1
|
Msallem B, Vavrina JJ, Beyer M, Halbeisen FS, Lauer G, Dragu A, Thieringer FM. Dimensional Accuracy in 3D Printed Medical Models: A Follow-Up Study on SLA and SLS Technology. J Clin Med 2024; 13:5848. [PMID: 39407907 PMCID: PMC11477136 DOI: 10.3390/jcm13195848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/20/2024] Open
Abstract
Background: With the rise of new 3D printers, assessing accuracy is crucial for obtaining the best results in patient care. Previous studies have shown that the highest accuracy is achieved with SLS printing technology; however, SLA printing technology has made significant improvements in recent years. Methods: In this study, a realistic anatomical model of a mandible and skull, a cutting guide for mandibular osteotomy, and a splint for orthognathic surgery were replicated five times each using two different 3D printing technologies: SLA and SLS. Results: The SLA group had a median trueness RMS value of 0.148 mm and a precision RMS value of 0.117 mm. The SLS group had a median trueness RMS value of 0.144 mm and a precision RMS value of 0.096 mm. There was no statistically significant difference in RMS values between SLS and SLA technologies regarding trueness. Regarding precision, however, the RMS values for SLS technology were significantly lower in the splint and cutting guide applications than those printed with SLA technology. Conclusions: Both 3D printing technologies produce modern models and applications with equally high dimensional accuracy. Considering current cost pressures experienced by hospitals, the lower-cost SLA 3D printer is a reliable choice for point-of-care 3D printing.
Collapse
Affiliation(s)
- Bilal Msallem
- UniversityCenter for Orthopedics, Trauma and Plastic Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, DE-01307 Dresden, Germany;
- Medical Additive Manufacturing Research Group, Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (J.J.V.); (M.B.); (F.M.T.)
| | - Joel J. Vavrina
- Medical Additive Manufacturing Research Group, Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (J.J.V.); (M.B.); (F.M.T.)
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Michel Beyer
- Medical Additive Manufacturing Research Group, Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (J.J.V.); (M.B.); (F.M.T.)
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Florian S. Halbeisen
- Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, University of Basel, CH-4031 Basel, Switzerland
| | - Günter Lauer
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, DE-01307 Dresden, Germany;
| | - Adrian Dragu
- UniversityCenter for Orthopedics, Trauma and Plastic Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, DE-01307 Dresden, Germany;
| | - Florian M. Thieringer
- Medical Additive Manufacturing Research Group, Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (J.J.V.); (M.B.); (F.M.T.)
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland
| |
Collapse
|
2
|
Wakjira Y, Kurukkal NS, Lemu HG. Assessment of the accuracy of 3D printed medical models through reverse engineering. Heliyon 2024; 10:e31829. [PMID: 38845933 PMCID: PMC11153247 DOI: 10.1016/j.heliyon.2024.e31829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
The dimensional accuracy of additively manufactured (3D printed) medical models can be affected by various parameters. Although different methods are used to evaluate the accuracy of additively manufactured models, this study focused on the investigation of the dimensional accuracy of the medical model based the combination of reverse engineering (RE) and additive manufacturing (AM) technologies. Human femur bone was constructed from CT images and manufactured, using Fortus 450mc Industrial material extrusion 3D Printer. The additive manufactured femur bone was subsequently 3D scanned using three distinct non-contact 3D scanners. MeshLab was used for mesh analysis, while VX Elements was used for post-processing of the point cloud. A combination of the VX Inspect environment and MeshLab was used to evaluate the scanning performance. The deviation of the 3D scanned 3D models from the reference mesh was determined using relative metrics and absolute measurements. The scanners reported deviations ranging from -0.375 mm to 0.388 mm, resulting in a total range of approximately 0.763 mm with average root mean square (RMS) deviation of 0.22 mm. The results indicate that the additively manufactured model, as measured by 3D scanning, has a mean deviation with an average range of approximately 0.46 mm and an average mean value of around 0.16 mm.
Collapse
Affiliation(s)
- Yosef Wakjira
- University of Stavanger, Faculty of Science and Technology, Department of Mechanical and Structural Engineering and Materials Science, Kjell Arholms Gate 41, 4021, Stavanger, Norway
| | - Navaneethan S. Kurukkal
- University of Stavanger, Faculty of Science and Technology, Department of Mechanical and Structural Engineering and Materials Science, Kjell Arholms Gate 41, 4021, Stavanger, Norway
| | - Hirpa G. Lemu
- University of Stavanger, Faculty of Science and Technology, Department of Mechanical and Structural Engineering and Materials Science, Kjell Arholms Gate 41, 4021, Stavanger, Norway
| |
Collapse
|
3
|
Lee SY, Chew SCC, Lee PH, Chen HD, Huang SM, Liu CH, Chew FY. Accuracy and feasibility in building a personalized 3D printed femoral pseudoaneurysm model for endovascular training. PLoS One 2024; 19:e0304506. [PMID: 38829913 PMCID: PMC11146720 DOI: 10.1371/journal.pone.0304506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The use of three-dimensional(3D) printing is broadly across many medical specialties. It is an innovative, and rapidly growing technology to produce custom anatomical models and medical conditions models for medical teaching, surgical planning, and patient education. This study aimed to evaluate the accuracy and feasibility of 3D printing in creating a superficial femoral artery pseudoaneurysm model based on CT scans for endovascular training. METHODS A case of a left superficial femoral artery pseudoaneurysm was selected, and the 3D model was created using DICOM files imported into Materialise Mimics 22.0 and Materialise 3-Matic software, then printed using vat polymerization technology. Two 3D-printed models were created, and a series of comparisons were conducted between the 3D segmented images from CT scans and these two 3D-printed models. Ten comparisons involving internal diameters and angles of the specific anatomical location were measured. RESULTS The study found that the absolute mean difference in diameter between the 3D segmented images and the 3D printed models was 0.179±0.145 mm and 0.216±0.143mm, respectively, with no significant difference between the two sets of models. Additionally, the absolute mean difference in angle was 0.99±0.65° and 1.00±0.91°, respectively, and the absolute mean difference in angle between the two sets of data was not significant. Bland-Altman analysis confirmed a high correlation in dimension measurements between the 3D-printed models and segmented images. Furthermore, the accuracy of a 3D-printed femoral pseudoaneurysm model was further tested through the simulation of a superficial femoral artery pseudoaneurysm coiling procedure using the Philips Azurion7 in the angiography room. CONCLUSIONS 3D printing is a reliable technique for producing a high accuracy 3D anatomical model that closely resemble a patient's anatomy based on CT images. Additionally, 3D printing is a feasible and viable option for use in endovascular training and medical education. In general, 3D printing is an encouraging technology with diverse possibilities in medicine, including surgical planning, medical education, and medical device advancement.
Collapse
Affiliation(s)
- Suat Yee Lee
- Department of Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | - Pei Hua Lee
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan
| | - Hung Da Chen
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan
| | - Shao Min Huang
- Department of Medicine, Show Chwan Memorial Hospital, Chang Hua, Taiwan
| | - Chun Hung Liu
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan
| | - Fatt Yang Chew
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan
- Department of Radiology, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Wang R, Xu M, Wang L, Zheng Z, Deng Y, Zeng M, Yuan L, Peng P, Liu Q, Yu K. Accuracy evaluation of a universal dental implant guide for simulating implantation in posterior area on dental molds. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2024; 42:365-371. [PMID: 39049658 PMCID: PMC11190869 DOI: 10.7518/hxkq.2024.2023379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/18/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES This study aims to compare the accuracy of self-developed universal implant guide (SDG), 3D printed digital guide (DG), and free hand (FH) simulated implantation in the posterior tooth area of dental models. METHODS Ten junior dentists were selected to place three implants in the 35, 37, and 46 tooth sites of the mandibular models (35, 36, 37, and 46 missing teeth) by using SDG, DG, and FH, and the process was repeated again to take the average value. Cone beam computed tomography (CBCT) was used to evaluate the global coronal deviation, global apical deviation, depth deviation, and angular deviation between the actual position and preoperative planned position. RESULTS The coronal deviation and apical deviation of the three implant sites in the SDG group were not significantly different from those in the two other groups (P>0.05). The depth deviation and angular deviation in the SDG group were smaller than those in the DG group (P<0.05) and FH group (P<0.05), respectively. All deviations at site 37 in the SDG group were not different from those at site 35 (P>0.05), while the depth and angular deviation at site 37 in the DG group were higher than those at site 35 (P<0.05). CONCLUSIONS The precision of the self-developed universal dental implant guide can meet the requirements of clinical posterior implantation.
Collapse
Affiliation(s)
- Ruibin Wang
- Dept. of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Mingzhang Xu
- Dept. of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lan Wang
- Dept. of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Ziyang Zheng
- Dept. of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yunyi Deng
- Dept. of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Maoyun Zeng
- Dept. of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lingling Yuan
- Dept. of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Peizhao Peng
- Dept. of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Qiqi Liu
- Dept. of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| | - Ke Yu
- Dept. of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
5
|
Eveland R, Antloga K, Meyer A, Tuscano L. Low temperature vaporized hydrogen peroxide sterilization of 3D printed devices. 3D Print Med 2024; 10:6. [PMID: 38416324 PMCID: PMC10900786 DOI: 10.1186/s41205-024-00206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Low temperature vaporized hydrogen peroxide sterilization (VH2O2) is used in hospitals today to sterilize reusable medical devices. VH2O2 sterilized 3D printed materials were evaluated for sterilization, biocompatibility and material compatibility. MATERIALS & METHODS Test articles were printed at Formlabs with BioMed Clear™ and BioMed Amber™, and at Stratasys with MED610™, MED615™ and MED620™. Sterilization, biocompatibility and material compatibility studies with 3D printed materials were conducted after VH2O2 sterilization in V-PRO™ Sterilizers. The overkill method was used to evaluate sterilization in a ½ cycle. Biocompatibility testing evaluated the processed materials as limited contact (< 24-hours) surface or externally communicating devices. Material compatibility after VH2O2 sterilization (material strength and dimensionality) was evaluated via ASTM methods and dimensional analysis. RESULTS 3D printed devices, within a specific design window, were sterile after VH2O2 ½ cycles. After multiple cycle exposure, the materials were not cytotoxic, not sensitizing, not an irritant, not a systemic toxin, not pyrogenic and were hemo-compatible. Material compatibility via ASTM testing and dimensionality evaluations did not indicate any significant changes to the 3D printed materials after VH2O2 sterilization. CONCLUSION Low temperature vaporized hydrogen peroxide sterilization is demonstrated as a suitable method to sterilize 3D printed devices. The results are a subset of the data used in a regulatory submission with the US FDA to support claims for sterilization of 3D printed devices with specified materials, printers, and device design 1.
Collapse
Affiliation(s)
| | | | - Ashley Meyer
- STERIS, 5960 Heisley Road, Mentor, OH, 44060, USA
| | - Lori Tuscano
- STERIS, 5960 Heisley Road, Mentor, OH, 44060, USA
| |
Collapse
|
6
|
Mao Y, Liu Y, Ma Y, Zhai M, Li L, Jin P, Yang J. Feasibility of 3-dimensional printed models in simulated training and teaching of transcatheter aortic valve replacement. Open Med (Wars) 2024; 19:20240909. [PMID: 38463517 PMCID: PMC10921447 DOI: 10.1515/med-2024-0909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/24/2023] [Accepted: 01/14/2024] [Indexed: 03/12/2024] Open
Abstract
In the study of TAVR, 3-dimensional (3D) printed aortic root models and pulsatile simulators were used for simulation training and teaching before procedures. The study was carried out in the following three parts: (1) experts were selected and equally divided into the 3D-printed simulation group and the non-3D-printed simulation group to conduct four times of TAVR, respectively; (2) another 10 experts and 10 young proceduralists were selected to accomplish three times of TAVR simulations; (3) overall, all the doctors were organized to complete a specific questionnaire, to evaluate the training and teaching effect of 3D printed simulations. For the 3D-printed simulation group, six proceduralists had a less crossing-valve time (8.3 ± 2.1 min vs 11.8 ± 2.7 min, P < 0.001) and total operation time (102.7 ± 15.3 min vs 137.7 ± 15.4 min, P < 0.001). In addition, the results showed that the median crossing-valve time and the total time required were significantly reduced in both the expert group and the young proceduralist group (all P<0.001). The results of the questionnaire showed that 3D-printed simulation training could enhance the understanding of anatomical structure and improve technical skills. Overall, cardiovascular 3D printing may play an important role in assisting TAVR, which can shorten the operation time and reduce potential complications.
