1
|
Chen J, Qiu RL, Wang T, Momin S, Yang X. A Review of Artificial Intelligence in Brachytherapy. ARXIV 2024:arXiv:2409.16543v1. [PMID: 39398213 PMCID: PMC11469420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Artificial intelligence (AI) has the potential to revolutionize brachytherapy's clinical workflow. This review comprehensively examines the application of AI, focusing on machine learning and deep learning, in facilitating various aspects of brachytherapy. We analyze AI's role in making brachytherapy treatments more personalized, efficient, and effective. The applications are systematically categorized into seven categories: imaging, preplanning, treatment planning, applicator reconstruction, quality assurance, outcome prediction, and real-time monitoring. Each major category is further subdivided based on cancer type or specific tasks, with detailed summaries of models, data sizes, and results presented in corresponding tables. This review offers insights into the current advancements, challenges, and the impact of AI on treatment paradigms, encouraging further research to expand its clinical utility.
Collapse
Affiliation(s)
- Jingchu Chen
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308
- School of Mechanical Engineering, Georgia Institute of Technology, GA, Atlanta, USA
| | - Richard L.J. Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Shadab Momin
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308
| |
Collapse
|
2
|
Fechter T, Sachpazidis I, Baltas D. The use of deep learning in interventional radiotherapy (brachytherapy): A review with a focus on open source and open data. Z Med Phys 2024; 34:180-196. [PMID: 36376203 PMCID: PMC11156786 DOI: 10.1016/j.zemedi.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Deep learning advanced to one of the most important technologies in almost all medical fields. Especially in areas, related to medical imaging it plays a big role. However, in interventional radiotherapy (brachytherapy) deep learning is still in an early phase. In this review, first, we investigated and scrutinised the role of deep learning in all processes of interventional radiotherapy and directly related fields. Additionally, we summarised the most recent developments. For better understanding, we provide explanations of key terms and approaches to solving common deep learning problems. To reproduce results of deep learning algorithms both source code and training data must be available. Therefore, a second focus of this work is on the analysis of the availability of open source, open data and open models. In our analysis, we were able to show that deep learning plays already a major role in some areas of interventional radiotherapy, but is still hardly present in others. Nevertheless, its impact is increasing with the years, partly self-propelled but also influenced by closely related fields. Open source, data and models are growing in number but are still scarce and unevenly distributed among different research groups. The reluctance in publishing code, data and models limits reproducibility and restricts evaluation to mono-institutional datasets. The conclusion of our analysis is that deep learning can positively change the workflow of interventional radiotherapy but there is still room for improvements when it comes to reproducible results and standardised evaluation methods.
Collapse
Affiliation(s)
- Tobias Fechter
- Division of Medical Physics, Department of Radiation Oncology, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany.
| | - Ilias Sachpazidis
- Division of Medical Physics, Department of Radiation Oncology, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Dimos Baltas
- Division of Medical Physics, Department of Radiation Oncology, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| |
Collapse
|
3
|
Polymeri E, Johnsson ÅA, Enqvist O, Ulén J, Pettersson N, Nordström F, Kindblom J, Trägårdh E, Edenbrandt L, Kjölhede H. Artificial Intelligence-Based Organ Delineation for Radiation Treatment Planning of Prostate Cancer on Computed Tomography. Adv Radiat Oncol 2024; 9:101383. [PMID: 38495038 PMCID: PMC10943520 DOI: 10.1016/j.adro.2023.101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/30/2023] [Indexed: 03/19/2024] Open
Abstract
Purpose Meticulous manual delineations of the prostate and the surrounding organs at risk are necessary for prostate cancer radiation therapy to avoid side effects to the latter. This process is time consuming and hampered by inter- and intraobserver variability, all of which could be alleviated by artificial intelligence (AI). This study aimed to evaluate the performance of AI compared with manual organ delineations on computed tomography (CT) scans for radiation treatment planning. Methods and Materials Manual delineations of the prostate, urinary bladder, and rectum of 1530 patients with prostate cancer who received curative radiation therapy from 2006 to 2018 were included. Approximately 50% of those CT scans were used as a training set, 25% as a validation set, and 25% as a test set. Patients with hip prostheses were excluded because of metal artifacts. After training and fine-tuning with the validation set, automated delineations of the prostate and organs at risk were obtained for the test set. Sørensen-Dice similarity coefficient, mean surface distance, and Hausdorff distance were used to evaluate the agreement between the manual and automated delineations. Results The median Sørensen-Dice similarity coefficient between the manual and AI delineations was 0.82, 0.95, and 0.88 for the prostate, urinary bladder, and rectum, respectively. The median mean surface distance and Hausdorff distance were 1.7 and 9.2 mm for the prostate, 0.7 and 6.7 mm for the urinary bladder, and 1.1 and 13.5 mm for the rectum, respectively. Conclusions Automated CT-based organ delineation for prostate cancer radiation treatment planning is feasible and shows good agreement with manually performed contouring.
