1
|
Lin X, Su J, Yang Z. Optimising wound care for patients with cirrhosis: A study of the effect of combination therapy on wound healing. Int Wound J 2024; 21:e14727. [PMID: 38356305 PMCID: PMC10867491 DOI: 10.1111/iwj.14727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Cirrhosis, a chronic liver disease, significantly impairs wound healing due to complex alterations in physiology, including compromised immune function, poor nutritional status and altered blood flow. This prospective observational cohort study aimed to evaluate the effectiveness of the multidimensional combination therapy approach in enhancing wound healing among patients diagnosed with cirrhosis. The study was conducted from February to November 2023 in Shanghai, China, including 248 patients with cirrhosis experiencing poor wound healing. The combination therapy consisted of tailored pharmacological treatments, advanced wound dressings, dietitian-directed dietary regimens and supplementary therapies like negative pressure wound therapy (NPWT), stem cell and hyperbaric oxygen therapy. The interventions were customised based on comprehensive initial assessments of liver function, nutritional status and wound characteristics. Follow-ups were conducted to monitor response and adjust treatments accordingly. The patient demographic was varied, predominantly 41-60 years old, with the slight male predominance. The study demonstrated that after 3 months of treatment, wound sizes decreased significantly across all cirrhosis severity levels: mild (2.4-1.7 cm2 ), moderate (4.1-2.6 cm2 ) and severe (6.2-4.4 cm2 ). Healing rates improved to 90% in mild, 75% in moderate and 45% in severe cases over 6 months. Albumin levels increased by the average of +0.3 g/dL to +0.4 g/dL post-treatment across the severity spectrum. However, complication rates escalated with severity: Mild cases had a 10% infection rate, while severe cases had up to 30% infection rate. Combination therapy significantly improved wound healing in cirrhosis patients, with the extent of improvement correlated with the severity of the condition. Tailored, multidisciplinary approaches are critical in managing the intricate wound healing process in cirrhosis, effectively reducing healing times and improving overall treatment outcomes. These findings advocate for personalised care strategies and highlight the potential of integrating various treatment modalities to address the complex needs of this population.
Collapse
Affiliation(s)
- Xuehong Lin
- Medical Imaging DepartmentQuanzhou First HospitalQuanzhouChina
| | - Jinman Su
- The 10th Recuperation DepartmentQingDao Special Servicemen Recuperation Center of PLA NavyQingdaoChina
| | - Zhijuan Yang
- Department of GastroenterologyXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
2
|
Brandi N, Renzulli M. Liver Lesions at Risk of Transformation into Hepatocellular Carcinoma in Cirrhotic Patients: Hepatobiliary Phase Hypointense Nodules without Arterial Phase Hyperenhancement. J Clin Transl Hepatol 2024; 12:100-112. [PMID: 38250460 PMCID: PMC10794268 DOI: 10.14218/jcth.2023.00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 01/23/2024] Open
Abstract
Recent technical advances in liver imaging and surveillance for patients at high risk for developing hepatocellular carcinoma (HCC) have led to an increase in the detection of borderline hepatic nodules in the gray area of multistep carcinogenesis, particularly in those that are hypointense at the hepatobiliary phase (HBP) and do not show arterial phase hyperenhancement. Given their potential to transform and advance into hypervascular HCC, these nodules have progressively attracted the interest of the scientific community. To date, however, no shared guidelines have been established for the decision management of these borderline hepatic nodules. It is therefore extremely important to identify features that indicate the malignant potential of these nodules and the likelihood of vascularization. In fact, a more complete knowledge of their history and evolution would allow outlining shared guidelines for their clinical-surgical management, to implement early treatment programs and decide between a preventive curative treatment or a watchful follow-up. This review aims to summarize the current knowledge on hepatic borderline nodules, particularly focusing on those imaging features which are hypothetically correlated with their malignant evolution, and to discuss current guidelines and ongoing management in clinical practice.
Collapse
Affiliation(s)
- Nicolò Brandi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
3
|
Liu N, Wu Y, Tao Y, Zheng J, Huang X, Yang L, Zhang X. Differentiation of Hepatocellular Carcinoma from Intrahepatic Cholangiocarcinoma through MRI Radiomics. Cancers (Basel) 2023; 15:5373. [PMID: 38001633 PMCID: PMC10670473 DOI: 10.3390/cancers15225373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The purpose of this study was to investigate the efficacy of magnetic resonance imaging (MRI) radiomics in differentiating hepatocellular carcinoma (HCC) from intrahepatic cholangiocarcinoma (ICC). The clinical and MRI data of 129 pathologically confirmed HCC patients and 48 ICC patients treated at the Affiliated Hospital of North Sichuan Medical College between April 2016 and December 2021 were retrospectively analyzed. The patients were randomly divided at a ratio of 7:3 into a training group of 124 patients (90 with HCC and 34 with ICC) and a validation group of 53 patients (39 with HCC and 14 with ICC). Radiomic features were extracted from axial fat suppression T2-weighted imaging (FS-T2WI) and axial arterial-phase (AP) and portal-venous-phase (PVP) dynamic-contrast-enhanced MRI (DCE-MRI) sequences, and the corresponding datasets were generated. The least absolute shrinkage and selection operator (LASSO) method was used to select the best radiomic features. Logistic regression was used to establish radiomic models for each sequence (FS-T2WI, AP and PVP models), a clinical model for optimal clinical variables (C model) and a joint radiomics model (JR model) integrating the radiomics features of all the sequences as well as a radiomics-clinical model combining optimal radiomic features and clinical risk factors (RC model). The performance of each model was evaluated using the area under the receiver operating characteristic curve (AUC). The AUCs of the FS-T2WI, AP, PVP, JR, C and RC models for distinguishing HCC from ICC were 0.693, 0.863, 0.818, 0.914, 0.936 and 0.977 in the training group and 0.690, 0.784, 0.727, 0.802, 0.860 and 0.877 in the validation group, respectively. The results of this study suggest that MRI-based radiomics may help noninvasively differentiate HCC from ICC. The model integrating the radiomics features and clinical risk factors showed a further improvement in performance.
Collapse
Affiliation(s)
- Ning Liu
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
- Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region (Hospital. C.T.), Chengdu 610041, China
| | - Yaokun Wu
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Yunyun Tao
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Jing Zheng
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Xiaohua Huang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| | - Xiaoming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (N.L.); (Y.W.); (Y.T.); (J.Z.); (X.H.); (X.Z.)
| |
Collapse
|
4
|
Liu X, Tan SBM, Awiwi MO, Jang HJ, Chernyak V, Fowler KJ, Shaaban AM, Sirlin CB, Furlan A, Marks RM, Elsayes KM. Imaging Findings in Cirrhotic Liver: Pearls and Pitfalls for Diagnosis of Focal Benign and Malignant Lesions. Radiographics 2023; 43:e230043. [PMID: 37651277 DOI: 10.1148/rg.230043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Cirrhosis is the end stage of chronic liver disease and causes architectural distortion and perfusional anomalies. It is a major risk factor for developing hepatocellular carcinoma (HCC). Common disease entities in noncirrhotic livers, such as hemangiomas, can be rare in cirrhotic livers, and benign entities such as confluent hepatic fibrosis and focal nodular hyperplasia-like lesions may mimic the appearance of malignancies,. HCC usually has typical imaging characteristics, such as the major features established by the Liver Imaging Reporting and Data System. However, HCC can also have a spectrum of atypical or uncommon appearances, such as cystic HCC, hypovascular HCC, or macroscopic fat-containing HCC. HCCs with certain genetic mutations such as CTNNB-1-mutated HCC can harbor unique imaging features not seen in other types of HCC. In addition, malignancies that are less common than HCC, such as cholangiocarcinoma and metastases, which can be difficult to differentiate, can still occur in cirrhotic livers. Atypical imaging features of benign and malignant lesions can be challenging to accurately diagnose. Therefore, familiarity with these features and an understanding of the prevalence of disease entities in cirrhotic livers are key in the daily practice of radiologists for evaluation of cirrhotic livers. The authors illustrate the typical and atypical features of benign and malignant lesions in cirrhosis and discuss the technical pitfalls and unique advantages associated with various imaging modalities in assessing cirrhotic livers, including noncontrast and contrast-enhanced US, CT, and MRI. Work of the U.S. Government published under an exclusive license with the RSNA. Quiz questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Xiaoyang Liu
- From the Department of Medical Imaging, University of Toronto, University Health Network, 263 McCaul St, 4th Fl, Toronto, ON, Canada M5T 1W7, and Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Toronto, Ontario, Canada (X.L., S.B.M.T., H.J.J.); Department of Radiology, The University of Texas Health Science Center at Houston, Houston, Tex (M.O.A.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (V.C.); Department of Radiology, University of California San Diego, San Diego, Calif (K.J.F., C.B.S.); Department of Radiology. University of Utah Health, Salt Lake City, Utah (A.M.S.); Division of Abdominal Imaging, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.F.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); and Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Stephanie B M Tan
- From the Department of Medical Imaging, University of Toronto, University Health Network, 263 McCaul St, 4th Fl, Toronto, ON, Canada M5T 1W7, and Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Toronto, Ontario, Canada (X.L., S.B.M.T., H.J.J.); Department of Radiology, The University of Texas Health Science Center at Houston, Houston, Tex (M.O.A.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (V.C.); Department of Radiology, University of California San Diego, San Diego, Calif (K.J.F., C.B.S.); Department of Radiology. University of Utah Health, Salt Lake City, Utah (A.M.S.); Division of Abdominal Imaging, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.F.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); and Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Muhammad O Awiwi
- From the Department of Medical Imaging, University of Toronto, University Health Network, 263 McCaul St, 4th Fl, Toronto, ON, Canada M5T 1W7, and Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Toronto, Ontario, Canada (X.L., S.B.M.T., H.J.J.); Department of Radiology, The University of Texas Health Science Center at Houston, Houston, Tex (M.O.A.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (V.C.); Department of Radiology, University of California San Diego, San Diego, Calif (K.J.F., C.B.S.); Department of Radiology. University of Utah Health, Salt Lake City, Utah (A.M.S.); Division of Abdominal Imaging, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.F.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); and Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Hyun-Jung Jang
- From the Department of Medical Imaging, University of Toronto, University Health Network, 263 McCaul St, 4th Fl, Toronto, ON, Canada M5T 1W7, and Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Toronto, Ontario, Canada (X.L., S.B.M.T., H.J.J.); Department of Radiology, The University of Texas Health Science Center at Houston, Houston, Tex (M.O.A.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (V.C.); Department of Radiology, University of California San Diego, San Diego, Calif (K.J.F., C.B.S.); Department of Radiology. University of Utah Health, Salt Lake City, Utah (A.M.S.); Division of Abdominal Imaging, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.F.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); and Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Victoria Chernyak