Collapse
Affiliation(s)
- Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yanyan Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Lanlan Li
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Ping Jin
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| |
Collapse
|
7
|
Gottsauner M, Morawska MM, Tempel S, Müller-Gerbl M, Dalcanale F, de Wild M, Ettl T. Geometric Cuts by an Autonomous Laser Osteotome Increase Stability in Mandibular Reconstruction With Free Fibula Grafts: A Cadaver Study. J Oral Maxillofac Surg 2024; 82:235-245. [PMID: 37980939 DOI: 10.1016/j.joms.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Nonunion and plate exposure represent a major complication after mandibular reconstruction with free fibula flaps. These drawbacks may be resolved by geometric osteotomies increasing intersegmental bone contact area and stability. PURPOSE The aim of this study was to compare intersegmental bone contact and stability of geometric osteotomies to straight osteotomies in mandibular reconstructions with free fibula grafts performed by robot-guided erbium-doped yttrium aluminum garnet laser osteotomy. STUDY DESIGN, SETTING, SAMPLE This cadaveric in-vitro study was performed on fresh frozen human skull and fibula specimens. Computed tomography (CT) scans of all specimens were performed for virtual planning of mandibular resections and three-segment fibula reconstructions. The virtual planning was implemented in a Cold Ablation Robot-guided Laser Osteotome. PREDICTOR/EXPOSURE/INDEPENDENT VARIABLE For predictor variables, straight and geometric puzzle-shaped osteotomies were designed at resection of the mandible and corresponding fibula reconstruction. MAIN OUTCOME VARIABLES The primary outcome variable was the stability of the reconstructed mandible investigated by shearing tests. Moreover, secondary outcome variables were the duration of the laser osteotomies, the contact surface area, and the accuracy of the reconstruction, both evaluated on postsurgical CT scans. COVARIATES Covariables were not applicable. ANALYSES Data were reported as mean values (± standard deviation) and were statistically analyzed using an independent-sample t-test at a significance level of α = 0.05. Root mean square deviation was tested for accuracy. RESULTS Eight skulls and 16 fibula specimens were used for the study. One hundred twelve successful laser osteotomies (96 straight and 16 geometrical) could be performed. Geometric osteotomies increased stability (110.2 ± 36.2 N vs 37.9 ± 20.1 N, P < .001) compared to straight osteotomies. Geometric osteotomy of the fibula took longer than straight osteotomies (10.9 ± 5.1 min vs 5.9 ± 2.2 min, P = .028) but could provide larger contact surface (431.2 ± 148.5 mm2 vs 226.1 ± 50.8 mm2, P = .04). Heat map analysis revealed a mean deviation between preoperational planning and postreconstructive CT scan of -0.8 ± 2.4 mm and a root mean square deviation of 2.51 mm. CONCLUSION AND RELEVANCE Mandibular resection and reconstruction by fibula grafts can be accurately performed by a Cold Ablation Robot-guided Laser Osteotome without need for cutting guides. Osteotomy planning with geometric cuts offers higher stability and an increased bone contact area, which may enhance healing of the reconstructed mandible.
Collapse
Affiliation(s)
- Maximilian Gottsauner
- Coordinator of the Head and Neck-Tumor-Center, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany.
| | - Marta M Morawska
- Clinical Affairs Manager, Advanced Osteotomy Tools (AOT AG), Basel, Switzerland
| | - Simon Tempel
- Project Manager for Research & Development, Advanced Osteotomy Tools (AOT AG), Basel, Switzerland
| | - Magdalena Müller-Gerbl
- Director of the Department of Anatomy, Department of Anatomy, University of Basel, Basel, Switzerland
| | - Federico Dalcanale
- Scientist, Fachhochschule Nordwestschweiz, Institute for Medical Engineering and Medical Informatics, Muttenz, Switzerland
| | - Michael de Wild
- Head of the Division, Fachhochschule Nordwestschweiz, Institute for Medical Engineering and Medical Informatics, Muttenz, Switzerland
| | - Tobias Ettl
- Deputy Director, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Peker Ozturk H, Ayyıldız S. Comparison of different 3D printers in terms of dimensional stability by image data of a dry human mandible obtained from CBCT and CT. Int J Artif Organs 2024; 47:49-56. [PMID: 37981804 DOI: 10.1177/03913988231212405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
OBJECTIVES To manage the mandibular traumas, for the expression of the complex anatomy or pathology in education of health sciences related branches, a model of the traumatized mandible is indispensable. For these, different 3D-print-technologies can be used. The aim of this study is, to measure how close these 3D-printed-models are to human-mandible (trueness) and the effectiveness of CT and CBCT at this point. STUDY DESIGN One-dry-human-mandible and 10-models manufactured by five different 3D-printers in four different-kinds of additive-manufacturing technology (Fused-Deposition-Modeling (FDM), Stereolithography (SLA), Binder-jetting (BJ), Polyjet (PJ)) were used, five-anatomic-landmarks and eight-distances were measured and evaluated. Mandible's data were constructed based on DICOM-3.0 data from CBCT and CT scans. Images were opened in MIMICS (software-program). RESULTS Study compared the devices that produced models with the same dry human-mandible. It was seen that the model with the highest margin of error (132.5 mm) was manufactured by Fused-deposition-modeling device using CT-data. In terms of distance to real-data, the model with the lowest error was generated by Binder-Jetting (ZCorp) with CBCT-data. Models produced with CBCT-data are closer to dry-human-mandible than models with CT-data. CONCLUSION The current study shows that CBCT generates significantly better data than CT in producing mandibular models. The first choice for manufacturing of human mandible is BJ and the second choice is the technology of SLA.
Collapse
Affiliation(s)
- Hilal Peker Ozturk
- Department of Dento Maxillofacial Radiology, Gulhane Faculty of Dentistry, University of Health Sciences, Ankara, Turkey
| | - Simel Ayyıldız
- Department of Prosthodontics, Gulhane Faculty of Dentistry, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
9
|
Bledsoe JC, Gilleland BE, Wright AF, White EM, Crane GH, Herron CB, Locklin JJ, Ritchie BW. A Biologically Degradable and BioseniaticTM Feedstock for the High-Quality 3D Printing of Anatomical Models. THE JOURNAL OF BIOCOMMUNICATION 2023; 47:e5. [PMID: 38524908 PMCID: PMC10959741 DOI: 10.5210/jbc.v47i2.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
A Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) -based filament was evaluated as an alternative feedstock for Fused Deposition Modeling (FDM) of instructional and clinical medical specimens. PHBHHx-based prints of domestic cat vertebrae, skull bone, and an aortic arch cast were found comparable to conventional materials. PHBHHx-based filament and extrudate samples were evaluated for biological degradability, to meet the BioseniaticTM standard, defined by the University of Georgia New Materials Institute. Both samples achieved more than 90% mineralization within 32 days in industrial composting conditions.
Collapse
|
10
|
Annaji M, Mita N, Heard J, Kang X, Poudel I, Fasina O, Baskaran P, Boddu SHS, Tiwari AK, Chen P, Lyman CC, Babu RJ. 3D-Printed Capsaicin-Loaded Injectable Implants for Targeted Delivery in Obese Patients. AAPS PharmSciTech 2023; 24:200. [PMID: 37783858 DOI: 10.1208/s12249-023-02647-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/29/2023] [Indexed: 10/04/2023] Open
Abstract
Diet-induced obesity and hyperlipidemia are a growing public health concern leading to various metabolic disorders. Capsaicin, a major bioactive compound obtained from natural chili peppers, has demonstrated its numerous beneficial roles in treating obesity and weight loss. Current treatment involves either administration of antiobesity drugs or surgical procedures such as Roux-en-Y-gastric bypass or sleeve gastrectomy, both of which are associated with serious side effects and poor patient acceptance. Capsaicin, a pungent molecule, has low oral bioavailability. Therefore, there is a need for the development of site-specific drug delivery system for capsaicin. The present study is aimed at preparing and characterizing 3D-printed capsaicin-loaded rod-shaped implants by thermoplastic extrusion-based 3D printing technology. The implants were printed with capsaicin-loaded into a biodegradable polymer, polycaprolactone, at different drug loadings and infill densities. The surface morphology revealed a smooth and uniform external surface without any capsaicin crystals. DSC thermograms showed no significant changes/exothermic events among the blends suggesting no drug polymer interactions. The in vitro release studies showed a biphasic release profile for capsaicin, and the release was sustained for more than three months (~ 85% released) irrespective of drug loading and infill densities. The HPLC method was stability-indicating and showed good resolution for its analogs, dihydrocapsaicin and nordihydrocapsaicin. The implants were stable for three months at accelerated conditions (40°C) without any significant decrease in the assay of capsaicin. Therefore, capsaicin-loaded implants can serve as a long-acting injectable formulation for targeting the adipose tissue region in obese patients.
Collapse
Affiliation(s)
- Manjusha Annaji
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
| | - Nur Mita
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
- Faculty of Pharmacy, Mulawarman University, Samarinda, Kalimantan Timur, Indonesia
| | - Jessica Heard
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama, 36849, USA
| | - Ishwor Poudel
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA
| | - Oladiran Fasina
- Department of Biosystems Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama, 36849, USA
| | - Padmamalini Baskaran
- College of Pharmacy, Howard University, Washington, District of Columbia, 20059, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, Ohio, 43614, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama, 36849, USA
| | - Candace C Lyman
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama, 36849, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, 36849, USA.
| |
Collapse
|
11
|
Jacobson NM, Brusilovsky J, Ducey R, Stence NV, Barker AJ, Mitchell MB, Smith L, MacCurdy R, Weaver JC. The Inner Complexities of Multimodal Medical Data: Bitmap-Based 3D Printing for Surgical Planning Using Dynamic Physiology. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:855-868. [PMID: 37886401 PMCID: PMC10599423 DOI: 10.1089/3dp.2022.0265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Motivated by the need to develop more informative and data-rich patient-specific presurgical planning models, we present a high-resolution method that enables the tangible replication of multimodal medical data. By leveraging voxel-level control of multimaterial three-dimensional (3D) printing, our method allows for the digital integration of disparate medical data types, such as functional magnetic resonance imaging, tractography, and four-dimensional flow, overlaid upon traditional magnetic resonance imaging and computed tomography data. While permitting the explicit translation of multimodal medical data into physical objects, this approach also bypasses the need to process data into mesh-based boundary representations, alleviating the potential loss and remodeling of information. After evaluating the optical characteristics of test specimens generated with our correlative data-driven method, we culminate with multimodal real-world 3D-printed examples, thus highlighting current and potential applications for improved surgical planning, communication, and clinical decision-making through this approach.
Collapse
Affiliation(s)
- Nicholas M. Jacobson
- School of Engineering, Design, and Computation—Inworks Innovation Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jane Brusilovsky
- School of Engineering, Design, and Computation—Inworks Innovation Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Nicholas V. Stence
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Children's Hospital Colorado, Heart Institute and Advanced Imaging Lab, Aurora, Colorado
| | - Alex J. Barker
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Children's Hospital Colorado, Heart Institute and Advanced Imaging Lab, Aurora, Colorado
| | - Max B. Mitchell
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Children's Hospital Colorado, Heart Institute and Advanced Imaging Lab, Aurora, Colorado
| | - Lawrence Smith
- School of Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Robert MacCurdy
- School of Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - James C. Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Yang MY, Tseng HC, Liu CH, Tsai SY, Chen JH, Chu YH, Li ST, Lee JJ, Liao WC. Effects of the individual three-dimensional printed craniofacial bones with a quick response code on the skull spatial knowledge of undergraduate medical students. ANATOMICAL SCIENCES EDUCATION 2023; 16:858-869. [PMID: 36905326 DOI: 10.1002/ase.2269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Understanding the three-dimensional (3D) structure of the human skull is imperative for medical courses. However, medical students are overwhelmed by the spatial complexity of the skull. Separated polyvinyl chloride (PVC) bone models have advantages as learning tools, but they are fragile and expensive. This study aimed to reconstruct 3D-printed skull bone models (3D-PSBs) using polylactic acid (PLA) with anatomical characteristics for spatial recognition of the skull. Student responses to 3D-PSB application were investigated through a questionnaire and tests to understand the requirement of these models as a learning tool. The students were randomly divided into 3D-PSB (n = 63) and skull (n = 67) groups to analyze pre- and post-test scores. Their knowledge was improved, with the gain scores of the 3D-PSB group (50.0 ± 3.0) higher than that of the skull group (37.3 ± 5.2). Most students agreed that using 3D-PSBs with quick response codes could improve immediate feedback on teaching (88%; 4.41 ± 0.75), while 85.9% of the students agreed that individual 3D-PSBs clarified the structures hidden within the skull (4.41 ± 0.75). The ball drop test revealed that the mechanical strength of the cement/PLA model was significantly greater than that of the cement or PLA model. The prices of the PVC, cement, and cement/PLA models were 234, 1.9, and 10 times higher than that of the 3D-PSB model, respectively. These findings imply that low-cost 3D-PSB models could revolutionize skull anatomical education by incorporating digital technologies like the QR system into the anatomical teaching repertoire.
