase hyperenhancement in computed tomography, magnetic resonance imaging, and computed tomography during hepatic arteriography, and was classified as LR-M category according to The Liver Imaging Reporting and Data System version 2018(LI-RADS v2018). This tumor may mimic other tumors with similar radiographic features, such as intrahepatic cholangiocellular carcinoma and metastatic tumor.
Collapse
|
29
|
Chou YC, Lao IH, Hsieh PL, Su YY, Mak CW, Sun DP, Sheu MJ, Kuo HT, Chen TJ, Ho CH, Kuo YT. Gadoxetic acid-enhanced magnetic resonance imaging can predict the pathologic stage of solitary hepatocellular carcinoma. World J Gastroenterol 2019; 25:2636-2649. [PMID: 31210715 PMCID: PMC6558433 DOI: 10.3748/wjg.v25.i21.2636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although important for determining long-term outcome, pathologic stage of hepatocellular carcinoma (HCC) is difficult to predict before surgery. Current state-of-the-art magnetic resonance imaging (MRI) using gadoxetic acid provides many imaging features that could potentially be used to classify single HCC as pT1 or pT2.
AIM To determine which gadoxetic acid-enhanced MRI (EOB-MRI) findings predict pathologic stage T2 in patients with solitary HCC (cT1).
METHODS Pre-operative EOB-MRI findings were reviewed in a retrospective cohort of patients with solitary HCC. The following imaging features were examined: Hyperintensity in unenhanced T2-weighted images, hypointensity in unenhanced T1-weighted images, arterial enhancement, corona enhancement, washout appearance, capsular appearance, hypointensity in the tumor tissue during the hepatobiliary (HB) phase, peritumoral hypointensity in the HB phase, hypointense rim in the HB phase, intratumoral fat, hyperintensity on diffusion-weighted imaging, hypointensity on apparent diffusion coefficient map, mosaic appearance, nodule-in-nodule appearance, and the margin (smooth or irregular). Surgical pathology was used as the reference method for tumor staging. Univariate and multivariate analyses were performed to identify predictors of microvascular invasion or satellite nodules.
RESULTS There were 39 (34.2%; 39 of 114) and 75 (65.8%; 75 of 114) pathological stage T2 and T1 HCCs, respectively. Large tumor size (≥ 2.3 cm) and two MRI findings, i.e., corona enhancement [odds ratio = 2.67; 95% confidence interval: 1.101-6.480] and peritumoral hypointensity in HB phase images (odds ratio = 2.203; 95% confidence interval: 0.961-5.049) were associated with high risk of pT2 HCC. The positive likelihood ratio was 6.25 (95% confidence interval: 1.788-21.845), and sensitivity of EOB-MRI for detecting pT2 HCC was 86.2% when two or three of these MRI features were present. Small tumor size and hypointense rim in the HB phase were regarded as benign features. Small HCCs with hypointense rim but not associated with aggressive features were mostly pT1 lesions (specificity, 100%).
CONCLUSION Imaging features on EOB-MRI could potentially be used to predict the pathologic stage of solitary HCC (cT1) as pT1 or pT2.
Collapse
Affiliation(s)
- Yi-Chen Chou
- Department of Medical Imaging, Chi Mei Medical Center, Tainan 710, Taiwan
| | - I-Ha Lao
- Department of Medical Imaging, Chi Mei Medical Center, Tainan 710, Taiwan
- Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pei-Ling Hsieh
- Department of Medical Imaging, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Ying-Ying Su
- Department of Medical Imaging, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Chee-Wai Mak
- Department of Medical Imaging, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Ding-Ping Sun
- Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Food Science and Technology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Ming-Jen Sheu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Medicinal Chemistry, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Hsing-Tao Kuo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Tzu-Ju Chen
- Department of Pathology, Chi-Mei Medical Center, Tainan 710, Taiwan
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan 717, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chung-Han Ho
- Department of Medical Research, Chi-Mei Medical Center, Tainan 710, Taiwan
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Yu-Ting Kuo
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Radiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
30
|
Nakano MM, Yamamoto A, Nishida N, Hamuro M, Hamamoto S, Jogo A, Sohgawa E, Kageyama K, Minami T, Miki Y. Risk factors for local recurrence of hepatocellular carcinoma after transcatheter arterial chemoembolization with drug-eluting beads (DEB-TACE). Jpn J Radiol 2019; 37:543-548. [DOI: 10.1007/s11604-019-00840-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/18/2019] [Indexed: 12/11/2022]
|
31
|
Ogura A, Maeda F, Yahata S, Koyama D, Tsunoda F, Hayashi N, Motegi S, Yamamura K. Slow component apparent diffusion coefficient for prostate cancer: Comparison and correlation with pharmacokinetic evaluation from dynamic contrast-enhanced MR imaging. Magn Reson Imaging 2019; 58:14-17. [DOI: 10.1016/j.mri.2019.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/10/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
|
32
|
Miyayama S. Ultraselective conventional transarterial chemoembolization: When and how? Clin Mol Hepatol 2019; 25:344-353. [PMID: 31022779 PMCID: PMC6933118 DOI: 10.3350/cmh.2019.0016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Ultraselective conventional transarterial chemoembolization (cTACE), defined as cTACE at the most distal portion of the subsubsegmental hepatic artery, is mainly performed for hepatocellular carcinoma (HCC) ≤5 cm. Distal advancement of a microcatheter enables injection of a larger volume of iodized oil into the portal vein in the limited area under non-physiological hemodynamics. As a result, the reversed portal flow into the tumor through the drainage route of the tumor that occurs when the hepatic artery is embolized is temporarily blocked. By adding gelatin sponge slurry embolization, both the hepatic artery and portal vein are embolized and not only complete necrosis of can be achieved. Ultraselective cTACE can cure small HCCs including less hypervascular tumor portions and replace surgical resection and radiofrequency ablation in selected patients.