- From the Department of Medical Imaging, University of Toronto, University Health Network, 263 McCaul St, 4th Fl, Toronto, ON, Canada M5T 1W7, and Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Toronto, Ontario, Canada (X.L., S.B.M.T., H.J.J.); Department of Radiology, The University of Texas Health Science Center at Houston, Houston, Tex (M.O.A.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (V.C.); Department of Radiology, University of California San Diego, San Diego, Calif (K.J.F., C.B.S.); Department of Radiology. University of Utah Health, Salt Lake City, Utah (A.M.S.); Division of Abdominal Imaging, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.F.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); and Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Kathryn J Fowler
- From the Department of Medical Imaging, University of Toronto, University Health Network, 263 McCaul St, 4th Fl, Toronto, ON, Canada M5T 1W7, and Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Toronto, Ontario, Canada (X.L., S.B.M.T., H.J.J.); Department of Radiology, The University of Texas Health Science Center at Houston, Houston, Tex (M.O.A.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (V.C.); Department of Radiology, University of California San Diego, San Diego, Calif (K.J.F., C.B.S.); Department of Radiology. University of Utah Health, Salt Lake City, Utah (A.M.S.); Division of Abdominal Imaging, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.F.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); and Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Akram M Shaaban
- From the Department of Medical Imaging, University of Toronto, University Health Network, 263 McCaul St, 4th Fl, Toronto, ON, Canada M5T 1W7, and Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Toronto, Ontario, Canada (X.L., S.B.M.T., H.J.J.); Department of Radiology, The University of Texas Health Science Center at Houston, Houston, Tex (M.O.A.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (V.C.); Department of Radiology, University of California San Diego, San Diego, Calif (K.J.F., C.B.S.); Department of Radiology. University of Utah Health, Salt Lake City, Utah (A.M.S.); Division of Abdominal Imaging, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.F.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); and Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Claude B Sirlin
- From the Department of Medical Imaging, University of Toronto, University Health Network, 263 McCaul St, 4th Fl, Toronto, ON, Canada M5T 1W7, and Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Toronto, Ontario, Canada (X.L., S.B.M.T., H.J.J.); Department of Radiology, The University of Texas Health Science Center at Houston, Houston, Tex (M.O.A.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (V.C.); Department of Radiology, University of California San Diego, San Diego, Calif (K.J.F., C.B.S.); Department of Radiology. University of Utah Health, Salt Lake City, Utah (A.M.S.); Division of Abdominal Imaging, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.F.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); and Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Alessandro Furlan
- From the Department of Medical Imaging, University of Toronto, University Health Network, 263 McCaul St, 4th Fl, Toronto, ON, Canada M5T 1W7, and Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Toronto, Ontario, Canada (X.L., S.B.M.T., H.J.J.); Department of Radiology, The University of Texas Health Science Center at Houston, Houston, Tex (M.O.A.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (V.C.); Department of Radiology, University of California San Diego, San Diego, Calif (K.J.F., C.B.S.); Department of Radiology. University of Utah Health, Salt Lake City, Utah (A.M.S.); Division of Abdominal Imaging, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.F.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); and Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Robert M Marks
- From the Department of Medical Imaging, University of Toronto, University Health Network, 263 McCaul St, 4th Fl, Toronto, ON, Canada M5T 1W7, and Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Toronto, Ontario, Canada (X.L., S.B.M.T., H.J.J.); Department of Radiology, The University of Texas Health Science Center at Houston, Houston, Tex (M.O.A.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (V.C.); Department of Radiology, University of California San Diego, San Diego, Calif (K.J.F., C.B.S.); Department of Radiology. University of Utah Health, Salt Lake City, Utah (A.M.S.); Division of Abdominal Imaging, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.F.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); and Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| | - Khaled M Elsayes
- From the Department of Medical Imaging, University of Toronto, University Health Network, 263 McCaul St, 4th Fl, Toronto, ON, Canada M5T 1W7, and Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Toronto, Ontario, Canada (X.L., S.B.M.T., H.J.J.); Department of Radiology, The University of Texas Health Science Center at Houston, Houston, Tex (M.O.A.); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (V.C.); Department of Radiology, University of California San Diego, San Diego, Calif (K.J.F., C.B.S.); Department of Radiology. University of Utah Health, Salt Lake City, Utah (A.M.S.); Division of Abdominal Imaging, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.F.); Department of Radiology, Naval Medical Center San Diego, San Diego, Calif (R.M.M.); and Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, Tex (K.M.E.)
| |
Collapse
|
5
|
Chen X, Chen Y, Chen H, Zhu J, Huang R, Xie J, Zhang T, Xie A, Li Y. Machine learning based on gadoxetic acid-enhanced MRI for differentiating atypical intrahepatic mass-forming cholangiocarcinoma from poorly differentiated hepatocellular carcinoma. Abdom Radiol (NY) 2023; 48:2525-2536. [PMID: 37169988 DOI: 10.1007/s00261-023-03870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 05/13/2023]
Abstract
PURPOSE The study was to develop a Gd-EOB-DTPA-enhanced MRI radiomics model for differentiating atypical intrahepatic mass-forming cholangiocarcinoma (aIMCC) from poorly differentiated hepatocellular carcinoma (pHCC). MATERIALS AND METHODS A total of 134 patients (51 aIMCC and 83 pHCC) who underwent Gadoxetic acid-enhanced MRI between March 2016 and March 2022 were enrolled in this study and then randomly assigned to the training and validation cohorts by 7:3 (93 patients and 41 patients, respectively). The radiomics features were extracted from the hepatobiliary phase of Gadoxetic acid-enhanced MRI. In the training cohort, the SelectKBest and the least absolute shrinkage and selection operator (LASSO) were used to select the radiomics features. The clinical, radiomics, and clinical-radiomics model were established using four machine learning algorithms. The performance of the model was evaluated by the receiver operating characteristic (ROC) curve. Comparison of the radiomics and clinical-radiomics model was done by the Delong test. The clinical usefulness of the model was evaluated using decision curve analysis (DCA). RESULTS In 1132 extracted radiomic features, 15 were selected to develop radiomics signature. For identifying aIMCC and pHCC, the radiomics model constructed by random forest algorithm showed the high performance (AUC = 0.90) in the training cohort. The performance of the clinical-radiomics model (AUC = 0.89) was not significantly different (P = 0.88) from that of the radiomics model constructed by random forest algorithm (AUC = 0.86) in the validation cohort. DCA demonstrated that the clinical-radiomics model constructed by random forest algorithm had a high net clinical benefit. CONCLUSION The clinical-radiomics model is an effective tool to distinguish aIMCC from pHCC and may provide additional value for the development of treatment plans.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Ying Chen
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Youth Middle Road 60#, Nantong, Jiangsu, People's Republic of China
| | - Haobo Chen
- Department of Radiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), NO.61 Jiefang East Road, Changsha, 410005, Hunan, People's Republic of China
| | - Jingfen Zhu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Renjun Huang
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Junjian Xie
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China
- Department of Radiology, Affiliated Hospital of Jiangnan, Wuxi, 214086, People's Republic of China
| | - Tao Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Youth Middle Road 60#, Nantong, Jiangsu, People's Republic of China.
| | - An Xie
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China.
- Department of Radiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), NO.61 Jiefang East Road, Changsha, 410005, Hunan, People's Republic of China.
| | - Yonggang Li
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China.
- Institute of Medical Imaging, Soochow University, Suzhou, Jiangsu, 215000, People's Republic of China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Shizi Street 188#, Suzhou, Jiangsu, 215000, People's Republic of China.
- Suzhou Key Laboratory of Intelligent Medicine and Equipment, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
6
|
Carney BW, Larson MC, Corwin MT, Lamba R. Imaging of Hepatobiliary Cancer. Curr Probl Cancer 2023:100964. [PMID: 37321910 DOI: 10.1016/j.currproblcancer.2023.100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/04/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
The liver and biliary tree are common sites of primary and secondary malignancies. MRI followed by CT is the mainstay for the imaging characterization of these malignancies with the dynamically acquired contrast enhanced phases being the most important for diagnosis. The liver imaging reporting and data system classification provides a useful framework for reporting lesions in patents with underlying cirrhosis or who are at high risk for developing hepatocellular carcinoma. Detection of metastases is improved with the use of liver specific MRI contrast agents and diffusion weighted sequences. Aside from hepatocellular carcinoma, which is often diagnosed noninvasively, other primary hepatobiliary tumors may require biopsy for definite diagnosis, especially when presenting with nonclassic imaging findings. In this review, we examine the imaging findings of common and less common hepatobiliary tumors.
Collapse
Affiliation(s)
- Benjamin W Carney
- Department of Radiology, University of California, Davis Health System, Sacramento, California.
| | - Michael C Larson
- Department of Radiology, University of California, Davis Health System, Sacramento, California
| | - Michael T Corwin
- Department of Radiology, University of California, Davis Health System, Sacramento, California
| | - Ramit Lamba
- Department of Radiology, University of California, Davis Health System, Sacramento, California
| |
Collapse
|
7
|
Liao Z, Tang C, Luo R, Gu X, Zhou J, Gao J. Current Concepts of Precancerous Lesions of Hepatocellular Carcinoma: Recent Progress in Diagnosis. Diagnostics (Basel) 2023; 13:diagnostics13071211. [PMID: 37046429 PMCID: PMC10093043 DOI: 10.3390/diagnostics13071211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The most common cause of hepatocellular carcinoma (HCC) is chronic hepatitis and cirrhosis. It is proposed that precancerous lesions of HCC include all stages of the disease, from dysplastic foci (DF), and dysplastic nodule (DN), to early HCC (eHCC) and progressed HCC (pHCC), which is a complex multi-step process. Accurately identifying precancerous hepatocellular lesions can significantly impact the early detection and treatment of HCC. The changes in high-grade dysplastic nodules (HGDN) were similar to those seen in HCC, and the risk of malignant transformation significantly increased. Nevertheless, it is challenging to diagnose precancerous lesions of HCC. We integrated the literature and combined imaging, pathology, laboratory, and other relevant examinations to improve the accuracy of the diagnosis of precancerous lesions.