Collapse
Affiliation(s)
- Mao-Yi Yang
- Department of Medical Education, Changhua Christian Hospital, Changhua City, Taiwan
- Department of Orthopedic Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hsien-Chun Tseng
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Radiation Oncology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chiung-Hui Liu
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shao-Yu Tsai
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jyun-Hsiung Chen
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yin-Hung Chu
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shao-Ti Li
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jian-Jr Lee
- Faculty of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Plastic & Reconstruction Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Chieh Liao
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
13
|
Dutta A, Singh M, Kumar K, Ribera Navarro A, Santiago R, Kaul RP, Patil S, Kalaskar DM. Accuracy of 3D printed spine models for pre-surgical planning of complex adolescent idiopathic scoliosis (AIS) in spinal surgeries: a case series. ANNALS OF 3D PRINTED MEDICINE 2023; 11:None. [PMID: 37592961 PMCID: PMC10427719 DOI: 10.1016/j.stlm.2023.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/15/2023] [Indexed: 08/19/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a noticeable spinal deformity in both adult and adolescent population. In majority of the cases, the gold standard of treatment is surgical intervention. Technological advancements in medical imaging and 3D printing have revolutionised the surgical planning and intraoperative decision making for surgeons in spinal surgery. However, its applicability for planning complex spinal surgeries is poorly documented with human subjects. The objective of this study is to evaluate the accuracy of 3D printed models for complex spinal deformities based on Cobb angles between 40° to 95°.This is a retrospective cohort study where, five CT scans of the patients with AIS were segmented and 3D printed for evaluating the accuracy. Consideration was given to the Inter-patient and acquisition apparatus variability of the CT-scan dataset to understand the effect on trueness and accuracy of the developed CAD models. The developed anatomical models were re-scanned for analysing quantitative surface deviation to assess the accuracy of 3D printed spinal models. Results show that the average of the root mean square error (RMSE) between the 3DP models and virtual models developed using CT scan of mean surface deviations for the five 3d printed models was found to be 0.5±0.07 mm. Based on the RMSE, it can be concluded that 3D printing based workflow is accurate enough to be used for presurgical planning for complex adolescent spinal deformities. Image acquisition and post processing parameters, type of 3D printing technology plays key role in acquiring required accuracy for surgical applications.
Collapse
Affiliation(s)
- Abir Dutta
- UCL Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, London, United Kingdom
- Royal National Orthopaedic Hospital NHS Trust, Spinal Surgery Unit, Stanmore, HA7 4LP, London, United Kingdom
| | - Menaka Singh
- UCL Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, London, United Kingdom
| | - Kathryn Kumar
- UCL Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, London, United Kingdom
| | - Aida Ribera Navarro
- UCL Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, London, United Kingdom
| | - Rodney Santiago
- Department of Radiology, Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Ruchi Pathak Kaul
- UCL Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, London, United Kingdom
| | - Sanganagouda Patil
- Royal National Orthopaedic Hospital NHS Trust, Spinal Surgery Unit, Stanmore, HA7 4LP, London, United Kingdom
| | - Deepak M Kalaskar
- UCL Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, London, United Kingdom
- Royal National Orthopaedic Hospital NHS Trust, Spinal Surgery Unit, Stanmore, HA7 4LP, London, United Kingdom
| |
Collapse
|
14
|
Soh CL, Pandiaraja M, Powar MP. 3D-Printing Applications in Ostomy Device Creation and Complex Intestinal Fistula Management: A Scoping Review. Surg J (N Y) 2023; 9:e97-e106. [PMID: 37876379 PMCID: PMC10522416 DOI: 10.1055/s-0043-1775748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/26/2023] [Indexed: 10/26/2023] Open
Abstract
Background This scoping review aims to provide a summary of the use of three-dimensional (3D) printing in colorectal surgery for the management of complex intestinal fistula and ostomy creation. Methods A systematic database search was conducted of original articles that explored the use of 3D printing in colorectal surgery in EMBASE, MEDLINE, Cochrane database, and Google Scholar, from inception to March 2022. Original articles and case reports that discussed 3D printing in colorectal surgery relating to complex intestinal fistulae and ostomies were identified and analyzed. Results There were 8 articles identified which discussed the use of 3D printing in colorectal surgery, of which 2 discussed ostomy creation, 4 discussed complex fistulae management, and 2 discussed patient models. Conclusion 3D printing has a promising role in terms of management of these conditions and can improve outcomes in terms of recovery, fluid loss, and function with no increase in complications. The use of 3D printing is still in its early stages of development in colorectal surgery. Further research in the form of randomized control trials to improve methodological robustness will reveal its true potential.
Collapse
Affiliation(s)
- Chien Lin Soh
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Michael P. Powar
- Cambridge Colorectal Unit, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| |
Collapse
|
15
|
Wang X, Shujaat S, Shaheen E, Ferraris E, Jacobs R. Trueness of cone-beam computed tomography-derived skull models fabricated by different technology-based three-dimensional printers. BMC Oral Health 2023; 23:397. [PMID: 37328901 PMCID: PMC10273646 DOI: 10.1186/s12903-023-03104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) printing is a novel innovation in the field of craniomaxillofacial surgery, however, a lack of evidence exists related to the comparison of the trueness of skull models fabricated using different technology-based printers belonging to different cost segments. METHODS A study was performed to investigate the trueness of cone-beam computed tomography-derived skull models fabricated using different technology based on low-, medium-, and high-cost 3D printers. Following the segmentation of a patient's skull, the model was printed by: (i) a low-cost fused filament fabrication printer; (ii) a medium-cost stereolithography printer; and (iii) a high-cost material jetting printer. The fabricated models were later scanned by industrial computed tomography and superimposed onto the original reference virtual model by applying surface-based registration. A part comparison color-coded analysis was conducted for assessing the difference between the reference and scanned models. A one-way analysis of variance (ANOVA) with Bonferroni correction was applied for statistical analysis. RESULTS The model printed with the low-cost fused filament fabrication printer showed the highest mean absolute error ([Formula: see text]), whereas both medium-cost stereolithography-based and the high-cost material jetting models had an overall similar dimensional error of [Formula: see text] and [Formula: see text], respectively. Overall, the models printed with medium- and high-cost printers showed a significantly ([Formula: see text]) lower error compared to the low-cost printer. CONCLUSIONS Both stereolithography and material jetting based printers, belonging to the medium- and high-cost market segment, were able to replicate the skeletal anatomy with optimal trueness, which might be suitable for patient-specific treatment planning tasks in craniomaxillofacial surgery. In contrast, the low-cost fused filament fabrication printer could serve as a cost-effective alternative for anatomical education, and/or patient communication.
Collapse
Affiliation(s)
- Xiaotong Wang
- OMFS-IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, Leuven, 3000 Belgium
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang, 150001 Harbin China
| | - Sohaib Shujaat
- OMFS-IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, Leuven, 3000 Belgium
- King Abdullah International Medical Research Center, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Kingdom of Saudi Arabia, Riyadh, 14611 Saudi Arabia
| | - Eman Shaheen
- OMFS-IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, Leuven, 3000 Belgium
| | - Eleonora Ferraris
- Department of Mechanical Engineering, KU Leuven Campus De Nayer, Jan Pieter de Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Reinhilde Jacobs
- OMFS-IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven & Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, Leuven, 3000 Belgium
- Department of Dental Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52, Huddinge, Sweden
| |
Collapse
|
16
|
Ali Majeed Z, Hasan Jasim H. Digital Evaluation of Trueness and Fitting Accuracy of Co-Cr Crown Copings Fabricated by Different Manufacturing Technologies. Cureus 2023; 15:e39819. [PMID: 37397662 PMCID: PMC10314363 DOI: 10.7759/cureus.39819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
INTRODUCTION The dentistry industry has seen a number of exciting new advancements in recent years, many of which have been made possible by the introduction of automated technologies such as computer-aided design and computer-aided manufacturing (CAD/CAM). Despite the fact that these new approaches simplify the fabrication process in favor of decreased material consumption and improved time efficiency, it is possible that they may have an effect on the prosthesis's fitness, which in turn may affect how long they will last. PURPOSE The purpose of this in vitro study was to evaluate the trueness and fitness of cobalt-chromium (Co-Cr) crown copings fabricated by selective laser melting (SLM), milling, and conventional casting methods. MATERIALS AND METHODS A zirconium die was fabricated and scanned with a laboratory scanner to manufacture the Co-Cr metal copings for three groups (n = 12). In group A, the copings were fabricated by a 3D printing technique called SLM; in group B, the copings were fabricated by the milling technique; and in group C, the copings were fabricated by the conventional lost-wax method. After fabrication, the trueness and the internal fitness of the copings were evaluated using a metrology software program (Geomagic Control X, 3D Systems Inc., Rock Hill, SC). The one-way ANOVA and Tukey's honestly significant difference test were used to statistically analyze the data. RESULTS The highest root mean square (RMS) value of trueness was for CAD/CAM milling, and the highest mean of horizontal gaps was for the casted (lost-wax technique) group. There were highly significant differences in the mean RMS value of trueness and the mean horizontal gaps between the three groups. CONCLUSION The fabrication method of Co-Cr crown copings has an effect on the trueness and fitness of the copings.
Collapse
Affiliation(s)
- Zainab Ali Majeed
- Department of Conservative Dentistry, College of Dentistry, Ministry of Health, Mustansiriyah University, Baghdad, IRQ
| | - Haider Hasan Jasim
- Department of Conservative Dentistry, College of Dentistry, Mustansiriyah University, Baghdad, IRQ
| |
Collapse
|
17
|
Al-Nimry SS, Daghmash RM. Three Dimensional Printing and Its Applications Focusing on Microneedles for Drug Delivery. Pharmaceutics 2023; 15:1597. [PMID: 37376046 DOI: 10.3390/pharmaceutics15061597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Microneedles (MNs) are considered to be a novel smart injection system that causes significantly low skin invasion upon puncturing, due to the micron-sized dimensions that pierce into the skin painlessly. This allows transdermal delivery of numerous therapeutic molecules, such as insulin and vaccines. The fabrication of MNs is carried out through conventional old methods such as molding, as well as through newer and more sophisticated technologies, such as three-dimensional (3D) printing, which is considered to be a superior, more accurate, and more time- and production-efficient method than conventional methods. Three-dimensional printing is becoming an innovative method that is used in education through building intricate models, as well as being employed in the synthesis of fabrics, medical devices, medical implants, and orthoses/prostheses. Moreover, it has revolutionary applications in the pharmaceutical, cosmeceutical, and medical fields. Having the capacity to design patient-tailored devices according to their dimensions, along with specified dosage forms, has allowed 3D printing to stand out in the medical field. The different techniques of 3D printing allow for the production of many types of needles with different materials, such as hollow MNs and solid MNs. This review covers the benefits and drawbacks of 3D printing, methods used in 3D printing, types of 3D-printed MNs, characterization of 3D-printed MNs, general applications of 3D printing, and transdermal delivery using 3D-printed MNs.
Collapse
Affiliation(s)
- Suhair S Al-Nimry
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Rawand M Daghmash
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
18
|
Wakamori K, Nagata K, Nakashizu T, Tsuruoka H, Atsumi M, Kawana H. Comparative Verification of the Accuracy of Implant Models Made of PLA, Resin, and Silicone. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093307. [PMID: 37176189 PMCID: PMC10179293 DOI: 10.3390/ma16093307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Polylactic acid (PLA) has gained considerable attention as an alternative to petroleum-based materials due to environmental concerns. We fabricated implant models with fused filament fabrication (FFF) 3D printers using PLA, and the accuracies of these PLA models were compared with those of plaster models made from silicone impressions and resin models made with digital light processing (DLP). A base model was obtained from an impact-training model. The scan body was mounted on the plaster, resin, and PLA models obtained from the base model, and the obtained information was converted to stereolithography (STL) data by the 3D scanner. The base model was then used as a reference, and its data were superimposed onto the STL data of each model using Geomagic control. The horizontal and vertical accuracies of PLA models, as calculated using the Tukey-Kramer method, were 97.2 ± 48.4 and 115.5 ± 15.1 μm, respectively, which suggests that the PLA model is the least accurate among the three models. In both cases, significant differences were found between PLA and gypsum and between the PLA and resin models. However, considering that the misfit of screw-retained implant frames should be ≤150 µm, PLA can be effectively used for fabricating implant models.
Collapse
Affiliation(s)
- Kana Wakamori
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| | - Koudai Nagata
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| | - Toshifumi Nakashizu
- Division of the Dental Practice Support, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| | - Hayato Tsuruoka
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| | - Mihoko Atsumi
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| | - Hiromasa Kawana
- Department of Oral and Maxillofacial Implantology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| |
Collapse
|
19
|
Paxton NC. Navigating the intersection of 3D printing, software regulation and quality control for point-of-care manufacturing of personalized anatomical models. 3D Print Med 2023; 9:9. [PMID: 37024730 PMCID: PMC10080800 DOI: 10.1186/s41205-023-00175-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
3D printing technology has become increasingly popular in healthcare settings, with applications of 3D printed anatomical models ranging from diagnostics and surgical planning to patient education. However, as the use of 3D printed anatomical models becomes more widespread, there is a growing need for regulation and quality control to ensure their accuracy and safety. This literature review examines the current state of 3D printing in hospitals and FDA regulation process for software intended for use in producing 3D printed models and provides for the first time a comprehensive list of approved software platforms alongside the 3D printers that have been validated with each for producing 3D printed anatomical models. The process for verification and validation of these 3D printed products, as well as the potential for inaccuracy in these models, is discussed, including methods for testing accuracy, limits, and standards for accuracy testing. This article emphasizes the importance of regulation and quality control in the use of 3D printing technology in healthcare, the need for clear guidelines and standards for both the software and the printed products to ensure the safety and accuracy of 3D printed anatomical models, and the opportunity to expand the library of regulated 3D printers.