Collapse
Affiliation(s)
- Shiro Miyayama
- Department of Diagnostic Radiology, Fukui-ken Saiseikai Hospital, Fukui, Japan
| |
Collapse
|
33
|
Subbotin VM. A hypothesis on paradoxical privileged portal vein metastasis of hepatocellular carcinoma. Can organ evolution shed light on patterns of human pathology, and vice versa? Med Hypotheses 2019; 126:109-128. [PMID: 31010487 DOI: 10.1016/j.mehy.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/25/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Unlike other carcinomas, hepatocellular carcinoma (HCC) metastasizes to distant organs relatively rarely. In contrast, it routinely metastasizes to liver vasculature/liver, affecting portal veins 3-10 times more often than hepatic veins. This portal metastatic predominance is traditionally rationalized within the model of a reverse portal flow, due to accompanying liver cirrhosis. However, this intuitive model is not coherent with facts: 1) reverse portal flow occurs in fewer than 10% of cirrhotic patients, while portal metastasis occurs in 30-100% of HCC cases, and 2) portal vein prevalence of HCC metastasis is also characteristic of HCC in non-cirrhotic livers. Therefore, we must assume that the route for HCC metastatic dissemination is the same as for other carcinomas: systemic dissemination via the draining vessel, i.e., via the hepatic vein. In this light, portal prevalence versus hepatic vein of HCC metastasis appears as a puzzling pattern, particularly in cases when portal HCC metastases have appeared as the sole manifestation of HCC. Considering that other GI carcinomas (colorectal, pancreatic, gastric and small bowel) invariably disseminate via portal vein, but very rarely form portal metastasis, portal prevalence of HCC metastasis appears as a paradox. However, nature does not contradict itself; it is rather our wrong assumptions that create paradoxes. The 'portal paradox' becomes a logical event within the hypothesis that the formation of the unique portal venous system preceded the appearance of liver in evolution of chordates. The analysis suggests that the appearance of the portal venous system, supplying hormones and growth factors of pancreatic family, which includes insulin, glucagon, somatostatin, and pancreatic polypeptide (HGFPF) to midgut diverticulum in the early evolution of chordates (in an Amphioxus-like ancestral animal), promoted differentiation of enterocytes into hepatocytes and their further evolution to the liver of vertebrates. These promotional-dependent interactions are conserved in the vertebrate lineage. I hypothesize that selective homing and proliferation of malignant hepatocytes (i.e., HCC cells) in the portal vein environment are due to a uniquely high concentration of HGFPF in portal blood. HGFPF are also necessary for liver function and renewal and are significantly extracted by hepatocytes from passing blood, creating a concentration gradient of HGFPF between the portal blood and hepatic vein outflow, making post-liver vasculature and remote organs less favorable spaces for HCC growth. It also suggested that the portal vein environment (i.e., HGFPF) promotes the differentiation of more aggressive HCC clones from already-seeded portal metastases, explaining the worse outcome of HCC with the portal metastatic pattern. The analysis also offers new hypothesis on the phylogenetic origin of the hepatic diverticulum of cephalochordates, with certain implications for the modeling of the chordate phylogeny.
Collapse
Affiliation(s)
- Vladimir M Subbotin
- Arrowhead Parmaceuticals, Madison, WI 53719, USA; University of Wisconsin, Madison, WI 53705, USA; University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
34
|
Cerny M, Chernyak V, Olivié D, Billiard JS, Murphy-Lavallée J, Kielar AZ, Elsayes KM, Bourque L, Hooker JC, Sirlin CB, Tang A. LI-RADS Version 2018 Ancillary Features at MRI. Radiographics 2018; 38:1973-2001. [DOI: 10.1148/rg.2018180052] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Yacoub JH, Elsayes KM, Fowler KJ, Hecht EM, Mitchell DG, Santillan C, Szklaruk J. Pitfalls in liver MRI: Technical approach to avoiding misdiagnosis and improving image quality. J Magn Reson Imaging 2018; 49:41-58. [DOI: 10.1002/jmri.26343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- Joseph H Yacoub
- Department of Radiology; Medstar Georgetown University Hospital; Washington DC USA
| | - Khaled M. Elsayes
- Department of Diagnostic Radiology; University of Texas MD Anderson Cancer Center; Houston Texas USA
| | - Kathryn J. Fowler
- University of California San Diego Health System, Department of Radiology; San Diego California USA
| | - Elizabeth M. Hecht
- Department of Radiology; New York Presbyterian-Columbia University Medical Center; New York New York
| | - Donald G. Mitchell
- Department of Radiology; Thomas Jefferson University; Philadelphia Pennsylvania USA
| | - Cynthia Santillan
- Liver Imaging Group; University of California San Diego; San Diego California USA
| | - Janio Szklaruk
- Department of Diagnostic Radiology; University of Texas MD Anderson Cancer Center; Houston Texas USA
| |
Collapse
|
36
|
Ishimaru H, Morikawa M, Sakugawa T, Sakamoto I, Motoyoshi Y, Ikebe Y, Uetani M. Cerebral lipiodol embolism related to a vascular lake during chemoembolization in hepatocellular carcinoma: A case report and review of the literature. World J Gastroenterol 2018; 24:4291-4296. [PMID: 30310262 PMCID: PMC6175758 DOI: 10.3748/wjg.v24.i37.4291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/04/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
A male patient underwent conventional transcatheter chemoembolization for advanced recurrent hepatocellular carcinoma (HCC). Even after the injection of 7 mL of lipiodol followed by gelatin sponge particles, the flow of feeding arteries did not slow down. A repeat angiography revealed a newly developed vascular lake draining into systemic veins; however, embolization was continued without taking noticing of the vascular lake. The patient’s level of consciousness deteriorated immediately after the procedure, and non-contrast computed tomography revealed pulmonary and cerebral lipiodol embolisms. The patient’s level of consciousness gradually improved after 8 wk in intensive care. In this case, a vascular lake emerged during chemoembolization and drained into systemic veins, offering a pathway carrying lipiodol to pulmonary vessels, the most likely cause of this serious complication. We should be aware that vascular lakes in HCC may drain into systemic veins and can cause intratumoral arteriovenous shunts.