Collapse
Affiliation(s)
- Eirini Polymeri
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Radiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Åse A. Johnsson
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Radiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Olof Enqvist
- Department of Electrical Engineering, Region Västra Götaland, Chalmers University of Technology, Gothenburg, Sweden
- Eigenvision AB, Malmö, Sweden
| | | | - Niclas Pettersson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Fredrik Nordström
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jon Kindblom
- Department of Oncology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elin Trägårdh
- Department of Clinical Physiology and Nuclear Medicine, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Lars Edenbrandt
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Kjölhede
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Urology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
4
|
Zhao JZ, Ni R, Chow R, Rink A, Weersink R, Croke J, Raman S. Artificial intelligence applications in brachytherapy: A literature review. Brachytherapy 2023; 22:429-445. [PMID: 37248158 DOI: 10.1016/j.brachy.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE Artificial intelligence (AI) has the potential to simplify and optimize various steps of the brachytherapy workflow, and this literature review aims to provide an overview of the work done in this field. METHODS AND MATERIALS We conducted a literature search in June 2022 on PubMed, Embase, and Cochrane for papers that proposed AI applications in brachytherapy. RESULTS A total of 80 papers satisfied inclusion/exclusion criteria. These papers were categorized as follows: segmentation (24), registration and image processing (6), preplanning (13), dose prediction and treatment planning (11), applicator/catheter/needle reconstruction (16), and quality assurance (10). AI techniques ranged from classical models such as support vector machines and decision tree-based learning to newer techniques such as U-Net and deep reinforcement learning, and were applied to facilitate small steps of a process (e.g., optimizing applicator selection) or even automate the entire step of the workflow (e.g., end-to-end preplanning). Many of these algorithms demonstrated human-level performance and offer significant improvements in speed. CONCLUSIONS AI has potential to augment, automate, and/or accelerate many steps of the brachytherapy workflow. We recommend that future studies adhere to standard reporting guidelines. We also stress the importance of using larger sample sizes and reporting results using clinically interpretable measures.
Collapse
Affiliation(s)
- Jonathan Zl Zhao
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Ruiyan Ni
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Ronald Chow
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Alexandra Rink
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Robert Weersink
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Jennifer Croke
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Srinivas Raman
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| |
Collapse
|
5
|
Mongan J, Vagal A, Wu CC. Imaging AI in Practice: Introducing the Special Issue. Radiol Artif Intell 2022; 4:e220039. [PMID: 35391763 PMCID: PMC8980860 DOI: 10.1148/ryai.220039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/11/2022]
Affiliation(s)
- John Mongan
- From the Department of Radiology and Biomedical Imaging, Center for Intelligent Imaging, University of California, San Francisco, 505 Parnassus Ave, Box 0628, San Francisco, CA 94143 (J.M.); Department of Radiology, University of Cincinnati, Cincinnati, Ohio (A.V.); and Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.C.W.)
| | - Achala Vagal
- From the Department of Radiology and Biomedical Imaging, Center for Intelligent Imaging, University of California, San Francisco, 505 Parnassus Ave, Box 0628, San Francisco, CA 94143 (J.M.); Department of Radiology, University of Cincinnati, Cincinnati, Ohio (A.V.); and Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.C.W.)
| | - Carol C. Wu
- From the Department of Radiology and Biomedical Imaging, Center for Intelligent Imaging, University of California, San Francisco, 505 Parnassus Ave, Box 0628, San Francisco, CA 94143 (J.M.); Department of Radiology, University of Cincinnati, Cincinnati, Ohio (A.V.); and Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex (C.C.W.)
| |
Collapse
|