Collapse
Affiliation(s)
- Naomi C Paxton
- Phil & Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
20
|
Yang Q, Zhong W, Liu Y, Hou R, Wu Y, Yan Q, Yang G. 3D-printed morphology-customized microneedles: understanding the correlation between their morphologies and the received qualities. Int J Pharm 2023; 638:122873. [PMID: 36958610 DOI: 10.1016/j.ijpharm.2023.122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Despite remarkable progress in the last decade in transdermal microneedle drug delivery systems, great difficulties in precisely manufacturing microneedles with sophisticated microstructures still strongly retard their practical applications. Herein we propose morphology-customized microneedles (spiral, conical, cylindroid, ring-like, arrow-like and tree-like) fabricated by stereolithography (SLA) based 3D-printing technique, and in-depth investigate the correlation between the customized morphologies and the received qualities of the corresponding microneedles such as the mechanical properties and skin penetration behavior, drug loading capacity and the drug release profiles. Results indicated that 3D-printed morphology-customized microneedles not only enhanced the mechanical strength but also improved both drug loading capacity and drug release behavior, which resulted from their highly controllable and 3D-printable morphologies (surface area and volume). And the in vivo study demonstrated that the 3D-printed morphology-customized microneedles successfully promoted the transdermal delivery of the loaded drug (verapamil hydrochloride) with an enhanced therapeutic efficacy for the treatment of hypertrophic scar.
Collapse
Affiliation(s)
- Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weizhen Zhong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yiwen Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Runlin Hou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yujing Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qinying Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
21
|
Chen JR, Morris J, Wentworth A, Sears V, Duit A, Erie E, McGee K, Leng S. Three-dimensional printing accuracy analysis for medical applications across a wide variety of printers. J Med Imaging (Bellingham) 2023; 10:026501. [PMID: 37020530 PMCID: PMC10068246 DOI: 10.1117/1.jmi.10.2.026501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
Purpose Three-dimensional (3D) printing has had a significant impact on patient care. However, there is a lack of standardization in quality assurance (QA) to ensure printing accuracy and precision given multiple printing technologies, variability across vendors, and inter-printer reliability issues. We investigated printing accuracy on a diverse selection of 3D printers commonly used in the medical field. Approach A specially designed 3D printing QA phantom was periodically printed on 16 printers used in our practice, covering five distinct printing technologies and eight different vendors. Longitudinal data were acquired over six months by printing the QA phantom monthly on each printer. Qualitative assessment and quantitative measurements were obtained for each printed phantom. Accuracy and precision were assessed by comparing quantitative measurements with reference values of the phantom. Data were then compared among printer models, vendors, and printing technologies; longitudinal trends were also analyzed. Results Differences in 3D printing accuracy across printers were observed. Material jetting and vat photopolymerization printers were found to be the most accurate. Printers using the same 3D printing technology but from different vendors also showed differences in accuracy, most notably between vat photopolymerization printers from two different vendors. Furthermore, differences in accuracy were found between printers from the same vendor using the same printing technology, but different models/generations. Conclusions These results show how factors such as printing technology, vendor, and printer model can impact 3D printing accuracy, which should be appropriately considered in practice to avoid potential medical or surgical errors.
Collapse
Affiliation(s)
- Joshua Ray Chen
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Jonathan Morris
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Adam Wentworth
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Victoria Sears
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Andrew Duit
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Eric Erie
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Kiaran McGee
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Shuai Leng
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| |
Collapse
|
22
|
Nguyen P, Stanislaus I, McGahon C, Pattabathula K, Bryant S, Pinto N, Jenkins J, Meinert C. Quality assurance in 3D-printing: A dimensional accuracy study of patient-specific 3D-printed vascular anatomical models. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1097850. [PMID: 36824261 PMCID: PMC9941637 DOI: 10.3389/fmedt.2023.1097850] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/03/2023] [Indexed: 02/10/2023] Open
Abstract
3D printing enables the rapid manufacture of patient-specific anatomical models that substantially improve patient consultation and offer unprecedented opportunities for surgical planning and training. However, the multistep preparation process may inadvertently lead to inaccurate anatomical representations which may impact clinical decision making detrimentally. Here, we investigated the dimensional accuracy of patient-specific vascular anatomical models manufactured via digital anatomical segmentation and Fused-Deposition Modelling (FDM), Stereolithography (SLA), Selective Laser Sintering (SLS), and PolyJet 3D printing, respectively. All printing modalities reliably produced hand-held patient-specific models of high quality. Quantitative assessment revealed an overall dimensional error of 0.20 ± 3.23%, 0.53 ± 3.16%, -0.11 ± 2.81% and -0.72 ± 2.72% for FDM, SLA, PolyJet and SLS printed models, respectively, compared to unmodified Computed Tomography Angiograms (CTAs) data. Comparison of digital 3D models to CTA data revealed an average relative dimensional error of -0.83 ± 2.13% resulting from digital anatomical segmentation and processing. Therefore, dimensional error resulting from the print modality alone were 0.76 ± 2.88%, + 0.90 ± 2.26%, + 1.62 ± 2.20% and +0.88 ± 1.97%, for FDM, SLA, PolyJet and SLS printed models, respectively. Impact on absolute measurements of feature size were minimal and assessment of relative error showed a propensity for models to be marginally underestimated. This study revealed a high level of dimensional accuracy of 3D-printed patient-specific vascular anatomical models, suggesting they meet the requirements to be used as medical devices for clinical applications.
Collapse
Affiliation(s)
- Philip Nguyen
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Ivan Stanislaus
- Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Clover McGahon
- Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Krishna Pattabathula
- Vascular Surgery Department, Royal Brisbane and Women's Hospital, Metro North Hospital and Health Services, Brisbane, QLD, Australia,Vascular Biofabrication Program, Herston Biofabrication Institute, Metro North Hospital and Health Services, Brisbane, QLD, Australia
| | - Samuel Bryant
- Vascular Surgery Department, Royal Brisbane and Women's Hospital, Metro North Hospital and Health Services, Brisbane, QLD, Australia,Vascular Biofabrication Program, Herston Biofabrication Institute, Metro North Hospital and Health Services, Brisbane, QLD, Australia
| | - Nigel Pinto
- Vascular Surgery Department, Royal Brisbane and Women's Hospital, Metro North Hospital and Health Services, Brisbane, QLD, Australia,Vascular Biofabrication Program, Herston Biofabrication Institute, Metro North Hospital and Health Services, Brisbane, QLD, Australia
| | - Jason Jenkins
- Vascular Surgery Department, Royal Brisbane and Women's Hospital, Metro North Hospital and Health Services, Brisbane, QLD, Australia,Vascular Biofabrication Program, Herston Biofabrication Institute, Metro North Hospital and Health Services, Brisbane, QLD, Australia
| | - Christoph Meinert
- Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia,Vascular Biofabrication Program, Herston Biofabrication Institute, Metro North Hospital and Health Services, Brisbane, QLD, Australia,Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, QLD, Australia,Correspondence: Christoph Meinert
| |
Collapse
|
23
|
Fidelity of 3D Printed Brains from MRI Scan in Children with Pathology (Prior Hypoxic Ischemic Injury). J Digit Imaging 2023; 36:17-28. [PMID: 36280655 PMCID: PMC9984578 DOI: 10.1007/s10278-022-00723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 10/31/2022] Open
Abstract
Cortical injury on the surface of the brain in children with hypoxic ischemic injury (HII) can be difficult to demonstrate to non-radiologists and lay people using brain images alone. Three-dimensional (3D) printing is helpful to communicate the volume loss and pathology due to HII in children's brains. 3D printed models represent the brain to scale and can be held up against models of normal brains for appreciation of volume loss. If 3D printed brains are to be used for formal communication, e.g., with medical colleagues or in court, they should have high fidelity of reproduction of the actual size of patients' brains. Here, we evaluate the size fidelity of 3D printed models from MRI scans of the brain, in children with prior HII. Twelve 3D prints of the brain were created from MRI scans of children with HII and selected to represent a variety of cortical pathologies. Specific predetermined measures of the 3D prints were made and compared to measures in matched planes on MRI. Fronto-occipital length (FOL) and bi-temporal/bi-parietal diameters (BTD/BPD) demonstrated high interclass correlations (ICC). Correlations were moderate to weak for hemispheric height, temporal height, and pons-cerebellar thickness. The average standard error of measurement (SEM) was 0.48 cm. Our results demonstrate high correlations in overall measurements of each 3D printed model derived from brain MRI scans versus the original MRI, evidenced by high ICC values for FOL and BTD/BPD. Measures with low correlation values can be explained by variability in matching the plane of measurement to the MRI slice orientation.
Collapse
|
24
|
Kusk MW, Stowe J, Hess S, Gerke O, Foley S. Low-cost 3D-printed anthropomorphic cardiac phantom, for computed tomography automatic left ventricle segmentation and volumetry - A pilot study. Radiography (Lond) 2023; 29:131-138. [PMID: 36368249 DOI: 10.1016/j.radi.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Accurate cardiac left ventricle (LV) delineation is essential to CT-derived left ventricular ejection fraction (LVEF). To evaluate dose-reduction potential, an anatomically accurate heart phantom, with realistic X-ray attenuation is required. We demonstrated and tested a custom-made phantom using 3D-printing, and examined the influence of image noise on automatically measured LV volumes METHODS: A single coronary CT angiography (CCTA) dataset was segmented and converted to Standard Tessellation Language (STL) mesh, using open-source software. A 3D-printed model, with hollow left heart chambers, was printed and cavities filled with gelatinized contrast media. This was CT-scanned in an anthropomorphic chest phantom, at different exposure conditions. LV and "myocardium" noise and attenuation was measured. LV volume was automatically measured using two different methods. We calculated Spearmans' correlation of LV volume with noise and contrast-noise ratio respectively om 486 scans of the phantom. Source images were compared to one phantom series with similar parameters. This was done using Dice coefficient on LV short-axis segmentations. RESULTS Phantom "Myocardium" and LV attenuation was comparable to measurements on source images. Automatic volume measurement succeeded, with mean volume deviation to patient images less than 2 ml. There was a moderate correlation of volume with CNR, and strong correlation of volume with image noise. With papillary muscles included in LV volume, the correlation was positive, but negative when excluded. Variation of volumes was lowest at 90-100 kVp for both methods in the 486 repeat scans. The Dice coefficient was 0.87, indicating high overlap between the single phantom series and source scan. Cost of 3D-printer and materials was 400 and 30 Euro respectively. CONCLUSION Both anatomically and radiologically the phantom mimicked the source scans closely. LV volumetry was reliably performed with automatic algorithms. IMPLICATIONS FOR PRACTICE Patient-specific cardiac phantoms may be produced at minimal cost and can potentially be used for other anatomies and pathologies. This enables radiographic phantom studies without need for dedicated 3D-labs or expensive commercial phantoms.
Collapse
Affiliation(s)
- M W Kusk
- Radiography & Diagnostic Imaging, School of Medicine, University College Dublin, Ireland; Department of Radiology and Nuclear Medicine, University Hospital of Southern Denmark, Hospital South West Jutland Esbjerg, Denmark; IRIS - Imaging Research Initiative Southwest, Esbjerg, Denmark.
| | - J Stowe
- Radiography & Diagnostic Imaging, School of Medicine, University College Dublin, Ireland
| | - S Hess
- Department of Radiology and Nuclear Medicine, University Hospital of Southern Denmark, Hospital South West Jutland Esbjerg, Denmark; IRIS - Imaging Research Initiative Southwest, Esbjerg, Denmark; Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - O Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - S Foley
- Radiography & Diagnostic Imaging, School of Medicine, University College Dublin, Ireland
| |
Collapse
|
25
|
Marturello DM, James JC, Perry KL, Déjardin LM. Accuracy of anatomic 3-dimensionally printed canine humeral models. Vet Surg 2023; 52:116-126. [PMID: 36134757 DOI: 10.1111/vsu.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/19/2022] [Accepted: 09/05/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To evaluate the accuracy of various three-dimensional print (3DP) technologies using morphometric measurements. STUDY DESIGN Experimental. SAMPLE POPULATION Cadaveric canine humeri and size-matched 3DP models. METHODS Fiduciary radiopaque markers were affixed to canine humeri of three different sizes (4, 13, 29 kg) at predetermined anatomical landmarks. 3DP models were created using one of three printers; desktop printers Form 3L and Ultimaker 5S, and industrial printer Objet Connex (n = 5/group/printer). Marker based morphometric dimensions between cadavers and 3DP models were statistically compared using 2-factor repeated measures ANOVA followed by Tukey's post-hoc test (p < .05). RESULTS Bone size and printer type both significantly affected 3DP accuracy, with size having the larger effect (p < .0001 and p < .02, respectively). Regardless of printing technology, model size was smaller than native bone in most cases. At the humeral condylar level, the best accuracy was seen in the medium-sized humerus with the Ultimaker printer ([0.09 mm], p < .03). Accuracy was reduced in the proximal humerus in all groups. CONCLUSION Desktop printers were overall more accurate than the industrial printer. Although significant differences were identified between models of different sizes, the submillimetric magnitude of these differences is unlikely to be clinically relevant. CLINICAL SIGNIFICANCE While preoperative planning using 3DP models is becoming mainstream, accurate representation of the actual bone is critical. This study demonstrates that common desktop printers are suitable for this purpose.