Collapse
Affiliation(s)
- Hideki Ishimaru
- Department of Radiology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Minoru Morikawa
- Department of Radiology, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Takayuki Sakugawa
- Department of Radiology, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Ichiro Sakamoto
- Department of Radiology, Nagasaki Harbor Medical Cancer, Nagasaki 850-8555, Japan
| | - Yasuhide Motoyoshi
- Department of Gastroenterology, Nagasaki Harbor Medical Cancer, Nagasaki 850-8555, Japan
| | - Yohei Ikebe
- Department of Radiological Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Masataka Uetani
- Department of Radiological Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| |
Collapse
|
37
|
Komatsu D, Yamada A, Suzuki T, Kurozumi M, Fujinaga Y, Ueda K, Kadoya M. Compartment model analysis of intravenous contrast-enhanced dynamic computed tomography in hepatic hemodynamics: A validation study using intra-arterial contrast-enhanced computed tomography. Hepatol Res 2018; 48:829-838. [PMID: 29476594 DOI: 10.1111/hepr.13073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 01/24/2023]
Abstract
AIM To verify the utility of the 2-in-1-out-compartment model analysis (CMA) of intravenous contrast-enhanced dynamic computed tomography (IV-CT) for evaluating hepatic arterial and portal venous flow using intra-arterial contrast-enhanced CT (IA-CT). METHODS We retrospectively evaluated 49 consecutive patients who underwent IV-CT and were radiologically or histologically diagnosed as having hepatic malignant lesion (51 classical hepatocellular carcinomas [HCC], 4 early HCC, 3 cholangiolocellular carcinomas, 1 mixed HCC, 3 cholangiocellular carcinomas). As a gold standard for hepatic arterial and portal blood flows, we defined the normalized enhancement in CT values on CTAP (nCTAP) and CTHA (nCTHA). The hepatic arterial (k1a ) and portal venous inflow velocity (k1p ) constants in hepatic lesions and surrounding liver parenchyma were obtained from the CMA of IV-CT with various outflow velocity constant (k2 ) limits using the nonlinear least square method. The correlation coefficient between the normalized enhancement in IA-CT and CMA of IV-CT was statistically evaluated according to various k2 limits. RESULTS The highest mean correlation coefficient between k1a and nCTHA (r = 0.65, P < 0.0001) was observed when k2 ≦0.035. The highest mean correlation coefficient between k1p and nCTAP (r = 0.69, P < 0.0001) was observed when k2 ≦0.045. The decrease in correlation coefficient was significant when the upper k2 limit was lower than 0.03 or higher than 0.07 compared to the best mean correlation coefficient (P < 0.05). CONCLUSION Hepatic arterial and portal venous flows can be evaluated quantitatively to some extent with appropriate outflow velocity constant limits using the CMA of IV-CT.
Collapse
Affiliation(s)
- Daisuke Komatsu
- Department of Radiology, Shinshu University School of Medicine, Nagano, Tokyo, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, Nagano, Tokyo, Japan
| | - Takeshi Suzuki
- Department of Radiology, Shinshu University School of Medicine, Nagano, Tokyo, Japan
| | - Masahiro Kurozumi
- Department of Radiology, Shinshu University School of Medicine, Nagano, Tokyo, Japan
| | - Yasunari Fujinaga
- Department of Radiology, Shinshu University School of Medicine, Nagano, Tokyo, Japan
| | - Kazuhiko Ueda
- Diagnostic Imaging Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masumi Kadoya
- Department of Radiology, Shinshu University School of Medicine, Nagano, Tokyo, Japan
| |
Collapse
|
38
|
A case of pseudoglandular hepatocellular carcinoma: The usefulness of a multimodal approach. Radiol Case Rep 2018; 13:689-692. [PMID: 30046366 PMCID: PMC6056704 DOI: 10.1016/j.radcr.2018.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/24/2018] [Indexed: 11/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) mainly composed of the pseudoglandular pattern is very rare. We present a case of pseudoglandular HCC that was hyperechoic on ultrasound, with strongly high signal intensity on T2-weighted imaging and weak arterial contrast enhancement. Computed tomography hepatic arteriography showed corona enhancement. Radiologists should keep in mind this combination of multimodal radiological findings for pseudoglandular HCC.
Collapse
|
39
|
Differentiation Between Hepatocellular Carcinoma Showing Hyperintensity on the Hepatobiliary Phase of Gadoxetic Acid-Enhanced MRI and Focal Nodular Hyperplasia by CT and MRI. AJR Am J Roentgenol 2018; 211:347-357. [PMID: 29708786 DOI: 10.2214/ajr.17.19341] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The purpose of this study is to identify points useful in the imaging differentiation of hepatocellular carcinoma (HCC) showing hyperintensity on the hepatobiliary phase of gadoxetic acid-enhanced MRI and focal nodular hyperplasia (FNH) and FNH-like nodules. MATERIALS AND METHODS We enrolled consecutive 51 pathologically diagnosed HCCs that were hyperintense on hepatobiliary phase imaging (47 patients, including 44 with cirrhosis) and 10 FNHs and eight FNH-like nodules (16 patients, including five with cirrhosis). Imaging findings of dynamic CT and gadoxetic acid-enhanced MRI were assessed by two radiologists and compared between HCC and FNH. RESULTS The apparent diffusion coefficient (ADC) was lower in hyperintense HCC than in FNH (p = 0.004). The enhancement patterns of hyperintense HCC and FNH at dynamic CT were significantly different (p < 0.0001), with 95.9% of HCCs and 22.2% of FNHs showing arterial phase enhancement with a washout pattern, and 4.1% of HCCs and 77.8% of FNHs showing arterial phase enhancement without a washout pattern. The frequency of coronalike enhancement was 84.3% in hyperintense HCCs versus 11.1% in FNHs (p < 0.0001). The signal distribution on the hepatobiliary phase was significantly different between hyperintense HCCs and FNHs (p = 0.0002). The frequency of a capsulelike rim was 88.2% versus 22.2%, that of a mosaic appearance was 72.5% versus 11.1%, and that of a central scar was 0% versus 55.6% in hyperintense HCCs versus FNHs (all p < 0.0001). Multivariate logistic regression analysis showed that ADC ratio (p = 0.03; odds ratio, 0.12) and enhancement pattern at dynamic CT (p = 0.04; odds ratio, 16.21) were the independent factors for differentiation between hyperintense HCC and FNH. CONCLUSION For the diagnosis of hyperintense HCC differentiated from FNH and FNH-like nodule, arterial phase enhancement and washout pattern at dynamic CT and decrease of ADC ratio would be important findings.