Collapse
Affiliation(s)
- Ziyue Liao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Cuiping Tang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Rui Luo
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Xiling Gu
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Jun Zhou
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Jian Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| |
Collapse
|
8
|
Li L, Feng J. Giant Hepatic Regenerative Nodule in a Patient With Hepatitis B Virus-related Cirrhosis. J Clin Transl Hepatol 2022; 10:778-782. [PMID: 36062284 PMCID: PMC9396331 DOI: 10.14218/jcth.2021.00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/18/2021] [Accepted: 10/22/2021] [Indexed: 12/04/2022] Open
Abstract
Hepatic regenerative nodules are reactive hepatocellular proliferations that develop in response to liver injury. Giant hepatic regenerative nodules of 10 cm or more are extremely rare and have only been reported in patients with biliary atresia or Alagille syndrome. A 50-year-old man presented with a pathologically confirmed giant 11.3×9.4×11.2 cm hepatic regenerative nodule and hepatitis B virus-related cirrhosis. Imaging of intrahepatic nodule included mild hyperenhancement in the portal phase of contrast-enhanced CT and the hepatobiliary phase in the gadoxetic acid-enhanced MRI scan, as well as the portal vein crossing through sign in the setting of liver cirrhosis. This case highlights the imaging characteristics of giant hepatic regenerative nodules in hepatitis cirrhosis.
Collapse
Affiliation(s)
- Long Li
- Division of Diagnostic Radiology, Department of Medical Imaging, Guangdong Provincial Corps Hospital of Chinese People’s Armed Police Forces, Guangzhou Medical University, Guangzhou, Guangdong, China
- Correspondence to: Long Li, Division of Diagnostic Radiology, Department of Medical Imaging, Guangdong Provincial Corps Hospital of Chinese People’s Armed Police Forces, Guangzhou Medical University, 268 Yanling Road, Guangzhou, Guangdong 510507, China. ORCID: https://orcid.org/0000-0002-1342-860X. Tel/Fax: +86-20-61627576, E-mail:
| | - Jie Feng
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Solomon N, Segaran N, Badawy M, Elsayes KM, Pellerito JS, Katz DS, Moshiri M, Revzin MV. Manifestations of Sickle Cell Disorder at Abdominal and Pelvic Imaging. Radiographics 2022; 42:1103-1122. [PMID: 35559660 DOI: 10.1148/rg.210154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sickle cell disorder (SCD) refers to a spectrum of hematologic disorders that cause a characteristic clinical syndrome affecting the entire body. It is the most prevalent monogenetic hemoglobinopathy worldwide, with a wide range of focal and systemic expressions. Hemoglobin gene mutation leads to the formation of abnormal sickle-shaped red blood cells, which cause vascular occlusion and result in tissue and organ ischemia and infarction. Recurrent episodes of acute illness lead to progressive multisystem organ damage and dysfunction. Vaso-occlusion, hemolysis, and infection as a result of functional asplenia are at the core of the disease manifestations. Imaging plays an essential role in the diagnosis and management of SCD-related complications in the abdomen and pelvis. A thorough understanding of the key imaging findings of SCD complications involving hepatobiliary, gastrointestinal, genitourinary, and musculoskeletal systems is crucial to timely recognition and accurate diagnosis. The authors aim to familiarize the radiologist with the SCD spectrum, focusing on the detection and evaluation of manifestations that may appear at imaging of the abdomen and pelvis. The topics the authors address include (a) the pathophysiology of the disease, (b) the placement of SCD among hemoglobinopathies, (c) the clinical presentation of SCD, (d) the role of imaging in the evaluation and diagnosis of patients with SCD who present with abdominal and pelvic manifestations in addition to extraperitoneal manifestations detectable at abdominal or pelvic imaging, (e) imaging features associated with common and uncommon sequelae of SCD in abdominal and pelvic imaging studies, and (f) a brief overview of management and treatment of patients with SCD. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Nadia Solomon
- From the Department of Radiology and Biomedical Imaging, 333 Cedar Street, PO Box 208042 Room TE-2, New Haven, CT 06520 (N. Solomon, M.V.R.); Stanford University, Stanford, Calif (N. Segaran); Department of Imaging Physics (M.B.) and Department of Abdominal Imaging (K.M.E.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasset, N.Y. (J.S.P.); Department of Radiology, NYU Winthrop University Hospital, Mineola, N.Y. (D.S.K.); and Department of Radiology, University of Washington Medical Center, Seattle Wash. (M.M.)
| | - Nicole Segaran
- From the Department of Radiology and Biomedical Imaging, 333 Cedar Street, PO Box 208042 Room TE-2, New Haven, CT 06520 (N. Solomon, M.V.R.); Stanford University, Stanford, Calif (N. Segaran); Department of Imaging Physics (M.B.) and Department of Abdominal Imaging (K.M.E.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasset, N.Y. (J.S.P.); Department of Radiology, NYU Winthrop University Hospital, Mineola, N.Y. (D.S.K.); and Department of Radiology, University of Washington Medical Center, Seattle Wash. (M.M.)
| | - Mohamed Badawy
- From the Department of Radiology and Biomedical Imaging, 333 Cedar Street, PO Box 208042 Room TE-2, New Haven, CT 06520 (N. Solomon, M.V.R.); Stanford University, Stanford, Calif (N. Segaran); Department of Imaging Physics (M.B.) and Department of Abdominal Imaging (K.M.E.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasset, N.Y. (J.S.P.); Department of Radiology, NYU Winthrop University Hospital, Mineola, N.Y. (D.S.K.); and Department of Radiology, University of Washington Medical Center, Seattle Wash. (M.M.)
| | - Khaled M Elsayes
- From the Department of Radiology and Biomedical Imaging, 333 Cedar Street, PO Box 208042 Room TE-2, New Haven, CT 06520 (N. Solomon, M.V.R.); Stanford University, Stanford, Calif (N. Segaran); Department of Imaging Physics (M.B.) and Department of Abdominal Imaging (K.M.E.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasset, N.Y. (J.S.P.); Department of Radiology, NYU Winthrop University Hospital, Mineola, N.Y. (D.S.K.); and Department of Radiology, University of Washington Medical Center, Seattle Wash. (M.M.)
| | - John S Pellerito
- From the Department of Radiology and Biomedical Imaging, 333 Cedar Street, PO Box 208042 Room TE-2, New Haven, CT 06520 (N. Solomon, M.V.R.); Stanford University, Stanford, Calif (N. Segaran); Department of Imaging Physics (M.B.) and Department of Abdominal Imaging (K.M.E.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasset, N.Y. (J.S.P.); Department of Radiology, NYU Winthrop University Hospital, Mineola, N.Y. (D.S.K.); and Department of Radiology, University of Washington Medical Center, Seattle Wash. (M.M.)
| | - Douglas S Katz
- From the Department of Radiology and Biomedical Imaging, 333 Cedar Street, PO Box 208042 Room TE-2, New Haven, CT 06520 (N. Solomon, M.V.R.); Stanford University, Stanford, Calif (N. Segaran); Department of Imaging Physics (M.B.) and Department of Abdominal Imaging (K.M.E.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasset, N.Y. (J.S.P.); Department of Radiology, NYU Winthrop University Hospital, Mineola, N.Y. (D.S.K.); and Department of Radiology, University of Washington Medical Center, Seattle Wash. (M.M.)
| | - Mariam Moshiri
- From the Department of Radiology and Biomedical Imaging, 333 Cedar Street, PO Box 208042 Room TE-2, New Haven, CT 06520 (N. Solomon, M.V.R.); Stanford University, Stanford, Calif (N. Segaran); Department of Imaging Physics (M.B.) and Department of Abdominal Imaging (K.M.E.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasset, N.Y. (J.S.P.); Department of Radiology, NYU Winthrop University Hospital, Mineola, N.Y. (D.S.K.); and Department of Radiology, University of Washington Medical Center, Seattle Wash. (M.M.)
| | - Margarita V Revzin
- From the Department of Radiology and Biomedical Imaging, 333 Cedar Street, PO Box 208042 Room TE-2, New Haven, CT 06520 (N. Solomon, M.V.R.); Stanford University, Stanford, Calif (N. Segaran); Department of Imaging Physics (M.B.) and Department of Abdominal Imaging (K.M.E.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasset, N.Y. (J.S.P.); Department of Radiology, NYU Winthrop University Hospital, Mineola, N.Y. (D.S.K.); and Department of Radiology, University of Washington Medical Center, Seattle Wash. (M.M.)
| |
Collapse
|
10
|
Sheng X, Qin JM. Clinical features and diagnostic and therapeutic strategies of hepatic dysplastic nodules. Shijie Huaren Xiaohua Zazhi 2022; 30:169-181. [DOI: 10.11569/wcjd.v30.i4.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic dysplastic nodules (DNs) are a group of neoplastic lesions with a diameter of more than 1 cm that belong to precancerous lesions, with abnormal cytoplasm and cells but without malignant basis in histology. Hepatic DNs lack typical tumor markers and clinical symptoms, and their clinical diagnosis relys mainly on imaging or/and tissue pathological examination. Thanks to the further research on the pathogenesis of hepatic DNs and the development of imaging technology, the combination of medical history, various examinationss, individual tumor markers, and imaging and histopathology techniques can significantly improve the early detection and diagnosis accuracy for hepatic DNs, and reduce the rate of missed and false diagnosis. Due to the potential malignancy risk of hepatic DNs, intervention measures should be carried out on hepatic DNs at all stages, in order to block the transformation process of DNs into hepatocellular carcinoma (HCC), which is of great clinical significance to reduce the incidence and mortality of HCC.
Collapse
Affiliation(s)
- Xia Sheng
- Department of Pathology, Minhang Hospital Affiliated to Fudan University, Shanghai 201100, China
| | - Jian-Min Qin
- Department of General Surgery, The Third Hospital Affiliated to Naval Military Medical University, Shanghai 201805, China
| |
Collapse
|
11
|
Renzulli M, Brandi N, Argalia G, Brocchi S, Farolfi A, Fanti S, Golfieri R. Morphological, dynamic and functional characteristics of liver pseudolesions and benign lesions. Radiol Med 2022; 127:129-144. [PMID: 35028886 DOI: 10.1007/s11547-022-01449-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/30/2021] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide and one of the most common causes of death among patients with cirrhosis, developing in 1-8% of them every year, regardless of their cirrhotic stage. The radiological features of HCC are almost always sufficient for reaching the diagnosis; thus, histological confirmation is rarely needed. However, the study of cirrhotic livers remains a challenge for radiologists due to the developing of fibrous and regenerative tissue that cause the distortion of normal liver parenchyma, changing the typical appearances of benign lesions and pseudolesions, which therefore may be misinterpreted as malignancies. In addition, a correct distinction between pseudolesions and malignancy is crucial to allow appropriate targeted therapy and avoid treatment delays.The present review encompasses technical pitfalls and describes focal benign lesions and pseudolesions that may be misinterpreted as HCC in cirrhotic livers, providing the imaging features of regenerative nodules, large regenerative nodules, siderotic nodules, hepatic hemangiomas (including rapidly filling and sclerosed hemangiomas), segmental hyperplasia, arterioportal shunts, focal confluent fibrosis and focal fatty changes. Lastly, the present review explores the most promising new imaging techniques that are emerging and that could help radiologists differentiate benign lesions and pseudolesions from overt HCC.