Collapse
Affiliation(s)
- Danielle M Marturello
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Jordan C James
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Karen L Perry
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Loïc M Déjardin
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
26
|
Jacob J, Stunden C, Zakani S. Exploring the value of three-dimensional printing and virtualization in paediatric healthcare: A multi-case quality improvement study. Digit Health 2023; 9:20552076231159988. [PMID: 36865771 PMCID: PMC9972041 DOI: 10.1177/20552076231159988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Background Three-dimensional printing is being utilized in clinical medicine to support activities including surgical planning, education, and medical device fabrication. To better understand the impacts of this technology, a survey was implemented with radiologists, specialist physicians, and surgeons at a tertiary care hospital in Canada, examining multidimensional value and considerations for uptake. Objectives To examine how three-dimensional printing can be integrated into the paediatric context and highlight areas of impact and value to the healthcare system using Kirkpatrick's Model. Secondarily, to explore the perspective of clinicians utilizing three-dimensional models and how they make decisions about whether or not to use the technology in patient care. Methods A post-case survey. Descriptive statistics are provided for Likert-style questions, and a thematic analysis was conducted to identify common patterns in open-ended responses. Results In total, 37 respondents were surveyed across 19 clinical cases, providing their perspectives on model reaction, learning, behaviour, and results. We found surgeons and specialists to consider the models more beneficial than radiologists. Results further showed that the models were more helpful when used to assess the likelihood of success or failure of clinical management strategies, and for intraoperative orientation. We demonstrate that three-dimensional printed models could improve perioperative metrics, including a reduction in operating room time, but with a reciprocal effect on pre-procedural planning time. Clinicians who shared the models with patients and families thought it increased understanding of the disease and surgical procedure, and had no effect on their consultation time. Conclusions Three-dimensional printing and virtualization were used in preoperative planning and for communication among the clinical care team, trainees, patients, and families. Three-dimensional models provide multidimensional value to clinical teams, patients, and the health system. Further investigation is warranted to assess value in other clinical areas, across disciplines, and from a health economics and outcomes perspective.
Collapse
Affiliation(s)
- John Jacob
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
- Bayes Business School, City, University of London, London, UK
| | - Chelsea Stunden
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
| | - Sima Zakani
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
| |
Collapse
|
27
|
Mantilla DE, Ferrara R, Ortiz AF, Vera DD, Nicoud F, Costalat V. Validation of three-dimensional printed models of intracranial aneurysms. Interv Neuroradiol 2022:15910199221143254. [PMID: 36503318 DOI: 10.1177/15910199221143254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
INTRODUCTION Three-dimensional (3D) printing has evolved for medical applications as it can produce customized 3D models of devices and implants that can improve patient care. In this study, we aimed to validate the geometrical accuracy of the 3D models of intracranial aneurysms printed using Stereolithography 3D printing technology. MATERIALS AND METHODS To compare the unruptured intracranial aneurysm mesh between the five patients and 3D printed models, we opened the DICOM files in the Sim&Size® simulation software, selected the region of interest, and performed the threshold check. We juxtaposed the 3D reconstructions and manually rotated the images to get the same orientation when needed and measured deviations at different nodes of the patient and 3D printed model meshes. RESULTS In the first patient, 80% of the nodes were separated by <0.56 mm and 0.17 mm. In the second patient, the deviations were below 0.17 mm for 80% of the meshes' nodes. In the next three patients, the deviations were below 0.21, 0.23, and 0.11 mm for 80% of the meshes' nodes. Finally, the overall deviation was below 0.21 mm for 80% of the mesh nodes of the five aneurysms. CONCLUSIONS 3D printed models of intracranial aneurysms are accurate, having surfaces that resemble that of patients' angiographies with an 80% cumulative deviation below 0.21 mm.
Collapse
Affiliation(s)
- Daniel E Mantilla
- Interventional Radiology Department, Fundación oftalmológica de Santander Clínica Ardila Lülle, Floridablanca, Colombia
- Interventional Radiology Department, 27968Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- Faculté de Sciencies, Université de Montpellier, Montpellier, France
| | | | - Andrés F Ortiz
- Interventional Radiology Department, Fundación oftalmológica de Santander Clínica Ardila Lülle, Floridablanca, Colombia
- Interventional Radiology Department, 27968Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
| | - Daniela D Vera
- Physician. Radiology Department, Fundación oftalmológica de Santander, Clínica Ardila Lülle, Floridablanca, Colombia
| | - Franck Nicoud
- Institut Montpelliérain Alexander, Grothendieck, CNRS, Univ. Montpellier, Montpellier, France
| | - Vincent Costalat
- Neuroradiology, Hôpital Güi-de-Chauliac, CHU de Montpellier, Montpellier, France
| |
Collapse
|
28
|
Chen W, Ma L, Shao J, Bi C, Xie Y, Zhao S. Morphological specificity analysis of an image-based 3D model of airway filling in a difficult airway. BMC Anesthesiol 2022; 22:336. [PMCID: PMC9632020 DOI: 10.1186/s12871-022-01880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022] Open
Abstract
Abstract
Background
The purpose of this study was to analyze position-specific morphological changes of the upper airway and to further assess the impact of these changes in difficult airway during intubation.
Methods
This observational comparative study included two groups (n = 20 patients/group): Group A had normal airway and Group B had difficult airway. Data obtained from two-dimensional magnetic resonance imaging were imported to Mimics V20.0 software for processing. We then reconstructed three-dimensional models of upper airway filling in patients in the supine and maximum extension position based on the imaging data. Those models were projected on coronal, sagittal, and horizontal planes to investigate multiple morphological features. We measured the surface area, radial length, and corner angle of the projected areas.
Results
Group A had larger upper airway filling volumes compared to Group B The volumes for the supine position were 6,323.83 ± 156.06 mm3 for Group A and 5,336.22 ± 316.13 mm3 for Group B (p = 0.003). The volumes the maximum extension position were 9,186.58 ± 512.61 mm3 for Group A and 6,735.46 ± 794.63 mm3 for Group B (p = 0.003). Airway volume increased in the upper airway filling model as the body position varied from the supine to maximum extension position (Group A: volume increase 2,953.75 ± 524.6 mm3, rate of change 31%; Group B: volume increase 1,632.89 ± 662.66 mm3, rate of change 25%; p = 0.052).
Conclusion
The three-dimensional reconstruction model developed in this study was used to digitally quantify morphological features of a difficult airway and could be used as a novel airway management assessment tool.
Collapse
|
29
|
George MJ, Dias-Neto M, Ramos Tenorio E, Skibber MA, Morris JM, Oderich GS. 3D printing in aortic endovascular therapies. THE JOURNAL OF CARDIOVASCULAR SURGERY 2022; 63:597-605. [PMID: 35822744 DOI: 10.23736/s0021-9509.22.12407-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endovascular treatment of aortic disease, including aneurysm or dissection, is expanding at a rapid pace. Often, the specific patient anatomy in these cases is complex. Additive manufacturing, also known as three-dimensional (3D) printing, is especially useful in the treatment of aortic disease, due to its ability to manufacture physical models of complex patient anatomy. Compared to other surgical procedures, endovascular aortic repair can readily exploit the advantages of 3D printing with regard to operative planning and preoperative training. To date, there have been numerous uses of 3D printing in the treatment of aortic pathology as an adjunct in presurgical planning and as a basis for training modules for fellows and residents. In this review, we summarize the current uses of 3D printing in the endovascular management of aortic disease. We also review the process of producing these models, the limitations of their applications, and future directions of 3D printing in this field.
Collapse
Affiliation(s)
- Mitchell J George
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA -
| | - Marina Dias-Neto
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Emanuel Ramos Tenorio
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Max A Skibber
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jonathan M Morris
- Unit of Anatomic Modeling, Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Gustavo S Oderich
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
30
|
Kamio T, Onda T. Fused Deposition Modeling 3D Printing in Oral and Maxillofacial Surgery: Problems and Solutions. Cureus 2022; 14:e28906. [PMID: 36105906 PMCID: PMC9451925 DOI: 10.7759/cureus.28906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Three-dimensional (3D) printing technology in medicine is one of the new and innovative technology for fabricating 3D models of complex anatomical structures that can be observed both visually and haptically. Patient-specific 3D models fabricated through this process are currently being used for various purposes, including surgical simulation, training, and medical education. Most of the personal use/low-end desktop 3D printers that are becoming widespread are fused deposition modeling (FDM) 3D printers. Compared to professional/high-end 3D printers, the price of the personal use/low-end desktop FDM 3D printer itself, filament, and running costs are lower; it can lower the economic bottleneck for introducing 3D printing technology into clinical practice, such as surgical simulation. With a desktop FDM 3D printer and a general-purpose PC, anyone can now rapidly fabricate 3D models on their own without having to rely on 3D printing labs and specialized technicians. However, it is also true that FDM 3D printers, due to their mechanical characteristics, encounter many difficulties and problems that emerge during the 3D printing process. Knowledge, know-how, and tips about FDM 3D printers have been introduced in various media, and it has become easy to know about them worldwide via the Internet. However, there has been no comprehensive technical review to date to produce osseous 3D models for use in oral and maxillofacial surgery. In this report, to create 3D models according to the characteristics of maxillofacial and oral surgery, we enable surgeons themselves to create 3D models smoothly by presenting ideas for CT scanning, points to note when exporting Digital Imaging and Communications in Medicine (DICOM) image data, how to create optimal stereolithography (STL) models, and problems and solutions for 3D printing.
Collapse
|
31
|
Pruksawan S, Chee HL, Wang Z, Luo P, Chong YT, Thitsartarn W, Wang F. Toughened Hydrogels for 3D Printing of Soft Auxetic Structures. Chem Asian J 2022; 17:e202200677. [PMID: 35950549 DOI: 10.1002/asia.202200677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/07/2022] [Indexed: 11/06/2022]
Abstract
Materials with negative Poisson's ratio have attracted considerable attention and offered high potential applications as biomedical devices due to their ability to expand in every direction when stretched. Although negative Poisson's ratio has been obtained in various base materials such as metals and polymers, there are very limited works on hydrogels due to their intrinsic brittleness. Herein, we report the use of methacrylated cellulose nanocrystals (CNCMAs) as a macro-cross-linking agent in poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels for 3D printing of auxetic structures. Our developed CNCMA-pHEMA hydrogels exhibit significant improvements in mechanical properties, which is attributed to the coexistence of multiple chemical and physical interactions between the pHEMA and CNCMAs. Structures printed by using CNCMA-pHEMA hydrogels show auxetic behavior with greatly enhanced toughness and stretchability compared to the hydrogel with a traditional cross-linking agent. Such strong and tough auxetic hydrogels would contribute toward establishing advanced flexible implantable devices such as biodegradable oesophageal self-expandable stents.
Collapse
Affiliation(s)
| | - Heng Li Chee
- Institute of Materials Research and Engineering, PMC, SINGAPORE
| | - Zizhen Wang
- National University of Singapore - Kent Ridge Campus: National University of Singapore, bioengineering, SINGAPORE
| | - Ping Luo
- Institute of Materials Research and Engineering, AMC, SINGAPORE
| | - Yi Ting Chong
- Institute of Materials Research and Engineering, PMC, SINGAPORE
| | | | - FuKe Wang
- Institute of Materiasl Research and Engineering, 3 Research Link, 117602, Singapore, SINGAPORE
| |
Collapse
|
32
|
Muller H, Fossey A. Stereolithography (STL) measurement rubric for the evaluation of craniomaxillofacial STLs. 3D Print Med 2022; 8:25. [PMID: 35934728 PMCID: PMC9358852 DOI: 10.1186/s41205-022-00151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Facial deformities often demand reconstructive surgery and the placement of three-dimensional (3D) printed craniomaxillofacial prostheses. Prostheses manufacturing requires patients’ computed tomography (CT) images. Poor quality images result in incorrectly sized prostheses, necessitating repeat imaging and refitting. The Centre for Rapid Prototyping and Manufacturing (CRPM) produces most facial prostheses in South Africa but does not have a prescribed optimised CT protocol. Therefore, this study was undertaken. Methods A collection of CRPM STLs used in the design and manufacturing of craniomaxillofacial prostheses is available. The image quality of stereolithography (STL) files of CRPM CT scans was evaluated to determine what constitutes good image quality. This collection was scrutinised for inclusion in the image quality evaluation. After scrutiny, 35 STLs of individuals ≥15 years of age were selected and included metadata attached to the DICOM file. Furthermore, only STLs created without manipulation by the same designer were included in the collection. Before the qualitative evaluation of the STLs, eight different critical anatomical reference points (CARPs) were identified with the assistance of an expert team. A visual acuity rating scale of three categories was devised for each CARP, where 1 was allocated to poor visual acuity, 2 to partial, and 3 to good visual acuity. Similarly, rating scales were devised for the presence of concentric rings and the overall impression score awarded by the two designers involved in the design and manufacturing of the prostheses. This stereolithography measurement rubric (SMR) was then applied to the 35 STLs by a team of three experts, including the two designers, during a structured evaluation session. The scores were used to calculate summary and inferential statistics. Results Scores grouped around the central rating of partial visual acuity. The three evaluators’ mean total CARP scores ranged from 13.1 to 14.4 (maximum possible score 24), while the mean total CARP + ring scores ranged from 15.8 to 17.1 (maximum possible score 27). No significant differences were detected between the evaluators’ scores. Conclusion This SMR appears to be the first of its kind. This image quality assessment of STLs provides the groundwork for finer CT image quality evaluation to formulate a CT imaging protocol for the CRPM to design and manufacture accurate internal cranial prostheses.
