1
|
Bakker JT, Dudurych I, Roodenburg SA, Vonk JM, Klooster K, de Bruijne M, van den Berge M, Slebos DJ, Vliegenthart R. Reference formulas for chest CT-derived lobar volumes in the lung-healthy general population. Eur Radiol 2024:10.1007/s00330-024-11123-6. [PMID: 39414656 DOI: 10.1007/s00330-024-11123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/17/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Lung hyperinflation, a key contributor to dyspnea in chronic obstructive pulmonary disease (COPD), can be quantified via chest computed tomography (CT). Establishing reference equations for lobar volumes and total lung volume (TLV) can aid in evaluating lobar hyperinflation, especially for targeted lung volume reduction therapies. METHODS The Imaging in Lifelines study (ImaLife) comprises 11,729 participants aged 45 and above with analyzed inspiratory low-dose thoracic CT scans. Lung and lobar volumes were measured using an automatic AI-based segmentation algorithm (LungSeg). For the main analysis, participants were excluded if they had self-reported COPD/asthma, lung disease on CT, airflow obstruction on lung function testing, were currently smoking, aged over 80 years, or had height outside the 99% confidence interval. Reference equations for TLV and lobar volumes were determined using linear regression considering age and height, stratified by sex. For the subanalysis, participants who were currently smoking or experiencing airflow obstruction were compared to the group of the main analysis. RESULTS The study included 7306 lung-healthy participants, 97.5% Caucasian, 43.6% men, with mean age of 60.3 ± 9.5 years. Lung and lobar volumes generally increased with age and height. Men consistently had higher volumes than women when adjusted for height. R2 values ranged from 7.8 to 19.9%. In smokers and those with airway obstruction, volumes were larger than in lung-healthy groups, with the largest increases measured in the upper lobes. CONCLUSION The established reference equations for CT-derived TLV and lobar volumes provide a standardized interpretation for individuals aged 45 to 80 of Northern European descent. KEY POINTS Question Lobar lung volumes can be derived from inspiratory CT scans, but healthy-lung reference values are lacking. Findings Lung and lobar volumes generally increased with age and height. Reference equations for lung/lobar volumes were derived from a sizeable lung-healthy population. Clinical relevance This study provides reference equations for inspiratory CT-derived lung and lobar volumes in a lung-healthy population, potentially useful for assessing candidates for lung volume reduction therapies, for lobe removal in lung cancer patients, and in case of restrictive pulmonary diseases.
Collapse
Affiliation(s)
- Jens T Bakker
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ivan Dudurych
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sharyn A Roodenburg
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith M Vonk
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Karin Klooster
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marleen de Bruijne
- Department of Radiology and Nuclear Medicine, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Computer Science, Copenhagen University, Copenhagen, Denmark
| | - Maarten van den Berge
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dirk-Jan Slebos
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rozemarijn Vliegenthart
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Cha MJ, Solomon JJ, Lee JE, Choi H, Chae KJ, Lee KS, Lynch DA. Chronic Lung Injury after COVID-19 Pneumonia: Clinical, Radiologic, and Histopathologic Perspectives. Radiology 2024; 310:e231643. [PMID: 38193836 PMCID: PMC10831480 DOI: 10.1148/radiol.231643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/06/2023] [Accepted: 09/26/2023] [Indexed: 01/10/2024]
Abstract
With the COVID-19 pandemic having lasted more than 3 years, concerns are growing about prolonged symptoms and respiratory complications in COVID-19 survivors, collectively termed post-COVID-19 condition (PCC). Up to 50% of patients have residual symptoms and physiologic impairment, particularly dyspnea and reduced diffusion capacity. Studies have also shown that 24%-54% of patients hospitalized during the 1st year of the pandemic exhibit radiologic abnormalities, such as ground-glass opacity, reticular opacity, bronchial dilatation, and air trapping, when imaged more than 1 year after infection. In patients with persistent respiratory symptoms but normal results at chest CT, dual-energy contrast-enhanced CT, xenon 129 MRI, and low-field-strength MRI were reported to show abnormal ventilation and/or perfusion, suggesting that some lung injury may not be detectable with standard CT. Histologic patterns in post-COVID-19 lung disease include fibrosis, organizing pneumonia, and vascular abnormality, indicating that different pathologic mechanisms may contribute to PCC. Therefore, a comprehensive imaging approach is necessary to evaluate and diagnose patients with persistent post-COVID-19 symptoms. This review will focus on the long-term findings of clinical and radiologic abnormalities and describe histopathologic perspectives. It also addresses advanced imaging techniques and deep learning approaches that can be applied to COVID-19 survivors. This field remains an active area of research, and further follow-up studies are warranted for a better understanding of the chronic stage of the disease and developing a multidisciplinary approach for patient management.