Collapse
Affiliation(s)
- Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni 15, Bologna, Italia.
| | - Nicolò Brandi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni 15, Bologna, Italia
| | - Giulia Argalia
- Division of Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Stefano Brocchi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni 15, Bologna, Italia
| | - Andrea Farolfi
- Division of Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Stefano Fanti
- Division of Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Rita Golfieri
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Via Albertoni 15, Bologna, Italia
| |
Collapse
|
12
|
Park HJ, Seo N, Kim SY. Current Landscape and Future Perspectives of Abbreviated MRI for Hepatocellular Carcinoma Surveillance. Korean J Radiol 2022; 23:598-614. [PMID: 35434979 PMCID: PMC9174497 DOI: 10.3348/kjr.2021.0896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 11/15/2022] Open
Abstract
While ultrasound (US) is considered an important tool for hepatocellular carcinoma (HCC) surveillance, it has limited sensitivity for detecting early-stage HCC. Abbreviated MRI (AMRI) has recently gained popularity owing to better sensitivity in its detection of early-stage HCC than US, while also minimizing the time and cost in comparison to complete contrast-enhanced MRI, as AMRI includes only a few essential sequences tailored for detecting HCC. Currently, three AMRI protocols exist, namely gadoxetic acid-enhanced hepatobiliary-phase AMRI, dynamic contrast-enhanced AMRI, and non-enhanced AMRI. In this study, we discussed the rationale and technical details of AMRI techniques for achieving optimal surveillance performance. The strengths, weaknesses, and current issues of each AMRI protocol were also elucidated. Moreover, we scrutinized previously performed AMRI studies regarding clinical and technical factors. Reporting and recall strategies were discussed while considering the differences in AMRI protocols. A risk-stratified approach for the target population should be taken to maximize the benefits of AMRI and the cost-effectiveness should be considered. In the era of multiple HCC surveillance tools, patients need to be fully informed about their choices for better adherence to a surveillance program.
Collapse
Affiliation(s)
- Hyo Jung Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Nieun Seo
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - So Yeon Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
13
|
Zhao F, Pang G, Li X, Yang S, Zhong H. Value of perfusion parameters histogram analysis of triphasic CT in differentiating intrahepatic mass forming cholangiocarcinoma from hepatocellular carcinoma. Sci Rep 2021; 11:23163. [PMID: 34848818 PMCID: PMC8633216 DOI: 10.1038/s41598-021-02667-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023] Open
Abstract
We aim to gain further insight into identifying differential perfusion parameters and corresponding histogram parameters of intrahepatic mass-forming cholangiocarcinoma (IMCC) from hepatocellular carcinomas (HCCs) on triphasic computed tomography (CT) scans. 90 patients with pathologically confirmed HCCs (n = 54) and IMCCs (n = 36) who underwent triple-phase enhanced CT imaging were included. Quantitative analysis of CT images derived from triphasic CT scans were evaluated to generate liver perfusion and histogram parameters. The differential performances, including the area under the receiver operating characteristic curve (AUC), specificity, and sensitivity were assessed. The mean value, and all thepercentiles of the arterial enhancement fraction (AEF) were significantly higher in HCCs than in IMCCs. The difference in hepatic arterial blood supply perfusion (HAP) and AEF (ΔHAP = HAPtumor − HAPliver, ΔAEF = AEFtumor − AEFliver) for the mean perfusion parameters and all percentile parameters between tumor and peripheral normal liver were significantly higher in HCCs than in IMCCs. The relative AEF (rAEF = ΔAEF/AEFliver), including the mean value and all corresponding percentile parameters were statistically significant between HCCs and IMCCs. The 10th percentiles of the ΔAEF and rAEF had the highest AUC of 0.788 for differentiating IMCC from HCC, with sensitivities and specificities of 87.0%, 83.3%, and 61.8%, 64.7%, respectively. Among all parameters, the mean value of ∆AEF, the 75th percentiles of ∆AEF and rAEF, and the 25th percentile of HFtumor exhibited the highest sensitivities of 94.4%, while the 50th percentile of rAEF had the highest specificity of 82.4%. AEF (including ΔAEF and rAEF) and the corresponding histogram parameters derived from triphasic CT scans provided useful value and facilitated the accurate discrimination between IMCCs and HCCs.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Guodong Pang
- Department of Radiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, No.247, Beiyuan Road, Tianqiao District, Jinan, 250033, Shandong, China
| | - Xuejing Li
- Jinan Blood Center, Jinan, 250001, Shandong, China
| | - Shuo Yang
- Department of Radiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, No.247, Beiyuan Road, Tianqiao District, Jinan, 250033, Shandong, China
| | - Hai Zhong
- Department of Radiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, No.247, Beiyuan Road, Tianqiao District, Jinan, 250033, Shandong, China.
| |
Collapse
|
14
|
Fung A, Shanbhogue KP, Taffel MT, Brinkerhoff BT, Theise ND. Hepatocarcinogenesis: Radiology-Pathology Correlation. Magn Reson Imaging Clin N Am 2021; 29:359-374. [PMID: 34243923 DOI: 10.1016/j.mric.2021.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the background of chronic liver disease, hepatocellular carcinoma develops via a complex, multistep process called hepatocarcinogenesis. This article reviews the causes contributing to the process. Emphasis is made on the imaging manifestations of the pathologic changes seen at many stages of hepatocarcinogenesis, from regenerative nodules to dysplastic nodules and then to hepatocellular carcinoma.
Collapse
Affiliation(s)
- Alice Fung
- Department of Diagnostic Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, L-340, Portland, OR 97239, USA.
| | - Krishna P Shanbhogue
- Department of Radiology, New York University Grossman School of Medicine, 660 First Avenue, 3rd Floor, New York, NY 10016, USA
| | - Myles T Taffel
- Department of Radiology, New York University Grossman School of Medicine, 660 First Avenue, 3rd Floor, New York, NY 10016, USA
| | - Brian T Brinkerhoff
- Department of Pathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, L-113, Portland, OR 97239, USA
| | - Neil D Theise
- Department of Pathology, MSB 504A, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016, USA
| |
Collapse
|
15
|
Morshid A, Szklaruk J, Yacoub JH, Elsayes KM. Errors and Misinterpretations in Imaging of Chronic Liver Diseases. Magn Reson Imaging Clin N Am 2021; 29:419-436. [PMID: 34243927 DOI: 10.1016/j.mric.2021.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
MRI is an important problem-solving tool for accurate characterization of liver lesions. Chronic liver disease alters the typical imaging characteristics and complicates liver imaging. Awareness of imaging pitfalls and technical artifacts and ways to mitigate them allows for more accurate and timely diagnosis.
Collapse
Affiliation(s)
- Ali Morshid
- Department of Diagnostic Radiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| | - Janio Szklaruk
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Joseph H Yacoub
- Department of Radiology, Medstar Georgetown University Hospital, 110 Irving Street Northwest, Washington, DC 20010, USA
| | - Khaled M Elsayes
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| |
Collapse
|
16
|
Jeon SK, Joo I, Bae JS, Park SJ, Lee JM. LI-RADS v2018: how to appropriately use ancillary features in category adjustment from intermediate probability of malignancy (LR-3) to probably HCC (LR-4) on gadoxetic acid-enhanced MRI. Eur Radiol 2021; 32:46-55. [PMID: 34132875 DOI: 10.1007/s00330-021-08116-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To determine the appropriate use of ancillary features (AFs) in upgrading LI-RADS category 3 (LR-3) to category 4 (LR-4) for hepatic nodules on gadoxetic acid-enhanced MRI. METHODS We retrospectively analyzed MRI features of solid hepatic nodules (≤ 30 mm) categorized as LR-3/4 on gadoxetic acid-enhanced MRI. In LI-RADS diagnostic table-based-LR-3 observations, logistic regression analyses were performed to identify AFs suggestive of hepatocellular carcinomas (HCCs) rather than non-malignant nodules. Using McNemar's test, the sensitivities and specificities of the final-LR-4 category for HCC diagnosis were compared according to the principles of AF application in category adjustment. RESULTS A total of 336 hepatic nodules (191 HCCs; 145 non-malignant) in 252 patients were evaluated. Based on major HCC features, 248 nodules (123 HCCs) were assigned as table-based-LR-3 and 88 nodules (68 HCCs) as table-based-LR-4. In table-based-LR-3 observations, mild-moderate T2 hyperintensity was identified as an independent predictor of HCC as opposed to non-malignant nodules (odds ratio = 3.01, p = 0.002). For HCC diagnosis, different criteria of final-LR-4: only table-based-LR-4, allowing category upgrade using only T2 hyperintensity, or using any AFs favoring malignancy resulted in sensitivities of 35.6% (68/191), 53.9% (103/191), and 88.5% (169/191), and specificities of 86.2% (125/145), 75.9% (110/145), and 21.4% (31/145), respectively, which differed from each other (all p < 0.001). CONCLUSIONS While the application of MRI AF in LI-RADS category adjustment increases the sensitivity of LR-4 category for HCC diagnosis, it is accompanied by a significant decrease in specificity. Mild-moderate T2 hyperintensity, a significant AF indicative of HCC, may be more appropriate for upgrading LR-3 to LR-4. KEY POINTS • When upgrading from LR-3 to LR-4 using any MRI ancillary features favoring malignancy, LR-4 sensitivity increases but specificity decreased for HCC diagnosis. • By upgrading LR-3 to LR-4 based on MRI ancillary features found to suggest HCC rather than non-malignant nodules in multivariate analysis (i.e., mild-moderate T2 hyperintensity), LR-4 demonstrated a more balanced sensitivity and specificity for HCC diagnosis (53.9% and 75.9%, respectively).
Collapse
Affiliation(s)
- Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea. .,Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| | - Jae Seok Bae
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Sae-Jin Park
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| |
Collapse
|
17
|
Chen W, Zhang T, Xu L, Zhao L, Liu H, Gu LR, Wang DZ, Zhang M. Radiomics Analysis of Contrast-Enhanced CT for Hepatocellular Carcinoma Grading. Front Oncol 2021; 11:660509. [PMID: 34150628 PMCID: PMC8212783 DOI: 10.3389/fonc.2021.660509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/11/2021] [Indexed: 01/03/2023] Open
Abstract
Objectives To investigate the value of contrast-enhanced computer tomography (CT)-based on radiomics in discriminating high-grade and low-grade hepatocellular carcinoma (HCC) before surgery. Methods The retrospective study including 161 consecutive subjects with HCC which was approved by the institutional review board, and the patients were divided into a training group (n = 112) and test group (n = 49) from January 2013 to January 2018. The least absolute shrinkage and selection operator (LASSO) was used to select the most valuable features to build a support vector machine (SVM) model. The performance of the predictive model was evaluated using the area under the curve (AUC), accuracy, sensitivity, and specificity. Results The SVM model showed an acceptable ability to differentiate high-grade from low-grade HCC, with an AUC of 0.904 in the training dataset and 0.937 in the test dataset, accuracy (92.2% versus 95.7%), sensitivity(82.5% versus 88.0%), and specificity (92.7% versus 95.8%), respectively. Conclusion The machine learning-based radiomics reflects a better evaluating performance in differentiating HCC between low-grade and high-grade, which may contribute to personalized treatment.