Collapse
Affiliation(s)
- Henra Muller
- Department of Clinical Imaging Sciences, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa. .,Department of Clinical Sciences, Faculty of Health and Environmental Sciences, Central University of Technology Free State, C/o Park Road & President Brand Street, Bloemfontein, 9300, South Africa.
| | | |
Collapse
|
33
|
Salim S, Salleh NM, Abidin ZZ, Yunus N, Rahmat R, Ibrahim N. Physicomechanical properties of cobalt-chromium removable partial denture palatal major connectors fabricated by selective laser melting. J Prosthet Dent 2022; 128:530.e1-530.e7. [PMID: 35933173 DOI: 10.1016/j.prosdent.2022.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 10/16/2022]
Abstract
STATEMENT OF PROBLEM Additive manufacturing by selective laser melting (SLM) has been claimed to be less challenging than conventional casting of cobalt-chromium (Co-Cr) removable partial dentures (RPDs), providing significant improvements. However, how the physicomechanical properties of Co-Cr RPDs fabricated by SLM compare with those fabricated by conventional casting is unclear. PURPOSE The purpose of this in vitro study was to evaluate the physicomechanical properties of Co-Cr RPD palatal major connectors fabricated by SLM compared with those fabricated by conventional casting. MATERIAL AND METHODS A master die simulating a maxillary arch of Kennedy class III modification 1 was scanned to create a virtual 3-dimensional (3D) cast. Two groups of 5 Co-Cr RPD major connectors were fabricated. In the 3D printing group, the Co-Cr major connector was virtually designed and exported for direct SLM 3D printing. For the conventional group, Co-Cr major connectors were constructed conventionally. The Co-Cr major connectors were virtually superimposed with the master die for surface adaptation analysis. Additional comparative analyses of surface roughness, relative density, microhardness, and microstructure of the 2 groups were performed. Data were analyzed by using independent t tests (α=.05). RESULTS The overall volumetric and linear discrepancies were significantly higher (P<.05) in the 3D printing group. Significant differences in the surface roughness (P<.05) and microhardness (P<.05) were observed, with the 3D printing group having higher surface roughness and microhardness than the conventional group. Unlike conventional connectors, the microstructure of 3D-printed connectors showed fine homogeneous granules. CONCLUSIONS Compared with the conventional casting technique, SLM 3D printing enabled the fabrication of Co-Cr RPD major connectors with higher microhardness and fine homogenous microstructure. However, the surface adaptation and surface roughness of SLM 3D printing Co-Cr connectors were worse than those produced conventionally. Both techniques showed similar relative densities.
Collapse
Affiliation(s)
- Safa Salim
- PhD student, Department of Restorative Dentistry, Faculty of Dentistry, University Malaya, Kuala Lumpur, Malaysia
| | - Nosizana Mohd Salleh
- Associated Professor, Department of Restorative Dentistry, Faculty of Dentistry, University Malaya, Kuala Lumpur, Malaysia
| | - Zubaidah Zanul Abidin
- Lecturer, Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Norsiah Yunus
- Professor, Department of Restorative Dentistry, Faculty of Dentistry, University Malaya, Kuala Lumpur, Malaysia
| | - Rabiah Rahmat
- Lecturer, Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Norliza Ibrahim
- Associated Professor, Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
34
|
Mandolini M, Brunzini A, Facco G, Mazzoli A, Forcellese A, Gigante A. Comparison of Three 3D Segmentation Software Tools for Hip Surgical Planning. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22145242. [PMID: 35890923 PMCID: PMC9323631 DOI: 10.3390/s22145242] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/01/2023]
Abstract
In hip arthroplasty, preoperative planning is fundamental to reaching a successful surgery. Nowadays, several software tools for computed tomography (CT) image processing are available. However, research studies comparing segmentation tools for hip surgery planning for patients affected by osteoarthritic diseases or osteoporotic fractures are still lacking. The present work compares three different software from the geometric, dimensional, and usability perspectives to identify the best three-dimensional (3D) modelling tool for the reconstruction of pathological femoral heads. Syngo.via Frontier (by Siemens Healthcare) is a medical image reading and post-processing software that allows low-skilled operators to produce prototypes. Materialise (by Mimics) is a commercial medical modelling software. 3D Slicer (by slicer.org) is an open-source development platform used in medical and biomedical fields. The 3D models reconstructed starting from the in vivo CT images of the pathological femoral head are compared with the geometries obtained from the laser scan of the in vitro bony specimens. The results show that Mimics and 3D Slicer are better for dimensional and geometric accuracy in the 3D reconstruction, while syngo.via Frontier is the easiest to use in the hospital setting.
Collapse
Affiliation(s)
- Marco Mandolini
- Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy; (A.B.); (A.F.)
| | - Agnese Brunzini
- Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy; (A.B.); (A.F.)
| | - Giulia Facco
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto 10/a, Torrette di Ancona, 60126 Ancona, Italy; (G.F.); (A.G.)
| | - Alida Mazzoli
- Department of Materials, Environmental Sciences and Urban Planning, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy;
| | - Archimede Forcellese
- Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy; (A.B.); (A.F.)
| | - Antonio Gigante
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Via Tronto 10/a, Torrette di Ancona, 60126 Ancona, Italy; (G.F.); (A.G.)
| |
Collapse
|
35
|
Hapa O, Aydemir S, Husemoglu RB, Yanik B, Gursan O, Balci A, Havitcioglu H. Effects of degree of translation or rotation of acetabular fragment of periacetabular osteotomy procedure on pelvic X-ray parameters. J Hip Preserv Surg 2022; 9:172-177. [PMID: 35992031 PMCID: PMC9389912 DOI: 10.1093/jhps/hnac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/27/2022] [Accepted: 06/12/2022] [Indexed: 12/03/2022] Open
Abstract
The present study aims to investigate the effect of amount of lateralization and/or anteversion of the point where the iliac cut meets with the posterior column cut of periacetabular osteotomy (PAO), on X-ray parameters such as Center of edge (CE) angle, retroversion index (RVI) and sharp angle. Fourteen patients with symptomatic hip dysplasia (CE° < 20°) were included. Pelvis Computerized tomography (CT) sections were used for 3D printing. PAO was then performed on these models. The point (A), 1 cm lateral to the pelvic brim, is marked where the iliac cut intersects the posterior column cut. In Group I (1.5–0), point A is lateralized parallel to the osteotomy line for 1.5 cm. In Group II (1.5–0.5), it is additionally anteverted for 0.5 cm. In Group III (3–0), point A is lateralized for 3 cm and then additionally anteverted for 1 cm (Group IV: 3–1). Radiographs were taken in each stage. The lateral CE angle, RVI and sharp angle were measured. All had an increase in the CE angle and RVI and a decrease in the sharp angle compared to the control group (P < 0.05). The amount of CE angle (ΔCE) or RVI increase (ΔRV) was as follows: 3–1(38°, 0.3) > 3–0(27°, 0.2) and 1.5–0.5(25°, 0.1) > 1.5–0(17°, 0.07) (P < 0.05) (with no difference between groups 1.5–0.5 and 3–0, P = 0.7). The amount of sharp angle decrease was as follows: 3–1(20°), 3–0(18°) < 1.5–0.5(11°) < 1.5–0(8°) (P < 0.05). The lateralization of the intersection point where the iliac wing cut meets with the posterior column cut along the cut surface led to an increase of lateral cover and focal retroversion. Additional anteversion leads to further increases in those parameters, while groups 1.5–0.5 and 3–0 did not differ between.
Collapse
Affiliation(s)
- Onur Hapa
- Department of Orthopedic Surgery, Dokuz Eylul University , Izmir 35330, Turkey
| | - Selahattin Aydemir
- Department of Orthopedic Surgery, Dokuz Eylul University , Izmir 35330, Turkey
| | - R Bugra Husemoglu
- Department of Biomechanics, Dokuz Eylul University , Izmir 35330, Turkey
| | - Berkay Yanik
- Department of Orthopedic Surgery, Izmir Provincial Health Directorate Urla State Hospital , Izmir 35430, Turkey
| | - Onur Gursan
- Department of Orthopedic Surgery, Dokuz Eylul University , Izmir 35330, Turkey
| | - Ali Balci
- Department of Radiology, Dokuz Eylul University , Izmir 35330, Turkey
| | - Hasan Havitcioglu
- Department of Orthopedic Surgery, Dokuz Eylul University , Izmir 35330, Turkey
| |
Collapse
|
36
|
Fogarasi M, Coburn JC, Ripley B. Algorithms used in medical image segmentation for 3D printing and how to understand and quantify their performance. 3D Print Med 2022; 8:18. [PMID: 35748984 PMCID: PMC9229760 DOI: 10.1186/s41205-022-00145-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 3D printing (3DP) has enabled medical professionals to create patient-specific medical devices to assist in surgical planning. Anatomical models can be generated from patient scans using a wide array of software, but there are limited studies on the geometric variance that is introduced during the digital conversion of images to models. The final accuracy of the 3D printed model is a function of manufacturing hardware quality control and the variability introduced during the multiple digital steps that convert patient scans to a printable format. This study provides a brief summary of common algorithms used for segmentation and refinement. Parameters for each that can introduce geometric variability are also identified. Several metrics for measuring variability between models and validating processes are explored and assessed. METHODS Using a clinical maxillofacial CT scan of a patient with a tumor of the mandible, four segmentation and refinement workflows were processed using four software packages. Differences in segmentation were calculated using several techniques including volumetric, surface, linear, global, and local measurements. RESULTS Visual inspection of print-ready models showed distinct differences in the thickness of the medial wall of the mandible adjacent to the tumor. Volumetric intersections and heatmaps provided useful local metrics of mismatch or variance between models made by different workflows. They also allowed calculations of aggregate percentage agreement and disagreement which provided a global benchmark metric. For the relevant regions of interest (ROIs), statistically significant differences were found in the volume and surface area comparisons for the final mandible and tumor models, as well as between measurements of the nerve central path. As with all clinical use cases, statistically significant results must be weighed against the clinical significance of any deviations found. CONCLUSIONS Statistically significant geometric variations from differences in segmentation and refinement algorithms can be introduced into patient-specific models. No single metric was able to capture the true accuracy of the final models. However, a combination of global and local measurements provided an understanding of important geometric variations. The clinical implications of each geometric variation is different for each anatomical location and should be evaluated on a case-by-case basis by clinicians familiar with the process. Understanding the basic segmentation and refinement functions of software is essential for sites to create a baseline from which to evaluate their standard workflows, user training, and inter-user variability when using patient-specific models for clinical interventions or decisions.
Collapse
Affiliation(s)
- Magdalene Fogarasi
- US Food and Drug Administration, Center for Device and Radiological Health, Silver Spring, MD 20993 USA
| | - James C. Coburn
- US Food and Drug Administration, Office of the Chief Scientist, Silver Spring, MD 20993 USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Beth Ripley
- US Department of Veterans Affairs, Veterans Health Administration, Office of Healthcare Innovation and Learning, Seattle, WA 98109 USA
| |
Collapse
|
37
|
Huang YH, Lee B, Chuy JA, Goldschmidt SL. 3D printing for surgical planning of canine oral and maxillofacial surgeries. 3D Print Med 2022; 8:17. [PMID: 35678954 PMCID: PMC9178851 DOI: 10.1186/s41205-022-00142-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/30/2022] [Indexed: 01/17/2023] Open
Abstract
Background Advanced diagnostic imaging is an essential part of preoperative planning for oral and maxillofacial surgery in veterinary patients. 3-dimensional (3D) printed models and surgical guides generated from diagnostic imaging can provide a deeper understanding of the complex maxillofacial anatomy, including relevant spatial relationships. Additionally, patient-specific 3D printed models allow surgeons and trainees to better examine anatomical features through tactile and visuospatial feedback allowing for improved preoperative planning, intraoperative guidance, and enhanced trainee education. Furthermore, these models facilitate discussions with pet owners, allowing for improved owner understanding of pathology, and educated decision-making regarding treatment. Case presentation Our case series consists of three 3D printed models segmented from computed tomography (CT) and cone beam CT (CBCT) and fabricated via desktop vat polymerization for preoperative planning and intraoperative guidance for resection of maxillary osteosarcoma, mandibular reconstruction after mandibulectomy, and gap arthroplasty for temporomandibular joint ankylosis in dogs. Conclusions We illustrate multiple benefits and indications for 3D printing in veterinary oral and maxillofacial surgery. 3D printed models facilitate the understanding of complex surgical anatomy, creating an opportunity to assess the spatial relationship of the relevant structures. It facilitates individualized surgical planning by allowing surgeons to tailor and augment the surgical plan by examining patient-specific anatomy and pathology. Surgical steps may also be simulated in advance, including planning of osteotomy lines, and pre-contouring of titanium plates for reconstruction. Additionally, a 3D printed model and surgical guide also serve as invaluable intraoperative reference and guidance. Furthermore, 3D printed models have the potential to improve veterinary resident and student training as well as pet owner understanding and communication regarding the condition of their pets, treatment plan and intended outcomes.