Collapse
|
40
|
Ring-Like Enhancement of Hepatocellular Carcinoma in Gadoxetic Acid–Enhanced Multiphasic Hepatic Arterial Phase Imaging With Differential Subsampling With Cartesian Ordering. Invest Radiol 2018; 53:191-199. [DOI: 10.1097/rli.0000000000000428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Kurozumi M, Fujinaga Y, Kitou Y, Yamada A, Ohya A, Adachi Y, Tsukahara Y, Nickel MD, Maruyama K, Uehara T, Miyagawa SI, Kadoya M. Evaluation of hemodynamic imaging findings of hypervascular hepatocellular carcinoma: comparison between dynamic contrast-enhanced magnetic resonance imaging using radial volumetric imaging breath-hold examination with k-space-weighted image contrast reconstruction and dynamic computed tomography during hepatic arteriography. Jpn J Radiol 2018; 36:295-302. [PMID: 29327116 DOI: 10.1007/s11604-018-0720-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE To compare the visualization of hemodynamic imaging findings of hypervascular hepatocellular carcinoma (HCC) on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using radial volumetric imaging breath-hold examination with k-space-weighted image contrast reconstruction (r-VIBE-KWIC) versus dynamic computed tomography during hepatic arteriography (dyn-CTHA). MATERIALS AND METHODS We retrospectively reviewed the databases of preoperative DCE-MRI using r-VIBE-KWIC, dyn-CTHA, and postoperative pathology of resected specimens. Fourteen patients with 14 hypervascular HCCs underwent both DCE-MRI and dyn-CTHA. The imaging findings of the tumor and adjacent liver parenchyma were assessed on both modalities by two readers. The tumor enhancement time was also compared between the two modalities. RESULTS On DCE-MRI/dyn-CTHA, early staining, peritumoral low-intensity or low-density bands, corona enhancement, and washout of HCC were observed in 14/14 (100%), 10/12 (83%), 11/14 (78%), and 4/14 (29%) patients, respectively. Pathologically, four HCCs with low-density bands on dyn-CTHA had no fibrous capsules. The median tumor enhancement time on DCE-MRI and dyn-CTHA was 24 (9-24) and 23 (8-35) s, respectively. The correlation coefficient between the two groups was 0.762 (P < 0.002). CONCLUSIONS DCE-MRI using r-VIBE-KWIC has diagnostic potential comparable with that of dyn-CTHA in the hemodynamic evaluation of hypervascular HCC except for the washout phenomenon.
Collapse
Affiliation(s)
- Masahiro Kurozumi
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yasunari Fujinaga
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| | - Yoshihiro Kitou
- Radiology Division of Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Ayumi Ohya
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yasuo Adachi
- Radiology Division of Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yoshinori Tsukahara
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | | | - Katsuya Maruyama
- DI Research and Collaboration Department, Siemens Healthcare K.K., Shinagawa, Tokyo, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Shin-Ichi Miyagawa
- First Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Masumi Kadoya
- Radiology Division of Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| |
Collapse
|
42
|
Subbotin VM. Privileged portal metastasis of hepatocellular carcinoma in light of the coevolution of a visceral portal system and liver in the chordate lineage: a search for therapeutic targets. Drug Discov Today 2018; 23:548-564. [PMID: 29330122 DOI: 10.1016/j.drudis.2018.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/21/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) disseminates systemically, but metastases occur in distant organs only in minority of patients, whereas HCC routinely metastasizes to liver and its vessels. HCC cells disseminate via hepatic veins, but portal veins are affected by metastasis more frequently than are hepatic veins, and correlates with poor prognosis. In this review, I suggest that privileged HCC portal metastasis occurs because of high levels of pancreatic family hormones and growth factors (PHGFs) in the portal blood. The analysis suggests that the appearance of the portal system carrying PHGFs in the evolution of invertebrate chordate (Amphioxus) led to the evolution of the liver in vertebrate; given that the portal pattern of HCC metastasis and selection of more-aggressive clones are PHGF dependent, PHGFs and their ligands constitute therapeutic targets.
Collapse
Affiliation(s)
- Vladimir M Subbotin
- Department of Oncology, University of Wisconsin, Madison, WI 53705, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
43
|
Tang A, Bashir MR, Corwin MT, Cruite I, Dietrich CF, Do RKG, Ehman EC, Fowler KJ, Hussain HK, Jha RC, Karam AR, Mamidipalli A, Marks RM, Mitchell DG, Morgan TA, Ohliger MA, Shah A, Vu KN, Sirlin CB. Evidence Supporting LI-RADS Major Features for CT- and MR Imaging-based Diagnosis of Hepatocellular Carcinoma: A Systematic Review. Radiology 2018; 286:29-48. [PMID: 29166245 PMCID: PMC6677284 DOI: 10.1148/radiol.2017170554] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Liver Imaging Reporting and Data System (LI-RADS) standardizes the interpretation, reporting, and data collection for imaging examinations in patients at risk for hepatocellular carcinoma (HCC). It assigns category codes reflecting relative probability of HCC to imaging-detected liver observations based on major and ancillary imaging features. LI-RADS also includes imaging features suggesting malignancy other than HCC. Supported and endorsed by the American College of Radiology (ACR), the system has been developed by a committee of radiologists, hepatologists, pathologists, surgeons, lexicon experts, and ACR staff, with input from the American Association for the Study of Liver Diseases and the Organ Procurement Transplantation Network/United Network for Organ Sharing. Development of LI-RADS has been based on literature review, expert opinion, rounds of testing and iteration, and feedback from users. This article summarizes and assesses the quality of evidence supporting each LI-RADS major feature for diagnosis of HCC, as well as of the LI-RADS imaging features suggesting malignancy other than HCC. Based on the evidence, recommendations are provided for or against their continued inclusion in LI-RADS. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- An Tang
- From the Department of Radiology, Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2 (A.T., K.N.V.); Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Radiology, Davis Medical Center, University of California, Sacramento, Calif (M.T.C.); Inland Imaging, Spokane, Wash (I.C.); Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany (C.F.D.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.G.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.C.E.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (H.K.H.); Department of Radiology, American University of Beirut, Beirut, Lebanon (H.K.H.); Department of Radiology, MedStar Georgetown University Hospital, Washington, DC (R.C.J.); Department of Radiology, University of Massachusetts Medical School, Worcester, Mass (A.R.K.); Department of Radiology, Liver Imaging Group, University of California San Diego, Calif (A.M., C.B.S.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (D.G.M.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (T.A.M., M.A.O.); Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (A.S.)