Collapse
Affiliation(s)
- Wen Chen
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Tao Zhang
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Lin Xu
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Liang Zhao
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | | | - Liang Rui Gu
- Department of Radiology, Shanghai Sixth People's Hospital, Shanghai, China
| | - Dai Zhong Wang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
Morshid A, Chernyak V, Fung AW, Elsayes KM. General Pitfalls in Imaging of Patients With Cirrhosis. Clin Liver Dis (Hoboken) 2021; 17:125-128. [PMID: 33868651 PMCID: PMC8043701 DOI: 10.1002/cld.999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023] Open
Affiliation(s)
- Ali Morshid
- Department of Diagnostic RadiologyThe University of Texas Medical BranchGalvestonTX
| | | | - Alice W. Fung
- Department of RadiologyOregon Health and Science UniversityPortlandOR
| | - Khaled M. Elsayes
- Department of Diagnostic RadiologyThe University of Texas MD Anderson Cancer CenterHoustonTX
| |
Collapse
|
19
|
Morisaka H, Motosugi U, Ichikawa S, Ichikawa T, Kondo T, Onishi H. Uptake of gadoxetic acid in hepatobiliary phase magnetic resonance imaging and transporter expression in hypovascular hepatocellular nodules. Eur J Radiol 2021; 138:109669. [PMID: 33770738 DOI: 10.1016/j.ejrad.2021.109669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 11/30/2022]
Abstract
AIMS To evaluate the association between contrast patterns on gadoxetic acid-enhanced hepatobiliary phase (HBP) MR images and transporter expression in surgically resected hypovascular hepatocellular nodules including early hepatocellular carcinomas (HCCs). METHODS Forty-two hypovascular hepatic nodules and 43 hypervascular HCCs as a control were included in this retrospective study. Contrast of the nodules on HBP images was graded as hypo-, iso-, or hyperintense. Histopathological assessment was performed in the context of multistep hepatocarcinogenesis. Immunohistochemical staining of organic anion transporter 1B3 (OATP1B3) and multidrug resistance protein 2 (MRP2) was performed. Cramer's coefficient was used to determine the linear relationship between contrast grades and transporter expression, and the Cochran-Armitage trend test was used to determine the relationship between transporter expression and progression of multistep hepatocarcinogenesis. RESULTS Moderate linear relationships between contrast grades and OATP1B3 expression were observed for both hypo- and hypervascular nodules. OATP1B3 expression was negatively correlated with the progression of multistep hepatocarcinogenesis. MRP2 expression was not associated with the contrast grades or histopathological results. CONCLUSION OATP1B3 expression was associated with contrast grades of hepatocellular nodules observed in HBP image of gadoxetic acid-enhanced MRI in the hypovascular hepatocellular nodules and was negatively correlated with hepatocarcinogenesis.
Collapse
Affiliation(s)
- Hiroyuki Morisaka
- Department of Radiology, University of Yamanashi, 409-3898, Shimokato, Chuo, Yamanashi, Japan.
| | - Utaroh Motosugi
- Department of Radiology, University of Yamanashi, 409-3898, Shimokato, Chuo, Yamanashi, Japan; Department of Radiology, Kofu-Kyoritsu Hospital, 400-0034, Takara, Kofu, Yamanashi, Japan
| | - Shintaro Ichikawa
- Department of Radiology, University of Yamanashi, 409-3898, Shimokato, Chuo, Yamanashi, Japan
| | - Tomoaki Ichikawa
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University, 371-8511, Showa, Maebashi, Gunma, Japan
| | - Tetsuo Kondo
- Department of Human Pathology, University of Yamanashi, 409-3898, Shimokato, Chuo, Yamanashi, Japan
| | - Hiroshi Onishi
- Department of Radiology, University of Yamanashi, 409-3898, Shimokato, Chuo, Yamanashi, Japan
| |
Collapse
|
20
|
Renzulli M, Brocchi S, Ierardi AM, Milandri M, Pettinari I, Lucidi V, Balacchi C, Muratori P, Marasco G, Vara G, Tovoli F, Granito A, Carrafiello G, Piscaglia F, Golfieri R. Imaging-based diagnosis of benign lesions and pseudolesions in the cirrhotic liver. Magn Reson Imaging 2021; 75:9-20. [PMID: 32926993 DOI: 10.1016/j.mri.2020.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
Liver cirrhosis is a leading cause of death worldwide, with 1-year mortality rates of up to 57% in decompensated patients. Hepatocellular carcinoma (HCC) is the most common primary tumor in cirrhotic livers and the second leading cause of cancer-related mortality worldwide. Annually, up to 8% of patients with cirrhosis develop HCC. The diagnosis of HCC rarely requires histological confirmation: in fact, according to the most recent guidelines, the imaging features of HCC are almost always sufficient for a certain diagnosis. Thus, the role of the radiologist is pivotal because the accurate detection and characterization of focal liver lesions in patients with cirrhosis are essential in improving clinical outcomes. Despite recent technical innovations in liver imaging, several issues remain for radiologists regarding the differentiation of HCC from other hepatic lesions, particularly benign lesions and pseudolesions. It is important to avoid misdiagnosis of benign liver lesions as HCC (false-positive cases) because this diagnostic misinterpretation may lead to ineligibility of a patient for potentially curative treatments or inappropriate assignment of high priority scores to patients on waiting lists for liver transplantation. This review presents a pocket guide that could be useful for the radiologist in the diagnosis of benign lesions and pseudolesions in cirrhotic livers, highlighting the imaging features that help in making the correct diagnosis of macroregenerative nodules; siderotic nodules; arterioportal shunts; hemangiomas, including fast-filling hemangiomas, hemangiomas with pseudowashout, and sclerosed hemangiomas; confluent fibrosis; pseudomasses in chronic portal vein thrombosis; and focal fatty changes.
Collapse
Affiliation(s)
- Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy.
| | - Stefano Brocchi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Anna Maria Ierardi
- Unit of Radiology, IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Milandri
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Irene Pettinari
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Vincenzo Lucidi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Caterina Balacchi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Paolo Muratori
- Department of the Science for the quality of life (QUVI), University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giulio Vara
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Francesco Tovoli
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Granito
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Fabio Piscaglia
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Rita Golfieri
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| |
Collapse
|
21
|
Rocha SMSD, Yamanari MGI, Matsuoka MW, Almeida GC, Sakamoto FA, Suzuki L. Focal hyperechoic liver lesions in children: far beyond hemangiomas - pictorial essay. Radiol Bras 2020; 53:122-128. [PMID: 32336829 PMCID: PMC7170577 DOI: 10.1590/0100-3984.2018.0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this report was to present a selection of focal hyperechoic liver lesions of different etiologies, illustrating the wide spectrum of diagnostic possibilities for such lesions in the pediatric population.
Collapse
Affiliation(s)
| | | | | | | | | | - Lisa Suzuki
- Universidade de São Paulo, Brazil; Hospital Infantil Sabará, Brazil
| |
Collapse
|
22
|
Does quantitative assessment of arterial phase hyperenhancement and washout improve LI-RADS v2018–based classification of liver lesions? Eur Radiol 2020; 30:2922-2933. [DOI: 10.1007/s00330-019-06596-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022]
|
23
|
Ayyala RS, Anupindi SA, Gee MS, Trout AT, Callahan MJ. Intravenous gadolinium-based hepatocyte-specific contrast agents (HSCAs) for contrast-enhanced liver magnetic resonance imaging in pediatric patients: what the radiologist should know. Pediatr Radiol 2019; 49:1256-1268. [PMID: 31350632 DOI: 10.1007/s00247-019-04476-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/13/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022]
Abstract
Hepatocyte-specific contrast agents (HSCAs) are a group of intravenous gadolinium-based MRI contrast agents that can be used to characterize hepatobiliary pathology. The mechanism by which these agents are taken up by hepatocytes and partially excreted into the biliary tree improves characterization of hepatic lesions and biliary abnormalities relative to conventional extracellular gadolinium-based contrast agents (GBCAs). This manuscript presents an overview of HSCA use in pediatric patients with the intent to provide radiologists a guide for clinical use. We review available HSCAs and discuss dosing and age specifications for use in children. We also review various hepatic and biliary indications for HSCA use in children, with emphasis on the imaging characteristics distinct to HSCAs, as well as discussion of pitfalls one can encounter when imaging with HSCAs. Given the growing concern regarding gadolinium deposition in soft tissues and brain, we also discuss safety of HSCA use in children.
Collapse
Affiliation(s)
- Rama S Ayyala
- Department of Diagnostic Imaging, Rhode Island Hospital - Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, 593 Eddy St., Providence, RI, 02903, USA.
| | - Sudha A Anupindi
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | |
Collapse
|
24
|
Abou khadrah RS, Bedeer A. A small hepatic nodule ( ≤2 cm) in cirrhotic liver: doTriphasic MRI and Diffusion-weighted image help in diagnosis. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2019. [DOI: 10.1186/s43055-019-0006-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
25
|
Kozaka K, Kobayashi S, Yoneda N, Kitao A, Yoshida K, Inoue D, Ogi T, Koda W, Sato Y, Gabata T, Matsui O. Doughnut-like hyperintense nodules on hepatobiliary phase without arterial-phase hyperenhancement in cirrhotic liver: imaging and clinicopathological features. Eur Radiol 2019; 29:6489-6498. [DOI: 10.1007/s00330-019-06329-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
|
26
|
Abstract
OBJECTIVE The purposes of this article are to review a variety of pitfalls in liver imaging that can lead to the inaccurate diagnosis of focal hepatic lesions in cirrhosis, to describe the pathophysiologic processes of these pitfalls, and to provide specific clues for achieving the correct diagnoses. CONCLUSION Cirrhosis complicates liver imaging. The distortion and replacement of normal liver parenchyma by fibrous and regenerative tissue can change the typical appearance of many benign lesions, causing them to be misinterpreted as malignancy. In addition, the high incidence and prevalence of hepatocellular carcinoma among patients with cirrhosis put radiologists on high alert for any suspicious findings, especially because not all hepatocellular carcinomas have a typical imaging appearance.