Collapse
Affiliation(s)
- Min Jae Cha
- From the Department of Radiology, Chung-Ang University Hospital,
Seoul, Korea (M.J.C., H.C.); Departments of Medicine (J.J.S.) and Radiology
(K.J.C., D.A.L.), National Jewish Health, 1400 Jackson St, Denver, CO 80206;
Department of Radiology, Chonnam National University Hospital, Gwangju, Republic
of Korea (J.E.L.); Department of Radiology, Research Institute of Clinical
Medicine of Jeonbuk National University, Biomedical Research Institute of
Jeonbuk National University Hospital, Jeonju, Republic of Korea (K.J.C); and
Department of Radiology, Sungkyunkwan University School of Medicine and Samsung
ChangWon Hospital, Gyeongsangnam, Republic of Korea (K.S.L.)
| | - Joshua J. Solomon
- From the Department of Radiology, Chung-Ang University Hospital,
Seoul, Korea (M.J.C., H.C.); Departments of Medicine (J.J.S.) and Radiology
(K.J.C., D.A.L.), National Jewish Health, 1400 Jackson St, Denver, CO 80206;
Department of Radiology, Chonnam National University Hospital, Gwangju, Republic
of Korea (J.E.L.); Department of Radiology, Research Institute of Clinical
Medicine of Jeonbuk National University, Biomedical Research Institute of
Jeonbuk National University Hospital, Jeonju, Republic of Korea (K.J.C); and
Department of Radiology, Sungkyunkwan University School of Medicine and Samsung
ChangWon Hospital, Gyeongsangnam, Republic of Korea (K.S.L.)
| | - Jong Eun Lee
- From the Department of Radiology, Chung-Ang University Hospital,
Seoul, Korea (M.J.C., H.C.); Departments of Medicine (J.J.S.) and Radiology
(K.J.C., D.A.L.), National Jewish Health, 1400 Jackson St, Denver, CO 80206;
Department of Radiology, Chonnam National University Hospital, Gwangju, Republic
of Korea (J.E.L.); Department of Radiology, Research Institute of Clinical
Medicine of Jeonbuk National University, Biomedical Research Institute of
Jeonbuk National University Hospital, Jeonju, Republic of Korea (K.J.C); and
Department of Radiology, Sungkyunkwan University School of Medicine and Samsung
ChangWon Hospital, Gyeongsangnam, Republic of Korea (K.S.L.)
| | - Hyewon Choi
- From the Department of Radiology, Chung-Ang University Hospital,
Seoul, Korea (M.J.C., H.C.); Departments of Medicine (J.J.S.) and Radiology
(K.J.C., D.A.L.), National Jewish Health, 1400 Jackson St, Denver, CO 80206;
Department of Radiology, Chonnam National University Hospital, Gwangju, Republic
of Korea (J.E.L.); Department of Radiology, Research Institute of Clinical
Medicine of Jeonbuk National University, Biomedical Research Institute of
Jeonbuk National University Hospital, Jeonju, Republic of Korea (K.J.C); and
Department of Radiology, Sungkyunkwan University School of Medicine and Samsung
ChangWon Hospital, Gyeongsangnam, Republic of Korea (K.S.L.)
| | - Kum Ju Chae
- From the Department of Radiology, Chung-Ang University Hospital,
Seoul, Korea (M.J.C., H.C.); Departments of Medicine (J.J.S.) and Radiology
(K.J.C., D.A.L.), National Jewish Health, 1400 Jackson St, Denver, CO 80206;
Department of Radiology, Chonnam National University Hospital, Gwangju, Republic
of Korea (J.E.L.); Department of Radiology, Research Institute of Clinical
Medicine of Jeonbuk National University, Biomedical Research Institute of
Jeonbuk National University Hospital, Jeonju, Republic of Korea (K.J.C); and
Department of Radiology, Sungkyunkwan University School of Medicine and Samsung
ChangWon Hospital, Gyeongsangnam, Republic of Korea (K.S.L.)
| | - Kyung Soo Lee
- From the Department of Radiology, Chung-Ang University Hospital,
Seoul, Korea (M.J.C., H.C.); Departments of Medicine (J.J.S.) and Radiology
(K.J.C., D.A.L.), National Jewish Health, 1400 Jackson St, Denver, CO 80206;
Department of Radiology, Chonnam National University Hospital, Gwangju, Republic
of Korea (J.E.L.); Department of Radiology, Research Institute of Clinical
Medicine of Jeonbuk National University, Biomedical Research Institute of
Jeonbuk National University Hospital, Jeonju, Republic of Korea (K.J.C); and
Department of Radiology, Sungkyunkwan University School of Medicine and Samsung
ChangWon Hospital, Gyeongsangnam, Republic of Korea (K.S.L.)