| | - Mustafa R. Bashir
- From the Department of Radiology, Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2 (A.T., K.N.V.); Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Radiology, Davis Medical Center, University of California, Sacramento, Calif (M.T.C.); Inland Imaging, Spokane, Wash (I.C.); Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany (C.F.D.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.G.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.C.E.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (H.K.H.); Department of Radiology, American University of Beirut, Beirut, Lebanon (H.K.H.); Department of Radiology, MedStar Georgetown University Hospital, Washington, DC (R.C.J.); Department of Radiology, University of Massachusetts Medical School, Worcester, Mass (A.R.K.); Department of Radiology, Liver Imaging Group, University of California San Diego, Calif (A.M., C.B.S.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (D.G.M.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (T.A.M., M.A.O.); Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (A.S.)
| | - Michael T. Corwin
- From the Department of Radiology, Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2 (A.T., K.N.V.); Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Radiology, Davis Medical Center, University of California, Sacramento, Calif (M.T.C.); Inland Imaging, Spokane, Wash (I.C.); Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany (C.F.D.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.G.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.C.E.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (H.K.H.); Department of Radiology, American University of Beirut, Beirut, Lebanon (H.K.H.); Department of Radiology, MedStar Georgetown University Hospital, Washington, DC (R.C.J.); Department of Radiology, University of Massachusetts Medical School, Worcester, Mass (A.R.K.); Department of Radiology, Liver Imaging Group, University of California San Diego, Calif (A.M., C.B.S.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (D.G.M.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (T.A.M., M.A.O.); Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (A.S.)
| | - Irene Cruite
- From the Department of Radiology, Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2 (A.T., K.N.V.); Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Radiology, Davis Medical Center, University of California, Sacramento, Calif (M.T.C.); Inland Imaging, Spokane, Wash (I.C.); Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany (C.F.D.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.G.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.C.E.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (H.K.H.); Department of Radiology, American University of Beirut, Beirut, Lebanon (H.K.H.); Department of Radiology, MedStar Georgetown University Hospital, Washington, DC (R.C.J.); Department of Radiology, University of Massachusetts Medical School, Worcester, Mass (A.R.K.); Department of Radiology, Liver Imaging Group, University of California San Diego, Calif (A.M., C.B.S.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (D.G.M.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (T.A.M., M.A.O.); Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (A.S.)
| | - Christoph F. Dietrich
- From the Department of Radiology, Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2 (A.T., K.N.V.); Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Radiology, Davis Medical Center, University of California, Sacramento, Calif (M.T.C.); Inland Imaging, Spokane, Wash (I.C.); Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany (C.F.D.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.G.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.C.E.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (H.K.H.); Department of Radiology, American University of Beirut, Beirut, Lebanon (H.K.H.); Department of Radiology, MedStar Georgetown University Hospital, Washington, DC (R.C.J.); Department of Radiology, University of Massachusetts Medical School, Worcester, Mass (A.R.K.); Department of Radiology, Liver Imaging Group, University of California San Diego, Calif (A.M., C.B.S.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (D.G.M.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (T.A.M., M.A.O.); Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (A.S.)
| | - Richard K. G. Do
- From the Department of Radiology, Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2 (A.T., K.N.V.); Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Radiology, Davis Medical Center, University of California, Sacramento, Calif (M.T.C.); Inland Imaging, Spokane, Wash (I.C.); Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany (C.F.D.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.G.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.C.E.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (H.K.H.); Department of Radiology, American University of Beirut, Beirut, Lebanon (H.K.H.); Department of Radiology, MedStar Georgetown University Hospital, Washington, DC (R.C.J.); Department of Radiology, University of Massachusetts Medical School, Worcester, Mass (A.R.K.); Department of Radiology, Liver Imaging Group, University of California San Diego, Calif (A.M., C.B.S.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (D.G.M.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (T.A.M., M.A.O.); Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (A.S.)
| | - Eric C. Ehman
- From the Department of Radiology, Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2 (A.T., K.N.V.); Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Radiology, Davis Medical Center, University of California, Sacramento, Calif (M.T.C.); Inland Imaging, Spokane, Wash (I.C.); Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany (C.F.D.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.G.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.C.E.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (H.K.H.); Department of Radiology, American University of Beirut, Beirut, Lebanon (H.K.H.); Department of Radiology, MedStar Georgetown University Hospital, Washington, DC (R.C.J.); Department of Radiology, University of Massachusetts Medical School, Worcester, Mass (A.R.K.); Department of Radiology, Liver Imaging Group, University of California San Diego, Calif (A.M., C.B.S.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (D.G.M.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (T.A.M., M.A.O.); Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (A.S.)
| | - Kathryn J. Fowler
- From the Department of Radiology, Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2 (A.T., K.N.V.); Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Radiology, Davis Medical Center, University of California, Sacramento, Calif (M.T.C.); Inland Imaging, Spokane, Wash (I.C.); Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany (C.F.D.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.G.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.C.E.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (H.K.H.); Department of Radiology, American University of Beirut, Beirut, Lebanon (H.K.H.); Department of Radiology, MedStar Georgetown University Hospital, Washington, DC (R.C.J.); Department of Radiology, University of Massachusetts Medical School, Worcester, Mass (A.R.K.); Department of Radiology, Liver Imaging Group, University of California San Diego, Calif (A.M., C.B.S.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (D.G.M.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (T.A.M., M.A.O.); Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (A.S.)
| | - Hero K. Hussain
- From the Department of Radiology, Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2 (A.T., K.N.V.); Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Radiology, Davis Medical Center, University of California, Sacramento, Calif (M.T.C.); Inland Imaging, Spokane, Wash (I.C.); Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany (C.F.D.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.G.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.C.E.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (H.K.H.); Department of Radiology, American University of Beirut, Beirut, Lebanon (H.K.H.); Department of Radiology, MedStar Georgetown University Hospital, Washington, DC (R.C.J.); Department of Radiology, University of Massachusetts Medical School, Worcester, Mass (A.R.K.); Department of Radiology, Liver Imaging Group, University of California San Diego, Calif (A.M., C.B.S.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (D.G.M.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (T.A.M., M.A.O.); Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (A.S.)