Collapse
|
27
|
State of the art in magnetic resonance imaging of hepatocellular carcinoma. Radiol Oncol 2018; 52:353-364. [PMID: 30511939 PMCID: PMC6287184 DOI: 10.2478/raon-2018-0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022] Open
Abstract
Background Liver cancer is the sixth most common cancer worldwide and the second leading cause of cancer mortality. Chronic liver disease caused by viral infection, alcohol abuse, or other factors can lead to cirrhosis. Cirrhosis is the most important clinical risk factor for hepatocellular carcinoma (HCC) whereby the normal hepatic architecture is replaced by fibrous septa and a spectrum of nodules ranging from benign regenerative nodules to HCC, each one of them with different imaging features. Conclusions Furthermore, advanced techniques including the quantification of hepatic and intralesional fat and iron, magnetic resonance elastography, radiomics, radiogenomics, and positron emission tomography (PET)-MRI are highly promising for the extraction of new imaging biomarkers that reflect the tumor microenvironment and, in the future, may add decision-making value in the management of patients with HCC.
Collapse
|
28
|
Cerny M, Chernyak V, Olivié D, Billiard JS, Murphy-Lavallée J, Kielar AZ, Elsayes KM, Bourque L, Hooker JC, Sirlin CB, Tang A. LI-RADS Version 2018 Ancillary Features at MRI. Radiographics 2018; 38:1973-2001. [DOI: 10.1148/rg.2018180052] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Zou X, Luo Y, Li Z, Hu Y, Li H, Tang H, Shen Y, Hu D, Kamel IR. Volumetric Apparent Diffusion Coefficient Histogram Analysis in Differentiating Intrahepatic Mass-Forming Cholangiocarcinoma From Hepatocellular Carcinoma. J Magn Reson Imaging 2018; 49:975-983. [PMID: 30277628 DOI: 10.1002/jmri.26253] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/26/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Accurate differentiation between intrahepatic mass-forming cholangiocarcinoma (IMCC) and hepatocellular carcinoma (HCC) is needed because treatment and prognosis differ significantly. PURPOSE To explore whether volumetric apparent diffusion coefficient (ADC) histogram analysis can provide additional value to dynamic enhanced MRI in differentiating IMCC from HCC. STUDY TYPE Retrospective. POPULATION In all, 131 patients with pathologically proven IMCC (n = 33) or HCC (n = 98). FIELD STRENGTH/SEQUENCE 3.0T MRI/conventional T1 -weighted imaging (T1 WI), T2 WI, and diffusion-weighted imaging (DWI) with b value of 800 sec/mm2 , dynamic enhanced MRI with gadobenate dimeglumine. ASSESSMENT Dynamic enhanced MR images were analyzed by two independent reviewers using a five-point scale to determine the diagnosis. Volumetric ADC assessments were performed independently by two radiologists to obtain different histogram parameters for each lesion. Quantitative histogram parameters were compared between the IMCC group and HCC group. Diagnostic performance of dynamic enhanced MRI, volumetric ADC histogram analysis, and the combination of both were analyzed. STATISTICAL TESTS Intraclass correlation coefficient (ICC) analysis, independent Student's t-test, or Mann-Whitney U-test, receiver operator characteristic (ROC) curves analysis, and McNemar test. RESULTS The sensitivity and specificity for dynamic enhanced MRI to differentiate IMCC from HCC were 82.1% and 82.6%, respectively. For all volumetric ADC histogram parameters, the 75th percentile ADC (ADC75% ) had the highest AUC (0.791) in differentiating IMCC from HCC, with sensitivity and specificity of 69.7% and 77.6%, respectively. When combining dynamic enhanced MRI with ADC75% , the sensitivity and specificity were 82.1% and 91.9%, respectively. Compared to dynamic enhanced MRI alone, the specificity for combined dynamic enhanced MRI and ADC75% was significantly increased (P = 0.008). DATA CONCLUSION Volumetric ADC histogram analysis provides additional value to dynamic enhanced MRI in differentiating IMCC from HCC. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:975-983.
Collapse
Affiliation(s)
- Xianlun Zou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Luo
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haojie Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ihab R Kamel
- Russell H. Morgan Department of Radiology and Radiological Science, the Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Thompson SM, Garg I, Ehman EC, Sheedy SP, Bookwalter CA, Carter RE, Roberts LR, Venkatesh SK. Non-alcoholic fatty liver disease-associated hepatocellular carcinoma: effect of hepatic steatosis on major hepatocellular carcinoma features at MRI. Br J Radiol 2018; 91:20180345. [PMID: 30074820 DOI: 10.1259/bjr.20180345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE: To evaluate the effect of hepatic steatosis on LI-RADS® major features at MRI in patients with non-alcoholic fatty liver disease (NAFLD)-associated hepatocellular carcinoma (HCC). METHODS: HCC and liver parenchyma features at MRI from 48 consecutive patients with NAFLD and histology proven HCC (mean ± SD; 4.5 ± 3.4 cm) were independently reviewed by three radiologists. Inter-rater agreement was determined by prevalence/bias-adjusted kappa. Hepatic fat signal fraction (FS%) was independently calculated. HCC features were compared by FS% at MRI using logistic regression analysis and histologic steatosis grade using Cochran-Armitage test for trend, stratified by cirrhotic liver morphology or histologic fibrosis stage. Receiver operating characteristic curves were generated to determine the sensitivity and specificity for major HCC features by FS%. RESULTS: Major HCC features included arterial phase hyperenhancement (APHE) in 45 (93%), portal venous phase washout (PVWO) in 30 (63%), delayed phase washout (DPWO) in 38 (79%) and enhancing "capsule" in 34 (71%). Cirrhotic morphology was present in 22 (46%). Inter-rater agreement was 0.75 for APHE, 0.42-0.58 for PVWO, 0.58-0.71 for DPWO and 0.38-0.67 for enhancing "capsule". There was an 18%, 14% and 22% increase in the odds of absent PVWO, DPWO and capsule appearance for every 1% increase in hepatic FS% in patients with non-cirrhotic liver morphology (p = 0.011, 0.040 and 0.029, respectively). Hepatic FS% ≥ 14.8% had a sensitivity and specificity of 64 and 100% for absent PVWO and 71 and 90% for absent DPWO in patients with non-cirrhotic liver morphology. CONCLUSION: Absent washout and capsule appearance are associated with increasing hepatic steatosis in patients with non-cirrhotic, NAFLD-associated HCC. ADVANCES IN KNOWLEDGE: In patients with non-cirrhotic, non-alcoholic fatty liver disease (NAFLD)-associated hepatocellular carcinoma (HCC), absent HCC washout and capsule appearance are associated with increasing hepatic steatosis, thereby potentially impacting the noninvasive imaging diagnosis of HCC in these patients. Lack of washout or capsule appearance in steatotic livers at MRI may require alternative criteria for the diagnosis of HCC in patients with non-cirrhotic NAFLD.
Collapse
Affiliation(s)
- Scott M Thompson
- 1 Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Ishan Garg
- 1 Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Eric C Ehman
- 1 Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Shannon P Sheedy
- 1 Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Candice A Bookwalter
- 1 Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Rickey E Carter
- 2 Division of Biomedical Statistics and Informatics, Mayo Clinic School of Medicine, Mayo Clinic , Jacksonville, FL , USA
| | - Lewis R Roberts
- 3 Division of Gastroenterology and Hepatology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Sudhakar K Venkatesh
- 1 Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
31
|
Inchingolo R, Faletti R, Grazioli L, Tricarico E, Gatti M, Pecorelli A, Ippolito D. MR with Gd-EOB-DTPA in assessment of liver nodules in cirrhotic patients. World J Hepatol 2018; 10:462-473. [PMID: 30079132 PMCID: PMC6068846 DOI: 10.4254/wjh.v10.i7.462] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/25/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023] Open
Abstract
To date the imaging diagnosis of liver lesions is based mainly on the identification of vascular features, which are typical of overt hepatocellular carcinoma (HCC), but the hepatocarcinogenesis is a complex and multistep event during which, a spectrum of nodules develop within the liver parenchyma, including benign small and large regenerative nodule (RN), low-grade dysplastic nodule (LGDN), high-grade dysplastic nodule (HGDN), early HCC, and well differentiated HCC. These nodules may be characterised not only on the basis of their respective different blood supplies, but also on their different hepatocyte function. Recently, in liver imaging the introduction of hepatobiliary magnetic resonance imaging contrast agent offered the clinicians the possibility to obtain, at once, information not only related to the vascular changes of liver nodules but also information on hepatocyte function. For this reasons this new approach becomes the most relevant diagnostic clue for differentiating low-risk nodules (LGDN-RN) from high-risk nodules (HGDN/early HCC or overt HCC) and consequently new diagnostic algorithms for HCC have been proposed. The use of hepatobiliary contrast agents is constantly increasing and gradually changing the standard of diagnosis of HCC. The main purpose of this review is to underline the added value of Gd-EOB-DTPA in early-stage diagnoses of HCC. We also analyse the guidelines for the diagnosis and management of HCC, the key concepts of HCC development, growth and spread and the imaging appearance of precursor nodules that eventually may transform into overt HCC.
Collapse
Affiliation(s)
- Riccardo Inchingolo
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, Radiology Unit, University of Turin, Turin 10126, Italy
| | - Luigi Grazioli
- Department of Radiology, University of Brescia “Spedali Civili”, Brescia 25123, Italy
| | - Eleonora Tricarico
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Marco Gatti
- Department of Surgical Sciences, Radiology Unit, University of Turin, Turin 10126, Italy
| | - Anna Pecorelli
- Department of Diagnostic Radiology, School of Medicine, University of Milano-Bicocca, Monza 20900, Italy
| | - Davide Ippolito
- Department of Diagnostic Radiology, School of Medicine, University of Milano-Bicocca, Monza 20900, Italy
| |
Collapse
|
32
|
Bösmüller H, Pfefferle V, Bittar Z, Scheble V, Horger M, Sipos B, Fend F. Microvessel density and angiogenesis in primary hepatic malignancies: Differential expression of CD31 and VEGFR-2 in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Pathol Res Pract 2018; 214:1136-1141. [PMID: 29935812 DOI: 10.1016/j.prp.2018.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/10/2018] [Accepted: 06/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Microvessel density is an indicator of tumor-driven neoangiogenesis. Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) have distinct vascular patterns, which are also reflected in their imaging characteristics. Since a significant proportion of HCC are treated without biopsy confirmation, it is essential to discriminate HCC and ICC radiologically. The aim of our study was therefore to compare microvessel density and expression of VEGFR-2 in HCC and ICC, since these data may ultimately help us to better understand their imaging characteristics. Whereas CD31 documents vessel density, VEGFR-2 expression is an indicator of tumor-related neoangiogenesis. METHODS CD31 and VEGFR-2 expressing microvessels were quantified on tissue microarrays of 95 resection specimens of HCC and 47 cases of ICC. Microvessel density was evaluated by counting immuno-reactive vascular structures both within the tumor and adjacent liver control tissue, respectively. Further 16 cases of ICC were immunostained for CD31 and VEGFR-2 on full sections. RESULTS The frequency of VEGFR-2 (46.2/HPF; range 0-150) and CD31 (61.2/HPF; range 2.6-140) expressing vascular structures was significantly increased in HCC compared to adjacent liver parenchyma (VEGFR-2 33.3/HPF, range 0-87, CD31 21.4/HPF, range 0-78, both p < 0,001). ICC revealed significantly less VEGFR2-positive microvessels (15.4/HPF; range 2-77) compared to matched control tissue (42.3/HPF; range 4.6-109), whereas microvessel density with CD31 was comparable between ICC and adjacent liver (32.1/HPF; range 5.3-78 versus 28.0/HPF; range 5.3-57; p = 0.89). In ICC, the tumor-to-normal microvessel density ratio was 0.38 for VEGFR-2 and 1.24 for CD31. These ratios were nearly identical (VEGFR: 0.38; CD31: 0,97) for the 16 cases of ICC studied on whole sections, confirming the validity of the TMA approach. In contrast, ratios of VEGFR-2 and CD31 in HCC vs. adjacent liver were significantly higher (VEGFR: 2.23; CD31: 6.57). Expression of VEGFR-2 by tumor cells was not observed in any of the cases. CONCLUSIONS HCC and ICC differ significantly in their microvessel density, confirming the hypovascular nature of ICC as compared to the hypervascularity of HCC. Of note, inverse tumor-to-normal ratios of microvascular VEGFR-2 expression between the two neoplasms indicate distinct features of neoangiogenesis. Whether these differences can be exploited for improvements in imaging of hepatic tumors and may play a role for anti-angiogenic treatment strategies requires further studies.