Collapse
Affiliation(s)
- Yu-Hui Huang
- Department of Radiology, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA. .,Department of Radiology, Minneapolis VA Medical Center, 1 Veterans Dr, Minneapolis, MN, 55417, USA.
| | - Bonnie Lee
- College of Veterinary Medicine, University of Minnesota, 1352 Boyd Ave, St Paul, MN, 55108, USA
| | - Jeffrey A Chuy
- Department of Radiology, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.,Department of Radiology, Minneapolis VA Medical Center, 1 Veterans Dr, Minneapolis, MN, 55417, USA
| | - Stephanie L Goldschmidt
- College of Veterinary Medicine, University of Minnesota, 1352 Boyd Ave, St Paul, MN, 55108, USA
| |
Collapse
|
38
|
Ravi P, Chepelev LL, Stichweh GV, Jones BS, Rybicki FJ. Medical 3D Printing Dimensional Accuracy for Multi-pathological Anatomical Models 3D Printed Using Material Extrusion. J Digit Imaging 2022; 35:613-622. [PMID: 35237891 PMCID: PMC9156585 DOI: 10.1007/s10278-022-00614-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Medical 3D printing of anatomical models is being increasingly applied in healthcare facilities. The accuracy of such 3D-printed anatomical models is an important aspect of their overall quality control. The purpose of this research was to test whether the accuracy of a variety of anatomical models 3D printed using Material Extrusion (MEX) lies within a reasonable tolerance level, defined as less than 1-mm dimensional error. Six medical models spanning across anatomical regions (musculoskeletal, neurological, abdominal, cardiovascular) and sizes (model volumes ranging from ~ 4 to 203 cc) were chosen for the primary study. Three measurement landing blocks were strategically designed within each of the six medical models to allow high-resolution caliper measurements. An 8-cc reference cube was printed as the 7th model in the primary study. In the secondary study, the effect of model rotation and scale was assessed using two of the models from the first study. All models were 3D printed using an Ultimaker 3 printer in triplicates. All absolute measurement errors were found to be less than 1 mm with a maximum error of 0.89 mm. The maximum relative error was 2.78%. The average absolute error was 0.26 mm, and the average relative error was 0.71% in the primary study, and the results were similar in the secondary study with an average absolute error of 0.30 mm and an average relative error of 0.60%. The relative errors demonstrated certain patterns in the data, which were explained based on the mechanics of MEX 3D printing. Results indicate that the MEX process, when carefully assessed on a case-by-case basis, could be suitable for the 3D printing of multi-pathological anatomical models for surgical planning if an accuracy level of 1 mm is deemed sufficient for the application.
Collapse
Affiliation(s)
- Prashanth Ravi
- Department of Radiology, University of Cincinnati College of Medicine, 234 Goodman St, Cincinnati, OH, 45219, USA.
| | - Leonid L Chepelev
- Department of Radiology, Stanford University, 300 Pasteur Dr, Stanford, CA, 94305, USA
| | - Gabrielle V Stichweh
- 1819 Innovation Hub Makerspace, University of Cincinnati, 2900 Reading Rd, Cincinnati, OH, 45206, USA
| | - Benjamin S Jones
- 1819 Innovation Hub Makerspace, University of Cincinnati, 2900 Reading Rd, Cincinnati, OH, 45206, USA
| | - Frank J Rybicki
- Department of Radiology, University of Cincinnati College of Medicine, 234 Goodman St, Cincinnati, OH, 45219, USA
| |
Collapse
|
39
|
Detamornrat U, McAlister E, Hutton ARJ, Larrañeta E, Donnelly RF. The Role of 3D Printing Technology in Microengineering of Microneedles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106392. [PMID: 35362226 DOI: 10.1002/smll.202106392] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Microneedles (MNs) are minimally invasive devices, which have gained extensive interest over the past decades in various fields including drug delivery, disease diagnosis, monitoring, and cosmetics. MN geometry and shape are key parameters that dictate performance and therapeutic efficacy, however, traditional fabrication methods, such as molding, may not be able to offer rapid design modifications. In this regard, the fabrication of MNs using 3D printing technology enables the rapid creation of complex MN prototypes with high accuracy and offers customizable MN devices with a desired shape and dimension. Moreover, 3D printing shows great potential in producing advanced transdermal drug delivery systems and medical devices by integrating MNs with a variety of technologies. This review aims to demonstrate the advantages of exploiting 3D printing technology as a new tool to microengineer MNs. Various 3D printing methods are introduced, and representative MNs manufactured by such approaches are highlighted in detail. The development of advanced MN devices is also included. Finally, clinical translation and future perspectives for the development of MNs using 3D printing are discussed.
Collapse
Affiliation(s)
- Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Emma McAlister
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
40
|
Goldsmith I. Chest Wall Reconstruction With 3D Printing: Anatomical and Functional Considerations. INNOVATIONS-TECHNOLOGY AND TECHNIQUES IN CARDIOTHORACIC AND VASCULAR SURGERY 2022; 17:191-200. [PMID: 35699725 DOI: 10.1177/15569845221102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Large chest wall defects, as a result of wide local excision of chest wall pathology, require skeletal and soft-tissue reconstruction to restore the anatomical shape, structure, and respiratory function of the thorax. Reconstruction is challenging and requires the surgical reconstructive team to understand the anatomic and physiologic morbidity related to the defect and the choice of reconstructive techniques available to restore form and function. Rapidly emerging 3-dimensional (3D) printing technology allows the reconstructive surgical team to customize the therapeutic process of skeletal reconstruction by accurately mimicking the shape and structure of the chest wall being replaced. An integrated knowledge of the anatomy, physiology, mechanics of breathing, and respiratory tests is important to restore form and function. The focus of this article is to review the anatomy, physiology, and assessment of respiratory function from the classical textbooks and integrate this knowledge with the precise anatomy of the chest wall created by 3D printing technology. By doing so, this article will demonstrate how 3D printing may help the reconstructive team to understand the anatomic and physiologic morbidity related to the chest wall defect and the importance of taking each of these aspects into consideration when undertaking chest wall reconstruction of the thorax.
Collapse
Affiliation(s)
- Ira Goldsmith
- Department of Cardiothoracic Surgery, 97701Morriston Hospital, Swansea Bay University Health Board, Wales, UK
| |
Collapse
|
41
|
Maerz M, Treutwein M, Nabo J, Dobler B. Three-dimensional printers applied for the production of beam blocks in total body irradiation treatment. J Appl Clin Med Phys 2022; 23:e13592. [PMID: 35290701 PMCID: PMC9121048 DOI: 10.1002/acm2.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/20/2022] [Accepted: 03/01/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose Total body irradiation (TBI) in extended source surface distance (SSD) is a common treatment technique before hematopoietic stem cell transplant. The lungs are organs at risk, which often are treated with a lower dose than the whole body. Methods This can be achieved by the application of blocks. Three‐dimensional (3D) printers are a modern tool to be used in the production process of these blocks. Results We demonstrate the applicability of a specific printer and printing material, describe the process, and evaluate the accuracy of the product. Conclusion The blocks and apertures were found to be applicable in clinical routine.
Collapse
Affiliation(s)
- Manuel Maerz
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany
| | - Marius Treutwein
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany
| | - Jan Nabo
- Department for Mathematics and Computer Science, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Barbara Dobler
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany
| |
Collapse
|
42
|
Kiseleva M, Omar MM, Boisselier É, Selivanova SV, Fortin MA. A Three-Dimensional Printable Hydrogel Formulation for the Local Delivery of Therapeutic Nanoparticles to Cervical Cancer. ACS Biomater Sci Eng 2022; 8:1200-1214. [PMID: 35226460 DOI: 10.1021/acsbiomaterials.1c01399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cervical cancer is the fourth most common malignancy among women. Compared to other types of cancer, therapeutic agents can be administrated locally at the mucosal vaginal membrane. Thermosensitive gels have been developed over the years for contraception or for the treatment of bacterial, fungal, and sexually transmitted infections. These formulations often carry therapeutic nanoparticles and are now being considered in the arsenal of tools for oncology. They can also be three-dimensionally (3D) printed for a better geometrical adjustment to the anatomy of the patient, thus enhancing the local delivery treatment. In this study, a localized delivery system composed of a Pluronic F127-alginate hydrogel with efficient nanoparticle (NP) release properties was prepared for intravaginal application procedures. The kinetics of hydrogel degradation and its NP releasing properties were demonstrated with ultrasmall gold nanoparticles (∼80% of encapsulated AuNPs released in 48 h). The mucoadhesive properties of the hydrogel formulation were assayed by the periodic acid/Schiff reagent staining, which revealed that 19% of mucins were adsorbed on the gel's surface. The hydrogel formulation was tested for cytocompatibility in three cell lines (HeLa, CRL 2616, and BT-474; no sign of cytotoxicity revealed). The release of AuNPs from the hydrogel and their accumulation in vaginal membranes were quantitatively measured in vitro/ex vivo with positron emission tomography, a highly sensitive modality allowing real-time imaging of nanoparticle diffusion (lag time to start of permeation of 3.3 h, 47% of AuNPs accumulated in the mucosa after 42 h). Finally, the potential of the AuNP-containing Pluronic F127-alginate hydrogel for 3D printing was demonstrated, and the geometrical precision of the 3D printed systems was measured by magnetic resonance imaging (<0.5 mm precision; deviation from the design values <2.5%). In summary, this study demonstrates the potential of Pluronic F127-alginate formulations for the topical administration of NP-releasing gels applied to vaginal wall therapy. This technology could open new possibilities for photothermal and radiosensitizing oncology applications.
Collapse
Affiliation(s)
- Mariia Kiseleva
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Québec G1V 0A6, Canada
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec - Université Laval, 2705, boul. Laurier (T1-61a), Québec G1V 4G2, Canada
| | - Mahmoud M Omar
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Québec G1V 0A6, Canada
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec - Université Laval, 2705, boul. Laurier (T1-61a), Québec G1V 4G2, Canada
| | - Élodie Boisselier
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec - Université Laval, 2705, boul. Laurier (T1-61a), Québec G1V 4G2, Canada
- Département d'Ophtalmologie, Faculté de Médecine, Centre de Recherche sur les 1022 Matériaux Avancés (CERMA) and CUO-Recherche, Université Laval, Québec G3K 1A3, Canada
| | - Svetlana V Selivanova
- Faculty of Pharmacy, Université Laval, Québec G1V 0A6, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec - Université Laval, Québec G1R 3S3, Canada
| | - Marc-André Fortin
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, Québec G1V 0A6, Canada
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec - Université Laval, 2705, boul. Laurier (T1-61a), Québec G1V 4G2, Canada
| |
Collapse
|
43
|
Willemsen K, Magré J, Mol J, Noordmans HJ, Weinans H, Hekman EEG, Kruyt MC. Vital Role of In-House 3D Lab to Create Unprecedented Solutions for Challenges in Spinal Surgery, Practical Guidelines and Clinical Case Series. J Pers Med 2022; 12:395. [PMID: 35330395 PMCID: PMC8951204 DOI: 10.3390/jpm12030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
For decades, the advantages of rapid prototyping for clinical use have been recognized. However, demonstrations of potential solutions to treat spinal problems that cannot be solved otherwise are scarce. In this paper, we describe the development, regulatory process, and clinical application of two types of patient specific 3D-printed devices that were developed at an in-house 3D point-of-care facility. This 3D lab made it possible to elegantly treat patients with spinal problems that could not have been treated in a conventional manner. The first device, applied in three patients, is a printed nylon drill guide, with such accuracy that it can be used for insertion of cervical pedicle screws in very young children, which has been applied even in semi-acute settings. The other is a 3D-printed titanium spinal column prosthesis that was used to treat progressive and severe deformities due to lysis of the anterior column in three patients. The unique opportunity to control size, shape, and material characteristics allowed a relatively easy solution for these patients, who were developing paraplegia. In this paper, we discuss the pathway toward the design and final application, including technical file creation for dossier building and challenges within a point-of-care lab.