| | - Reena C. Jha
- From the Department of Radiology, Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2 (A.T., K.N.V.); Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Radiology, Davis Medical Center, University of California, Sacramento, Calif (M.T.C.); Inland Imaging, Spokane, Wash (I.C.); Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany (C.F.D.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.G.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.C.E.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (H.K.H.); Department of Radiology, American University of Beirut, Beirut, Lebanon (H.K.H.); Department of Radiology, MedStar Georgetown University Hospital, Washington, DC (R.C.J.); Department of Radiology, University of Massachusetts Medical School, Worcester, Mass (A.R.K.); Department of Radiology, Liver Imaging Group, University of California San Diego, Calif (A.M., C.B.S.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (D.G.M.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (T.A.M., M.A.O.); Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (A.S.)
| | | | - Adrija Mamidipalli
- From the Department of Radiology, Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2 (A.T., K.N.V.); Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Radiology, Davis Medical Center, University of California, Sacramento, Calif (M.T.C.); Inland Imaging, Spokane, Wash (I.C.); Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany (C.F.D.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.G.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.C.E.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (H.K.H.); Department of Radiology, American University of Beirut, Beirut, Lebanon (H.K.H.); Department of Radiology, MedStar Georgetown University Hospital, Washington, DC (R.C.J.); Department of Radiology, University of Massachusetts Medical School, Worcester, Mass (A.R.K.); Department of Radiology, Liver Imaging Group, University of California San Diego, Calif (A.M., C.B.S.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (D.G.M.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (T.A.M., M.A.O.); Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (A.S.)
| | - Robert M. Marks
- From the Department of Radiology, Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2 (A.T., K.N.V.); Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Radiology, Davis Medical Center, University of California, Sacramento, Calif (M.T.C.); Inland Imaging, Spokane, Wash (I.C.); Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany (C.F.D.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.G.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.C.E.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (H.K.H.); Department of Radiology, American University of Beirut, Beirut, Lebanon (H.K.H.); Department of Radiology, MedStar Georgetown University Hospital, Washington, DC (R.C.J.); Department of Radiology, University of Massachusetts Medical School, Worcester, Mass (A.R.K.); Department of Radiology, Liver Imaging Group, University of California San Diego, Calif (A.M., C.B.S.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (D.G.M.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (T.A.M., M.A.O.); Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (A.S.)
| | - Donald G. Mitchell
- From the Department of Radiology, Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2 (A.T., K.N.V.); Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Radiology, Davis Medical Center, University of California, Sacramento, Calif (M.T.C.); Inland Imaging, Spokane, Wash (I.C.); Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany (C.F.D.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.G.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.C.E.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (H.K.H.); Department of Radiology, American University of Beirut, Beirut, Lebanon (H.K.H.); Department of Radiology, MedStar Georgetown University Hospital, Washington, DC (R.C.J.); Department of Radiology, University of Massachusetts Medical School, Worcester, Mass (A.R.K.); Department of Radiology, Liver Imaging Group, University of California San Diego, Calif (A.M., C.B.S.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (D.G.M.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (T.A.M., M.A.O.); Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (A.S.)
| | - Tara A. Morgan
- From the Department of Radiology, Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2 (A.T., K.N.V.); Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Radiology, Davis Medical Center, University of California, Sacramento, Calif (M.T.C.); Inland Imaging, Spokane, Wash (I.C.); Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany (C.F.D.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.G.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.C.E.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (H.K.H.); Department of Radiology, American University of Beirut, Beirut, Lebanon (H.K.H.); Department of Radiology, MedStar Georgetown University Hospital, Washington, DC (R.C.J.); Department of Radiology, University of Massachusetts Medical School, Worcester, Mass (A.R.K.); Department of Radiology, Liver Imaging Group, University of California San Diego, Calif (A.M., C.B.S.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (D.G.M.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (T.A.M., M.A.O.); Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (A.S.)
| | - Michael A. Ohliger
- From the Department of Radiology, Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2 (A.T., K.N.V.); Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Radiology, Davis Medical Center, University of California, Sacramento, Calif (M.T.C.); Inland Imaging, Spokane, Wash (I.C.); Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany (C.F.D.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.G.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.C.E.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (H.K.H.); Department of Radiology, American University of Beirut, Beirut, Lebanon (H.K.H.); Department of Radiology, MedStar Georgetown University Hospital, Washington, DC (R.C.J.); Department of Radiology, University of Massachusetts Medical School, Worcester, Mass (A.R.K.); Department of Radiology, Liver Imaging Group, University of California San Diego, Calif (A.M., C.B.S.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (D.G.M.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (T.A.M., M.A.O.); Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (A.S.)
| | - Amol Shah
- From the Department of Radiology, Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2 (A.T., K.N.V.); Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Radiology, Davis Medical Center, University of California, Sacramento, Calif (M.T.C.); Inland Imaging, Spokane, Wash (I.C.); Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany (C.F.D.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.G.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.C.E.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (H.K.H.); Department of Radiology, American University of Beirut, Beirut, Lebanon (H.K.H.); Department of Radiology, MedStar Georgetown University Hospital, Washington, DC (R.C.J.); Department of Radiology, University of Massachusetts Medical School, Worcester, Mass (A.R.K.); Department of Radiology, Liver Imaging Group, University of California San Diego, Calif (A.M., C.B.S.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (D.G.M.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (T.A.M., M.A.O.); Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (A.S.)
| | - Kim-Nhien Vu
- From the Department of Radiology, Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2 (A.T., K.N.V.); Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Radiology, Davis Medical Center, University of California, Sacramento, Calif (M.T.C.); Inland Imaging, Spokane, Wash (I.C.); Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany (C.F.D.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.G.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.C.E.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (H.K.H.); Department of Radiology, American University of Beirut, Beirut, Lebanon (H.K.H.); Department of Radiology, MedStar Georgetown University Hospital, Washington, DC (R.C.J.); Department of Radiology, University of Massachusetts Medical School, Worcester, Mass (A.R.K.); Department of Radiology, Liver Imaging Group, University of California San Diego, Calif (A.M., C.B.S.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (D.G.M.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (T.A.M., M.A.O.); Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (A.S.)
| | - Claude B. Sirlin
- From the Department of Radiology, Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2 (A.T., K.N.V.); Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Radiology, Davis Medical Center, University of California, Sacramento, Calif (M.T.C.); Inland Imaging, Spokane, Wash (I.C.); Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany (C.F.D.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.G.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.C.E.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (H.K.H.); Department of Radiology, American University of Beirut, Beirut, Lebanon (H.K.H.); Department of Radiology, MedStar Georgetown University Hospital, Washington, DC (R.C.J.); Department of Radiology, University of Massachusetts Medical School, Worcester, Mass (A.R.K.); Department of Radiology, Liver Imaging Group, University of California San Diego, Calif (A.M., C.B.S.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (D.G.M.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (T.A.M., M.A.O.); Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (A.S.)