| | - David A. Lynch
- From the Department of Radiology, Chung-Ang University Hospital,
Seoul, Korea (M.J.C., H.C.); Departments of Medicine (J.J.S.) and Radiology
(K.J.C., D.A.L.), National Jewish Health, 1400 Jackson St, Denver, CO 80206;
Department of Radiology, Chonnam National University Hospital, Gwangju, Republic
of Korea (J.E.L.); Department of Radiology, Research Institute of Clinical
Medicine of Jeonbuk National University, Biomedical Research Institute of
Jeonbuk National University Hospital, Jeonju, Republic of Korea (K.J.C); and
Department of Radiology, Sungkyunkwan University School of Medicine and Samsung
ChangWon Hospital, Gyeongsangnam, Republic of Korea (K.S.L.)
| |
Collapse
|
3
|
Baradaran Mahdavi MM, Rafati M, Ghanei M, Arabfard M. Computer-assisted evaluation of small airway disease in CT scans of Iran-Iraq war victims of chemical warfare by a locally developed software: comparison between different quantitative methods. BMC Med Imaging 2023; 23:165. [PMID: 37872482 PMCID: PMC10594688 DOI: 10.1186/s12880-023-01114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 09/29/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVE Diagnosis of small airway disease on computed tomography (CT) scans is challenging in patients with a history of chemical warfare exposure. We developed a software package based on different methodologies to identify and quantify small airway disease in CT images. The primary aim was to identify the best automatic methodology for detecting small airway disease in CT scans of Iran-Iraq War victims of chemical warfare. METHODS This retrospective case-control study enrolled 46 patients with a history of chemical warfare exposure and 27 controls with inspiratory/expiratory (I/E) CT scans and spirometry tests. Image data were automatically segmented, and inspiratory images were registered into the expiratory images' frame using the locally developed software. Parametric response mapping (PRM) and air trapping index (ATI) mapping were performed on the CT images. Conventional QCT methods, including expiratory/inspiratory mean lung attenuation (E/I MLA) ratio, normal density E/I (ND E/I) MLA ratio, attenuation volume Index (AVI), %low attenuation areas (LAA) < -856 in exhale scans, and %LAA < -950 in inhale scans were also computed. QCT measurements were correlated with spirometry results and compared across the two study groups. RESULTS The correlation analysis showed a significant negative relationship between three air trapping (AT) measurements (PRM, ATI, and %LAAExp < -856) and spirometry parameters (Fev1, Fvc, Fev1/Fvc, and MMEF). Moreover, %LAAExp < -856 had the highest significant negative correlation with Fev1/Fvc (r = -0.643, P-value < 0.001). Three AT measurements demonstrated a significant difference between the study groups. The E/I ratio was also significantly different between the two groups (P-value < 0.001). Binary logistic regression models showed PRMFsad, %LAAExp < -856, and ATI as significant and strong predictors of the study outcome. Optimal cut-points for PRMFsad = 19%, %LAAExp < -856 = 23%, and ATI = 27% were identified to classify the participants into two groups with high accuracy. CONCLUSION QCT methods, including PRM, ATI, and %LAAExp < -856 can greatly advance the identification and quantification of SAD in chemical warfare victims. The results should be verified in well-designed prospective studies involving a large population.
Collapse
Affiliation(s)
- Mohammad Mehdi Baradaran Mahdavi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehravar Rafati
- Department of Medical Physics and Radiology, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Mahdavi MMB, Arabfard M, Rafati M, Ghanei M. A Computer-based Analysis for Identification and Quantification of Small Airway Disease in Lung Computed Tomography Images: A Comprehensive Review for Radiologists. J Thorac Imaging 2023; 38:W1-W18. [PMID: 36206107 DOI: 10.1097/rti.0000000000000683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Computed tomography (CT) imaging is being increasingly used in clinical practice for detailed characterization of lung diseases. Respiratory diseases involve various components of the lung, including the small airways. Evaluation of small airway disease on CT images is challenging as the airways cannot be visualized directly by a CT scanner. Small airway disease can manifest as pulmonary air trapping (AT). Although AT may be sometimes seen as mosaic attenuation on expiratory CT images, it is difficult to identify diffuse AT visually. Computer technology advances over the past decades have provided methods for objective quantification of small airway disease on CT images. Quantitative CT (QCT) methods are being rapidly developed to quantify underlying lung diseases with greater precision than subjective visual assessment of CT images. A growing body of evidence suggests that QCT methods can be practical tools in the clinical setting to identify and quantify abnormal regions of the lung accurately and reproducibly. This review aimed to describe the available methods for the identification and quantification of small airway disease on CT images and to discuss the challenges of implementing QCT metrics in clinical care for patients with small airway disease.
Collapse
Affiliation(s)
- Mohammad Mehdi Baradaran Mahdavi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran
| | - Mehravar Rafati
- Department of Medical Physics and Radiology, Faculty of paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran
| |
Collapse
|