Collapse
Affiliation(s)
- Hans Bösmüller
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Germany.
| | - Vanessa Pfefferle
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Germany.
| | - Zeid Bittar
- Department of Pathology, Katharinenhospital Stuttgart, Germany.
| | - Veit Scheble
- Department of Internal Medicine I, University Hospital of Tübingen, Germany.
| | - Marius Horger
- Department of Radiology, University Hospital Tübingen, Germany.
| | - Bence Sipos
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Germany.
| | - Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Germany.
| |
Collapse
|
33
|
MRI for hepatocellular carcinoma: a primer for magnetic resonance imaging interpretation. Abdom Radiol (NY) 2018; 43:1143-1151. [PMID: 28780680 DOI: 10.1007/s00261-017-1280-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma is among the most prevalent solid organ cancers, and, unlike many cancers, may be diagnosed non-invasively by imaging criteria [1] with the preferred modality recently shifting from multiphasic computed tomography (MDCT) to magnetic resonance imaging (MRI). The purpose of this article is to help facilitate radiologists and radiology trainees in the transition to MRI by providing a step-wise approach to exam interpretation to improve the MRI detection of HCC. A methodical, consistent approach to navigating a HCC screening MRI exam, in conjunction with the LI-RADS framework for characterization, should lead to improved HCC detection and diagnosis.
Collapse
|
34
|
Contrast-enhanced ultrasound of the liver: technical and lexicon recommendations from the ACR CEUS LI-RADS working group. Abdom Radiol (NY) 2018; 43:861-879. [PMID: 29151131 DOI: 10.1007/s00261-017-1392-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) is a specific form of ultrasound imaging performed with intravenous administration of microbubble contrast agents. It has been extensively used for liver tumor characterization and was recently added to the American College of Radiology Liver Imaging Reporting and Data System (CEUS LI-RADS). This paper describes technical recommendations for successful liver CEUS lesion characterization, and provides imaging protocol and Lexicon of imaging findings.
Collapse
|
35
|
Nonstandardized Terminology to Describe Focal Liver Lesions in Patients at Risk for Hepatocellular Carcinoma: Implications Regarding Clinical Communication. AJR Am J Roentgenol 2018; 210:85-90. [DOI: 10.2214/ajr.17.18416] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Santillan C, Fowler K, Kono Y, Chernyak V. LI-RADS major features: CT, MRI with extracellular agents, and MRI with hepatobiliary agents. Abdom Radiol (NY) 2018; 43:75-81. [PMID: 28828680 DOI: 10.1007/s00261-017-1291-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Liver Imaging Reporting and Data System (LI-RADS) was designed to standardize the interpretation and reporting of observations seen on studies performed in patients at risk for development of hepatocellular carcinoma (HCC). The LI-RADS algorithm guides radiologists through the process of categorizing observations on a spectrum from definitely benign to definitely HCC. Major features are the imaging features used to categorize observations as LI-RADS 3 (intermediate probability of malignancy), LIRADS 4 (probably HCC), and LI-RADS 5 (definite HCC). Major features include arterial phase hyperenhancement, washout appearance, enhancing capsule appearance, size, and threshold growth. Observations that have few major criteria are assigned lower categories than those that have several, with the goal of preserving high specificity for the LR-5 category of Definite HCC. The goal of this paper is to discuss LI-RADS major features, including definitions, rationale for selection as major features, and imaging examples.
Collapse
|
37
|
ACR Appropriateness Criteria ® Chronic Liver Disease. J Am Coll Radiol 2017; 14:S391-S405. [DOI: 10.1016/j.jacr.2017.08.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 02/07/2023]
|
38
|
Abstract
There is great geographical variation in the distribution of hepatocellular carcinoma (HCC), with the majority of all cases worldwide found in the Asia–Pacific region, where HCC is one of the leading public health problems. Since the “Toward Revision of the Asian Pacific Association for the Study of the Liver (APASL) HCC Guidelines” meeting held at the 25th annual conference of the APASL in Tokyo, the newest guidelines for the treatment of HCC published by the APASL has been discussed. This latest guidelines recommend evidence-based management of HCC and are considered suitable for universal use in the Asia–Pacific region, which has a diversity of medical environments.
Collapse
|
39
|
Scali EP, Walshe T, Tiwari HA, Harris AC, Chang SD. A Pictorial Review of Hepatobiliary Magnetic Resonance Imaging With Hepatocyte-Specific Contrast Agents: Uses, Findings, and Pitfalls of Gadoxetate Disodium and Gadobenate Dimeglumine. Can Assoc Radiol J 2017; 68:293-307. [PMID: 28583364 DOI: 10.1016/j.carj.2016.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/21/2016] [Accepted: 10/25/2016] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging (MRI) has a well-established role as a highly specific and accurate modality for characterizing benign and malignant focal liver lesions. In particular, contrast-enhanced MRI using hepatocyte-specific contrast agents (HSCAs) improves lesion detection and characterization compared to other imaging modalities and MRI techniques. In this pictorial review, the mechanism of action of gadolinium-based MRI contrast agents, with a focus on HSCAs, is described. The clinical indications, protocols, and emerging uses of the 2 commercially available combined contrast agents available in the United States, gadoxetate disodium and gadobenate dimeglumine, are discussed. The MRI features of these agents are compared with examples of focal hepatic masses, many of which have been obtained within the same patient therefore allowing direct lesion comparison. Finally, the pitfalls in the use of combined contrast agents in liver MRI are highlighted.
Collapse
Affiliation(s)
- Elena P Scali
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Triona Walshe
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hina Arif Tiwari
- Department of Radiology, University of Arizona, Tuscon, Arizona, USA
| | - Alison C Harris
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Silvia D Chang
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
40
|
Park HJ, Choi BI, Lee ES, Park SB, Lee JB. How to Differentiate Borderline Hepatic Nodules in Hepatocarcinogenesis: Emphasis on Imaging Diagnosis. Liver Cancer 2017; 6. [PMID: 28626731 PMCID: PMC5473078 DOI: 10.1159/000455949] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Rapid advances in liver imaging have improved the evaluation of hepatocarcinogenesis and early diagnosis and treatment of hepatocellular carcinoma (HCC). In this situation, detection of early-stage HCC in its development is important for the improvement of patient survival and optimal treatment strategies. Because early HCCs are considered precursors of progressed HCC, precise differentiation between a dysplastic nodule (DN), especially a high-grade DN, and early HCC is important. In clinical practice, these nodules are frequently called "borderline hepatic nodules." SUMMARY This article discusses radiological and pathological characteristics of these borderline hepatic nodules and offers an understanding of multistep hepatocarcinogenesis by focusing on the descriptions of the imaging changes in the progression of DN and early HCC. Detection and accurate diagnosis of borderline hepatic nodules are still a challenge with contrast enhanced ultrasonography, CT, and MRI with extracellular contrast agents. However, gadoxetic acid-enhanced MRI may be useful for improving the diagnosis of these borderline nodules. KEY MESSAGES Since there is a net effect of incomplete neoangiogenesis and decreased portal venous flow in the early stage of hepatocarcinogenesis, borderline hepatic nodules commonly show iso- or hypovascularity. Therefore, precise differentiation of these nodules remains a challenging issue. In MRI using hepatobiliary contrast agents, signal intensity of HCCs on hepatobiliary phase (HBP) is regarded as a potential imaging biomarker. Borderline hepatic nodules are seen as nonhypervascular and hypointense nodules on the HBP, which is important for predicting tumor behavior and determining appropriate therapeutic strategies.
Collapse
Affiliation(s)
| | - Byung Ihn Choi
- *Byung Ihn Choi, MD, Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 84 Heukseok-ro, Dongjak-gu, Seoul 06973 (Republic of Korea), E-Mail
| | | | | | | |
Collapse
|
41
|
Hwang J, Kim YK, Min JH, Choi SY, Jeong WK, Hong SS, Kim HJ, Ahn S, Ahn HS. Capsule, septum, and T2 hyperintense foci for differentiation between large hepatocellular carcinoma (≥5 cm) and intrahepatic cholangiocarcinoma on gadoxetic acid MRI. Eur Radiol 2017; 27:4581-4590. [DOI: 10.1007/s00330-017-4846-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 02/28/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022]
|
42
|
Horowitz JM, Kamel IR, Arif-Tiwari H, Asrani SK, Hindman NM, Kaur H, McNamara MM, Noto RB, Qayyum A, Lalani T. ACR Appropriateness Criteria ® Chronic Liver Disease. J Am Coll Radiol 2017; 14:S103-S117. [DOI: 10.1016/j.jacr.2017.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 02/07/2023]
|
43
|
Nowicki TK, Markiet K, Szurowska E. Diagnostic Imaging of Hepatocellular Carcinoma - A Pictorial Essay. Curr Med Imaging 2017; 13:140-153. [PMID: 28553196 PMCID: PMC5427776 DOI: 10.2174/1573405612666160720123748] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, which develops mostly in the setting of chronic liver disease. European Association for the Study of the Liver (EASL) and European Organization for Research and Treatment of Cancer (EORTC) prepared guidelines for screening, follow-up and diagnosis of HCC to facilitate decision making and optimize both diagnostic and therapeutic protocols. The review briefly describes etiology, epidemiology and histopathology of HCC and presents EASL-EORTC guidelines for surveillance and diagnosis of HCC. Target population and screening algorithm is presented in the surveillance section. Ultrasound imaging of HCC and the role of contrast enhanced ultrasound are described as well as the value of laboratory tests in screening. Further, radiological features of HCC in multiphase CT and dynamic contrast enhanced MRI and diagnostic criteria are presented. Additionally, the advantages of advanced techniques in MRI such as diffusion weighed imaging and the use of hepatocyte-specific contrast agents are discussed. Lastly, the EASL-EORTC guidelines are compared with the guidelines of the American Association for the Study of Liver Diseases and the Japan Society of Hepatology. Also LI-RADS and the Barcelona Clinic Liver Cancer classification are mentioned. In the near future, due to the ongoing advances in imaging a revision of the guidelines may be expected.