| | - For the LI-RADS Evidence Working Group
- From the Department of Radiology, Université de Montréal, 1000 rue Saint-Denis, Montréal, QC, Canada H2X 0C2 (A.T., K.N.V.); Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, NC (M.R.B.); Department of Radiology, Davis Medical Center, University of California, Sacramento, Calif (M.T.C.); Inland Imaging, Spokane, Wash (I.C.); Caritas-Krankenhaus, Medizinische Klinik 2, Bad Mergentheim, Germany (C.F.D.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (R.K.G.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (E.C.E.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (K.J.F.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (H.K.H.); Department of Radiology, American University of Beirut, Beirut, Lebanon (H.K.H.); Department of Radiology, MedStar Georgetown University Hospital, Washington, DC (R.C.J.); Department of Radiology, University of Massachusetts Medical School, Worcester, Mass (A.R.K.); Department of Radiology, Liver Imaging Group, University of California San Diego, Calif (A.M., C.B.S.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa (D.G.M.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (T.A.M., M.A.O.); Zuckerberg San Francisco General Hospital, San Francisco, Calif (M.A.O.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (A.S.)
| |
Collapse
|
44
|
Chernyak V, Tang A, Flusberg M, Papadatos D, Bijan B, Kono Y, Santillan C. LI-RADS ® ancillary features on CT and MRI. Abdom Radiol (NY) 2018. [PMID: 28647768 DOI: 10.1007/s00261-017-1220-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Liver Imaging Reporting and Data System (LI-RADS) uses an algorithm to assign categories that reflect the probability of hepatocellular carcinoma (HCC), non-HCC malignancy, or benignity. Unlike other imaging algorithms, LI-RADS utilizes ancillary features (AFs) to refine the final category. AFs in LI-RADS v2017 are divided into those favoring malignancy in general, those favoring HCC specifically, and those favoring benignity. Additionally, LI-RADS v2017 provides new rules regarding application of AFs. The purpose of this review is to discuss ancillary features included in LI-RADS v2017, the rationale for their use, potential pitfalls encountered in their interpretation, and tips on their application.
Collapse
Affiliation(s)
| | - An Tang
- Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, Montreal, QC, Canada
| | | | - Demetri Papadatos
- Department of Diagnostic Imaging, The Ottawa Hospital, Ottawa, ON, Canada
| | - Bijan Bijan
- Sutter Imaging (SMG)/University of California Davis (UCD), Sacramento, CA, USA
| | - Yuko Kono
- Department of Medicine, Gastroenterology and Hepatology, University of California, San Diego, CA, USA
| | - Cynthia Santillan
- Liver Imaging Group, Department of Radiology, University of California, San Diego, CA, USA
| |
Collapse
|
45
|
Portal hypertension is associated with poor outcome of transarterial chemoembolization in patients with hepatocellular carcinoma. Eur Radiol 2017; 28:2184-2193. [DOI: 10.1007/s00330-017-5145-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022]
|
46
|
Clinical Indication for Computed Tomography During Hepatic Arteriography (CTHA) in Addition to Dynamic CT Studies to Identify Hypervascularity of Hepatocellular Carcinoma. Cardiovasc Intervent Radiol 2017; 41:618-627. [PMID: 29101449 DOI: 10.1007/s00270-017-1832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/25/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE To identify factors benefiting from computed tomography during hepatic arteriography (CTHA) in addition to dynamic CT studies at the preoperative evaluation of the hypervascularity of hepatocellular carcinoma (HCC). MATERIALS AND METHODS We retrospectively divided 45 patients with HCC, who underwent both dynamic CT (dCT) and CTHA, into two groups based on the number of hypervascular HCCs identified on dCT and CTHA studies. In group A, the number of HCCs identified by dCT and CTHA was the same and additive CTHA had not been indicated. In group B, fewer HCCs were counted on dCT than on CTHA images, indicating that additive CTHA studies had been appropriate. We compared the patient characteristics, the serum alpha-fetoprotein level, and the tumor-liver contrast (TLC) of the main tumor on dCT scans of both groups. To identify factors alerting to the benefit of additional CTHA studies, we performed univariate logistic regression analysis. Statistically significant parameters were subjected to receiver operating characteristic analysis for obtaining the optimal cutoff value indicative of the benefit of CTHA. RESULTS Univariate analysis identified only the TLC of the main tumor on dCT images as a significant factor for the benefit of CTHA images (P < 0.01). At the optimal cutoff value for the TLC of the main tumor on dCT images (15.9 Hounsfield units), the sensitivity and specificity for the benefit of CTHA were 85.0 and 92.0%, respectively. CONCLUSION Evaluation of the TLC of the main tumor on dCT scans identifies patients in whom additive CTHA studies are beneficial.
Collapse
|
47
|
Value of the portal venous phase in evaluation of treated hepatocellular carcinoma following transcatheter arterial chemoembolisation. Clin Radiol 2017; 72:994.e9-994.e16. [PMID: 28779950 DOI: 10.1016/j.crad.2017.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/22/2017] [Accepted: 07/03/2017] [Indexed: 01/28/2023]
Abstract
AIM To evaluate the utility of the portal venous phase on multiphasic computed tomography (CT) after treatment of hepatocellular carcinoma (HCC) with trans-arterial chemoembolisation (TACE). MATERIALS AND METHODS This was a retrospective review of patients who underwent TACE for HCC between 1 April 2012 and 21 December 2014, with appropriate multiphasic, pre- and post-procedural CT examinations. The maximum non-contrast, arterial phase, and portal venous phase attenuation values of the tumour and tumour bed were evaluated within a region of interest (ROI), with values adjusted against background hepatic parenchyma. Linear regression analyses were performed for both the arterial and venous phases, to assess the level of enhancement and to determine if the venous phase had additional value in this setting. RESULTS A total of 86 cases from 51 patients were reviewed. All pre-procedural CT examinations of lesions demonstrated arterial phase enhancement with portal venous and delayed phase washout compatible with HCC. The post-procedural CT examinations following TACE revealed expected decreased arterial enhancement. Sixty-five cases (76%) showed persistent non-enhancement on the portal venous phase following embolisation therapy. A total of 21 cases (24%), however, demonstrated progressive portal venous hyper enhancement. Linear regression analysis demonstrated a statistical significance between the difference in maximal arterial and portal venous enhancement in these cases. CONCLUSION Following TACE, the treated lesion may demonstrate portal venous phase hyper-enhancement within the tumour bed. As such, full attention should be given to these images for comprehensive evaluation of tumour response following treatment.