Collapse
Affiliation(s)
- Koen Willemsen
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.M.); (J.M.); (H.W.); (M.C.K.)
- 3D Lab, Division of Surgical Specialties, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Joëll Magré
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.M.); (J.M.); (H.W.); (M.C.K.)
- 3D Lab, Division of Surgical Specialties, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jeroen Mol
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.M.); (J.M.); (H.W.); (M.C.K.)
| | - Herke Jan Noordmans
- Department of Medical Technology and Clinical Physics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.M.); (J.M.); (H.W.); (M.C.K.)
- Department Biomechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Edsko E. G. Hekman
- Department of Biomechanical Engineering, Twente University, 7522 NB Enschede, The Netherlands;
| | - Moyo C. Kruyt
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.M.); (J.M.); (H.W.); (M.C.K.)
- Department of Biomechanical Engineering, Twente University, 7522 NB Enschede, The Netherlands;
| |
Collapse
|
44
|
Ogishi K, Osaki T, Morimoto Y, Takeuchi S. 3D printed microfluidic devices for lipid bilayer recordings. LAB ON A CHIP 2022; 22:890-898. [PMID: 35133381 DOI: 10.1039/d1lc01077h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper verifies the single-step and monolithic fabrication of 3D structural lipid bilayer devices using stereolithography. Lipid bilayer devices are utilized to host membrane proteins in vitro for biological assays or sensing applications. There is a growing demand to fabricate functional lipid bilayer devices with a short lead-time, and the monolithic fabrication of components by 3D printing is highly anticipated. However, the prerequisites of 3D printing materials which lead to reproducible lipid bilayer formation are still unknown. Here, we examined the feasibility of membrane protein measurement using lipid bilayer devices fabricated by stereolithography. The 3D printing materials were characterized and the surface smoothness and hydrophobicity were found to be the relevant factors for successful lipid bilayer formation. The devices were comparable to the ones fabricated by conventional procedures in terms of measurement performances like the amplitude of noise and the waiting time for lipid bilayer formation. We further demonstrated the extendibility of the technology for the functionalization of devices, such as incorporating microfluidic channels for solution exchangeability and arraying multiple chambers for robust measurement.
Collapse
Affiliation(s)
- Kazuto Ogishi
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Toshihisa Osaki
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Yuya Morimoto
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Shoji Takeuchi
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
45
|
Melnyk R, Oppenheimer D, Ghazi AE. How specific are patient-specific simulations? Analyzing the accuracy of 3D-printing and modeling to create patient-specific rehearsals for complex urological procedures. World J Urol 2022; 40:621-626. [PMID: 34390371 PMCID: PMC9808900 DOI: 10.1007/s00345-021-03797-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/30/2021] [Indexed: 01/05/2023] Open
Abstract
PURPOSE In the field of urology, 3D printing and modeling are now regularly utilized to enhance pre-operative planning, surgical training, patient-specific rehearsals (PSR), and patient education and counseling. Widespread accessibility and affordability of such technologies necessitates development of quality control measures to confirm the anatomical accuracy of these tools. Herein, we present three methods utilized to evaluate the anatomical accuracy of hydrogel PSR, developed using 3D printing and molding for pre-operative surgical rehearsals, of robotic-assisted partial nephrectomy (RAPN) and percutaneous nephrolithotomy (PCNL). METHODS Virtual computer-aided designs (CADs) of patient anatomy were created through segmentation of patient CT scan images. Ten patient-specific RAPN and PCNL hydrogel models were CT scanned and segmented to create a corresponding model CAD. The part compare tool (3-matic, Materialize), point-to-point measurements, and Dice similarity coefficient (DSC) analyzed surface geometry, alignment, and volumetric overlap of each model component. RESULTS Geometries of the RAPN parenchyma, tumor, artery, vein, and pelvicalyceal system lay within an average deviation of 2.5 mm (DSC = 0.70) of the original patient geometry and 5 mm (DSC = 0.45) of the original patient alignment. Similarly, geometries of the PCNL pelvicalyceal system and stone lay within 2.5 mm (DSC = 0.6) and within 15 mm (16% deviation) in alignment. This process enabled the refinement of our modeling process to fabricate anatomically accurate RAPN and PCNL PSR. CONCLUSION As 3D printing and modeling continues to have a greater impact on patient care, confirming anatomical accuracy should be introduced as a quality control measure prior to use for patient care.
Collapse
Affiliation(s)
- Rachel Melnyk
- Simulation Innovation Lab, University of Rochester Medical Center (URMC), 601 Elmwood Ave, Rochester, NY, USA
| | | | - Ahmed E Ghazi
- Simulation Innovation Lab, University of Rochester Medical Center (URMC), 601 Elmwood Ave, Rochester, NY, USA.
- Department of Urology, URMC, Rochester, NY, USA.
| |
Collapse
|
46
|
Bastawrous S, Wu L, Liacouras PC, Levin DB, Ahmed MT, Strzelecki B, Amendola MF, Lee JT, Coburn J, Ripley B. Establishing 3D Printing at the Point of Care: Basic Principles and Tools for Success. Radiographics 2022; 42:451-468. [PMID: 35119967 DOI: 10.1148/rg.210113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the medical applications of three-dimensional (3D) printing increase, so does the number of health care organizations in which adoption or expansion of 3D printing facilities is under consideration. With recent advancements in 3D printing technology, medical practitioners have embraced this powerful tool to help them to deliver high-quality patient care, with a focus on sustainability. The use of 3D printing in the hospital or clinic at the point of care (POC) has profound potential, but its adoption is not without unanticipated challenges and considerations. The authors provide the basic principles and considerations for building the infrastructure to support 3D printing inside the hospital. This process includes building a business case; determining the requirements for facilities, space, and staff; designing a digital workflow; and considering how electronic health records may have a role in the future. The authors also discuss the supported applications and benefits of medical 3D printing and briefly highlight quality and regulatory considerations. The information presented is meant to be a practical guide to assist radiology departments in exploring the possibilities of POC 3D printing and expanding it from a niche application to a fixture of clinical care. An invited commentary by Ballard is available online. ©RSNA, 2022.
Collapse
Affiliation(s)
- Sarah Bastawrous
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Lei Wu
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Peter C Liacouras
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Dmitry B Levin
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Mohamed Tarek Ahmed
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Brian Strzelecki
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Michael F Amendola
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - James T Lee
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - James Coburn
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Beth Ripley
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| |
Collapse
|
47
|
Material Extrusion Based Fabrication of Surgical Implant Template and Accuracy Analysis. MATERIALS 2022; 15:ma15051738. [PMID: 35268972 PMCID: PMC8911434 DOI: 10.3390/ma15051738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 01/11/2023]
Abstract
An implant template with great precision is significantly critical for clinical application. Currently, the application of an immediate implant remains limited by the deviations between the planned and actual achieved positions and long periods required for preparation of implant templates. Material Extrusion (MEX), as one kind of 3D printing method, is well known for its low cost and easy operation. However, the accuracy of the implant template printed by MEX has not been fully researched. To investigate the accuracy and feasibility of in vitro computer-guided surgery assisted with a MEX printed template, unidentified plaster samples missing a maxillary molar are digitalized. Mimics software (Materialise, Leuven, Belgium) is used for preoperative design. Surgical templates are fabricated by a MEX 3D printer (Lingtong III, Beijing SHINO, Beijing, China). Postoperative CBCT data are obtained after surgical template placement. The differences in positions of X, Y, Z, and dXYZ as well as angulations between the placed and the designed template are measured on labiolingual and mesiodistal planes. The deviations of the planned and the actual outcome in each dimension are observed and analyzed. Data from different samples indicate that the mean deviation of the angle measures approximately 3.640°. For position deviation, the maximum deviation is found in the z-direction and the mean deviation is about 0.365 ± 0.136 mm. The mean deviation of space Euclidean distance dXYZ is approximately 0.537 ± 0.123 mm. Implant templates fabricated by MEX present a relatively high accuracy for tooth-supported guide implantation.
Collapse
|
48
|
Carew RM, Iacoviello F, Rando C, Moss RM, Speller R, French J, Morgan RM. A multi-method assessment of 3D printed micromorphological osteological features. Int J Legal Med 2022; 136:1391-1406. [PMID: 35141777 PMCID: PMC9375746 DOI: 10.1007/s00414-022-02789-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/24/2022] [Indexed: 10/26/2022]
Abstract
The evaluation of 3D printed osteological materials has highlighted the difficulties associated with accurately representing fine surface details on printed bones. Moreover, there is an increasing need for reconstructions to be demonstrably accurate and reliable for use in the criminal justice system. The aim of this study was to assess the surface quality of 3D prints (n = 9) that presented with micromorphological alterations from trauma, taphonomy and pathology processes. The archaeological bones were imaged using micro-CT scanning and 3D printed with selective laser sintering (SLS) printing. A multi-method experimental approach subsequently identified: (1) the 3D printed bones to be metrically accurate to within 1.0 mm; (2) good representation of micromorphological surface features overall, albeit with some loss of intricate details, depths, and fine textures that can be important for visual processing; (3) five of the nine 3D printed bones were quantitatively scored as accurate using the visual comparison method; and, (4) low mesh comparison distances (± 0.2 mm) between the original models and the digitised 3D print models. The findings offer empirical data that can be used to underpin 3D printed reconstructions of exhibits for use in courts of law. In addition, an adaptable pathway was presented that can be used to assess 3D print accuracy in future reconstructions.
Collapse
Affiliation(s)
- Rachael M Carew
- UCL Department of Security and Crime Science, University College London, 35 Tavistock Square, London, WC1H 9EZ, UK. .,UCL Centre for the Forensic Sciences, University College London, 35 Tavistock Square, London, WC1H 9EZ, UK.
| | - Francesco Iacoviello
- The Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, UK
| | - Carolyn Rando
- UCL Institute of Archaeology, University College London, 31-34 Gordon Square, London, WC1H 0PY, UK
| | - Robert M Moss
- UCL Department of Medical Physics & Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Robert Speller
- UCL Department of Medical Physics & Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - James French
- UCL Department of Security and Crime Science, University College London, 35 Tavistock Square, London, WC1H 9EZ, UK.,UCL Centre for the Forensic Sciences, University College London, 35 Tavistock Square, London, WC1H 9EZ, UK
| | - Ruth M Morgan
- UCL Department of Security and Crime Science, University College London, 35 Tavistock Square, London, WC1H 9EZ, UK.,UCL Centre for the Forensic Sciences, University College London, 35 Tavistock Square, London, WC1H 9EZ, UK
| |
Collapse
|
49
|
Recommendations in pre-procedural imaging assessment for TAVI intervention: SIC-SIRM position paper part 2 (CT and MR angiography, standard medical reporting, future perspectives). LA RADIOLOGIA MEDICA 2022; 127:277-293. [PMID: 35129758 DOI: 10.1007/s11547-021-01434-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Non-invasive cardiovascular imaging owns a pivotal role in the preoperative assessment of patient candidates for transcatheter aortic valve implantation (TAVI), providing a wide range of crucial information to select the patients who will benefit the most and have the procedure done safely. This document has been developed by a joined group of experts of the Italian Society of Cardiology and the Italian Society of Medical and Interventional Radiology and aims to produce an updated consensus statement about the pre-procedural imaging assessment in candidate patients for TAVI intervention. The writing committee consisted of members and experts of both societies who worked jointly to develop a more integrated approach in the field of cardiac and vascular radiology. Part 2 of the document will cover CT and MR angiography, standard medical reporting, and future perspectives.
Collapse
|
50
|
Yu K, Zhang X, Sun Y, Gao Q, Fu J, Cai X, He Y. Printability during projection-based 3D bioprinting. Bioact Mater 2022; 11:254-267. [PMID: 34977430 PMCID: PMC8668440 DOI: 10.1016/j.bioactmat.2021.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022] Open
Abstract
Since projection-based 3D bioprinting (PBP) could provide high resolution, it is well suited for printing delicate structures for tissue regeneration. However, the low crosslinking density and low photo-crosslinking rate of photocurable bioink make it difficult to print fine structures. Currently, an in-depth understanding of the is lacking. Here, a research framework is established for the analysis of printability during PBP. The gelatin methacryloyl (GelMA)-based bioink is used as an example, and the printability is systematically investigated. We analyze the photo-crosslinking reactions during the PBP process and summarize the specific requirements of bioinks for PBP. Two standard quantized models are established to evaluate 2D and 3D printing errors. Finally, the better strategies for bioprinting five typical structures, including solid organs, vascular structures, nerve conduits, thin-wall scaffolds, and micro needles, are presented. The photo-crosslinking mechanism and operation specifications is systematically explored during PBP. The mechanism of printing errors are analyzed, and a guide is provided to decrease the printing errors theoretically. Two standard models are proposed for evaluating the printing errors. Five typical applications are summarized and the suggestion printing strategies are formulated to improve the print quality.
Collapse
Affiliation(s)
- Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinjie Zhang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
| | - Yuan Sun
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.,Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058 China
| |
Collapse
|