Collapse
Affiliation(s)
- Tomasz K. Nowicki
- 2 Department of Radiology, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Karolina Markiet
- 2 Department of Radiology, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Edyta Szurowska
- 2 Department of Radiology, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| |
Collapse
|
44
|
Development of Risk Prediction Model for Hepatocellular Carcinoma Progression of Indeterminate Nodules in Hepatitis B Virus-Related Cirrhotic Liver. Am J Gastroenterol 2017; 112:460-470. [PMID: 27779194 DOI: 10.1038/ajg.2016.480] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVES This study was performed to evaluate long-term outcome of indeterminate nodules detected on cirrhotic liver and to develop risk prediction model for hepatocellular carcinoma (HCC) progression of indeterminate nodules on hepatitis B virus (HBV)-related cirrhotic liver. METHODS Indeterminate nodules up to 2 cm with uncertain malignant potential detected on computed tomography of cirrhotic liver during HCC surveillance were analyzed retrospectively. HCC risk prediction model of indeterminate nodules in HBV-related cirrhotic liver was deduced based on result of Cox regression analysis. RESULTS A total of 494 indeterminate nodules were included. Independent risk factors of HCC progression were old age, arterial enhancement, large nodule size, low serum albumin level, high serum α-fetoprotein (AFP) level, and prior HCC history in all included subjects. In subjects with chronic hepatitis B, old age (year; hazard ratio (HR)=1.06; P<0.001), arterial enhancement (HR=2.62; P=0.005), large nodule size (>1 cm; HR=7.34; P<0.001), low serum albumin level (≤3.5 g/dl; HR=3.57; P=0.001), high serum AFP level (≥100 ng/ml; HR=6.04; P=0.006), prior HCC history (HR=4.24; P=0.001), and baseline hepatitis B e antigen positivity (HR=2.31; P=0.007) were associated with HCC progression. We developed a simple risk prediction model using these risk factors and identified patients at low, intermediate, and high risk for HCC; 5-year cumulative incidences were 1%, 14.5%, and 63.1%, respectively. The developed risk score model showed good performance with area under the curve at 0.886 at 3 years, and 0.920 at 5 years in leave-one-out cross-validation. CONCLUSIONS We developed a useful and accurate risk score model for predicting HCC progression of indeterminate nodules detected on HBV-related cirrhotic liver.
Collapse
|
45
|
Rapp JB, Bellah RD, Maya C, Pawel BR, Anupindi SA. Giant hepatic regenerative nodules in Alagille syndrome. Pediatr Radiol 2017; 47:197-204. [PMID: 27796468 DOI: 10.1007/s00247-016-3728-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 09/10/2016] [Accepted: 10/07/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Children with Alagille syndrome undergo surveillance radiologic examinations as they are at risk for developing cirrhosis and hepatocellular carcinoma. There is limited literature on the imaging of liver masses in Alagille syndrome. We report the ultrasound (US) and magnetic resonance imaging (MRI) appearances of incidental benign giant hepatic regenerative nodules in this population. OBJECTIVE To describe the imaging findings of giant regenerative nodules in patients with Alagille syndrome. MATERIALS AND METHODS A retrospective search of the hospital database was performed to find all cases of hepatic masses in patients with Alagille syndrome during a 10-year period. Imaging, clinical charts, laboratory data and available pathology were reviewed and analyzed and summarized for each patient. RESULTS Twenty of 45 patients with confirmed Alagille syndrome had imaging studies. Of those, we identified six with giant focal liver masses. All six patients had large central hepatic masses that were remarkably similar on US and MRI, in addition to having features of cirrhosis. In each case, the mass was located in hepatic segment VIII and imaging showed the mass splaying the main portal venous branches at the hepatic hilum, as well as smaller portal and hepatic venous branches coursing through them. On MRI, signal intensity of the mass was isointense to liver on T1-weighted sequences in four of six patients, but hyperintense on T1 in two of six patients. In all six cases, the mass was hypointense on T2- weighted sequences. The mass post-contrast was isointense to adjacent liver in all phases in five the cases. Five out of six patients had pathological correlation demonstrating preserved ductal architecture confirming the final diagnosis of a regenerative nodule. CONCLUSION Giant hepatic regenerative nodules with characteristic US and MR features can occur in patients with Alagille syndrome with underlying cirrhosis. Recognizing these lesions as benign giant hepatic regenerative nodules should, thereby, mitigate any need for intervention.
Collapse
Affiliation(s)
- Jordan B Rapp
- Department of Radiology, Temple University Hospital, Lewis Katz School of Medicine at Temple University, 3401 N. Broad St., Philadelphia, PA, 19140, USA.
| | - Richard D Bellah
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carolina Maya
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bruce R Pawel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sudha A Anupindi
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
Ramalho M, Matos AP, AlObaidy M, Velloni F, Altun E, Semelka RC. Magnetic resonance imaging of the cirrhotic liver: diagnosis of hepatocellular carcinoma and evaluation of response to treatment - Part 1. Radiol Bras 2017; 50:38-47. [PMID: 28298731 PMCID: PMC5347502 DOI: 10.1590/0100-3984.2015.0132] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Magnetic resonance imaging (MRI) is the modern gold standard for the noninvasive evaluation of the cirrhotic liver. The combination of arterial phase hyperenhancement and delayed wash-out allows a definitive diagnosis of hepatocellular carcinoma (HCC) in patients with liver cirrhosis or chronic liver disease, without the requirement for confirmatory biopsy. That pattern is highly specific and has been endorsed in Western and Asian diagnostic guidelines. However, the sensitivity of the combination is relatively low for small HCCs. In this two-part review paper, we will address MRI of the cirrhotic liver. In this first part, we provide a brief background on liver cirrhosis and HCC, followed by descriptions of imaging surveillance of liver cirrhosis and the diagnostic performance of the different imaging modalities used in clinical settings. We then describe some of the requirements for the basic MRI technique, as well as the standard MRI protocol, and provide a detailed description of the appearance of various types of hepatocellular nodules encountered in the setting of the carcinogenic pathway in the cirrhotic liver, ranging from regenerative nodules to HCC.
Collapse
Affiliation(s)
- Miguel Ramalho
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, and Hospital Garcia de Orta, Almada, Portugal
| | - António P Matos
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, and Hospital Garcia de Orta, Almada, Portugal
| | - Mamdoh AlObaidy
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, and King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fernanda Velloni
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ersan Altun
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard C Semelka
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
47
|
Imaging the Abdominal Manifestations of Cystic Fibrosis. Int J Hepatol 2017; 2017:5128760. [PMID: 28250993 PMCID: PMC5303593 DOI: 10.1155/2017/5128760] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 12/17/2016] [Accepted: 01/09/2017] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF) is a multisystem disease with a range of abdominal manifestations including those involving the liver, pancreas, and kidneys. Recent advances in management of the respiratory complications of the disease has led to a greater life expectancy in patients with CF. Subsequently, there is increasing focus on the impact of abdominal disease on quality of life and survival. Liver cirrhosis is the most important extrapulmonary cause of death in CF, yet significant challenges remain in the diagnosis of CF related liver disease. The capacity to predict those patients at risk of developing cirrhosis remains a significant challenge. We review representative abdominal imaging findings in patients with CF selected from the records of two academic health centres, with a view to increasing familiarity with the abdominal manifestations of the disease. We review their presentation and expected imaging findings, with a focus on the challenges facing diagnosis of the hepatic manifestations of the disease. An increased familiarity with these abdominal manifestations will facilitate timely diagnosis and management, which is paramount to further improving outcomes for patients with cystic fibrosis.
Collapse
|
48
|
Debees NL, Sherif MF, Yones SG, Ahmad AH. Assessment of hepatic focal lesions on top of cirrhotic liver using dynamic and diffusion weighted magnetic resonance imaging. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2016. [DOI: 10.1016/j.ejrnm.2016.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
49
|
Thaiss W, Kaufmann S, Kloth C, Nikolaou K, Bösmüller H, Horger M. VEGFR-2 expression in HCC, dysplastic and regenerative liver nodules, and correlation with pre-biopsy Dynamic Contrast Enhanced CT. Eur J Radiol 2016; 85:2036-2041. [DOI: 10.1016/j.ejrad.2016.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022]
|
50
|
Abstract
OBJECTIVES Surveillance of hepatic nodules for malignant transformation to hepatocellular carcinoma is important in the monitoring of patients with biliary atresia (BA). To date, only 2 published case reports describe the finding of hepatoblastoma (HB) in this setting. The present study aimed to investigate this association of HB and BA, and to assess the utility of alpha-fetoprotein (aFP) as a marker in the diagnosis. METHODS A retrospective study of all patients who underwent isolated liver transplantation (LTx) for the primary diagnosis of BA at a single center, between January 1999 and June 2014, was conducted. Patient demographics, pre-LTx aFP levels, and histologic examination of native liver explants were reviewed. RESULTS One hundred two (44% men, median age 11 months) patients underwent LTx for BA. Two (2%) explants examinations were confirmatory for concomitant HB; both patients had abnormally elevated aFP. Overall, 56 (55%) patients had available pre-LTx aFP levels. Recipients with persistently abnormal aFP levels (n = 20, 36%) were older at hepatoportoenterostomy (107 vs 68 days, P = 0.02) and younger at LTx surgery (359 vs 1713 days, P < 0.01), compared to patients with constantly normal levels (n = 24, 43%). CONCLUSIONS In our cohort, HB was found to coexist in approximately 2% of patients with BA undergoing LTx, far exceeding the hypothetical anticipated incidence of 1:10 billion for the concomitant diagnoses. Elevated serum aFP levels may be sensitive but not specific for HB in this context. Further research is required to identify specific mechanisms and risk factors.
Collapse
|