Collapse
|
48
|
Goshima S, Noda Y, Kajita K, Kawai N, Koyasu H, Kawada H, Matsuo M, Bae KT. Gadoxetic acid-enhanced high temporal-resolution hepatic arterial-phase imaging with view-sharing technique: Impact on the LI-RADS category. Eur J Radiol 2017; 94:167-173. [PMID: 28709718 DOI: 10.1016/j.ejrad.2017.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/15/2022]
Abstract
PURPOSE To evaluate the value of view-sharing multi-hepatic arterial-phase (mHAP) imaging for diagnosis of hypervascular hepatocellular carcinoma (HCC). MATERIALS AND METHODS Forty-seven consecutive patients with HCC underwent gadoxetic acid-enhanced magnetic resonance (MR) imaging before angiographic and lipiodol CT. Hepatic arterial-phase images were obtained at 5 consecutive phases with shared central k-space of 25%, followed by portal venous, late (2 and 3min), and hepatobiliary phase imaging. One-hundred-eight HCC nodules (size: 5-88mm, mean size: 18.2mm) confirmed on angiographic CT and lipiodol CT were evaluated for LI-RADS category and compared with single arterial-phase and mHAP findings regarding wash out, capsule, corona enhancement, and image quality. RESULTS Twenty-four HCCs (22.2%) (size: 6-19mm, mean size: 12.3mm) were categorized as LR-3 based on the single arterial-phase. Capsule appearance (25.9%) and washout (57.4%) were most frequently observed in late phase (2min). Corona enhancement was observed in 73.1% of all HCCs on mHAP. For the 24 HCCs of LR-3, corona enhancement was observed in 75% on mHAP and contributed to upgrade category. No significant difference was found in the frequency of corona enhancement between mHAP and angiographic CT (P=0.11). Image quality was valued as good or excellent in all cases. CONCLUSION View-sharing mHAP was feasible without compromising image quality and contributed to the improvement in diagnostic confidence for hypervascular HCC in gadoxetic acid-enhance MR imaging.
Collapse
Affiliation(s)
- Satoshi Goshima
- Department of Radiology, Gifu University Hospital, 1-1 Yanagido, 501-1194 Gifu, Japan.
| | - Yoshifumi Noda
- Department of Radiology, Gifu University Hospital, 1-1 Yanagido, 501-1194 Gifu, Japan
| | - Kimihiro Kajita
- Department of Radiology, Gifu University Hospital, 1-1 Yanagido, 501-1194 Gifu, Japan
| | - Nobuyuki Kawai
- Department of Radiology, Gifu University Hospital, 1-1 Yanagido, 501-1194 Gifu, Japan
| | - Hiromi Koyasu
- Department of Radiology, Gifu University Hospital, 1-1 Yanagido, 501-1194 Gifu, Japan
| | - Hiroshi Kawada
- Department of Radiology, Gifu University Hospital, 1-1 Yanagido, 501-1194 Gifu, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University Hospital, 1-1 Yanagido, 501-1194 Gifu, Japan
| | - Kyongtae T Bae
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
49
|
Abstract
There is great geographical variation in the distribution of hepatocellular carcinoma (HCC), with the majority of all cases worldwide found in the Asia–Pacific region, where HCC is one of the leading public health problems. Since the “Toward Revision of the Asian Pacific Association for the Study of the Liver (APASL) HCC Guidelines” meeting held at the 25th annual conference of the APASL in Tokyo, the newest guidelines for the treatment of HCC published by the APASL has been discussed. This latest guidelines recommend evidence-based management of HCC and are considered suitable for universal use in the Asia–Pacific region, which has a diversity of medical environments.
Collapse
|
50
|
Park HJ, Choi BI, Lee ES, Park SB, Lee JB. How to Differentiate Borderline Hepatic Nodules in Hepatocarcinogenesis: Emphasis on Imaging Diagnosis. Liver Cancer 2017; 6. [PMID: 28626731 PMCID: PMC5473078 DOI: 10.1159/000455949] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Rapid advances in liver imaging have improved the evaluation of hepatocarcinogenesis and early diagnosis and treatment of hepatocellular carcinoma (HCC). In this situation, detection of early-stage HCC in its development is important for the improvement of patient survival and optimal treatment strategies. Because early HCCs are considered precursors of progressed HCC, precise differentiation between a dysplastic nodule (DN), especially a high-grade DN, and early HCC is important. In clinical practice, these nodules are frequently called "borderline hepatic nodules." SUMMARY This article discusses radiological and pathological characteristics of these borderline hepatic nodules and offers an understanding of multistep hepatocarcinogenesis by focusing on the descriptions of the imaging changes in the progression of DN and early HCC. Detection and accurate diagnosis of borderline hepatic nodules are still a challenge with contrast enhanced ultrasonography, CT, and MRI with extracellular contrast agents. However, gadoxetic acid-enhanced MRI may be useful for improving the diagnosis of these borderline nodules. KEY MESSAGES Since there is a net effect of incomplete neoangiogenesis and decreased portal venous flow in the early stage of hepatocarcinogenesis, borderline hepatic nodules commonly show iso- or hypovascularity. Therefore, precise differentiation of these nodules remains a challenging issue. In MRI using hepatobiliary contrast agents, signal intensity of HCCs on hepatobiliary phase (HBP) is regarded as a potential imaging biomarker. Borderline hepatic nodules are seen as nonhypervascular and hypointense nodules on the HBP, which is important for predicting tumor behavior and determining appropriate therapeutic strategies.
Collapse
Affiliation(s)
| | - Byung Ihn Choi
- *Byung Ihn Choi, MD, Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 84 Heukseok-ro, Dongjak-gu, Seoul 06973 (Republic of Korea), E-Mail
| | | | | | | |
Collapse
|