1
|
Wu DY, Vo DT, Seiler SJ. For the busy clinical-imaging professional in an AI world: Gaining intuition about deep learning without math. J Med Imaging Radiat Sci 2025; 56:101762. [PMID: 39437625 DOI: 10.1016/j.jmir.2024.101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/25/2024] [Accepted: 08/25/2024] [Indexed: 10/25/2024]
Abstract
Medical diagnostics comprise recognizing patterns in images, tissue slides, and symptoms. Deep learning algorithms (DLs) are well suited to such tasks, but they are black boxes in various ways. To explain DL Computer-Aided Diagnostic (CAD) results and their accuracy to patients, to manage or drive the direction of future medical DLs, to make better decisions with CAD, etc., clinical professionals may benefit from hands-on, under-the-hood lessons about medical DL. For those who already have some high-level knowledge about DL, the next step is to gain a more-fundamental understanding of DLs, which may help illuminate inside the boxes. The objectives of this Continuing Medical Education (CME) article include:Better understanding can come from relatable medical analogies and personally experiencing quick simulations to observe deep learning in action, akin to the way clinicians are trained to perform other tasks. We developed readily-implementable demonstrations and simulation exercises. We framed the exercises using analogies to breast cancer, malignancy and cancer stage as example diagnostic applications. The simulations revealed a nuanced relationship between DL output accuracy and the quantity and nature of the data. The simulation results provided lessons-learned and implications for the clinical world. Although we focused on DLs for diagnosis, they are similar to DLs for treatment (e.g. radiotherapy) so that treatment providers may also benefit from this tutorial.
Collapse
Affiliation(s)
- Dolly Y Wu
- Volunteer Services, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Dat T Vo
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephen J Seiler
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Loi SJ, Ng W, Lai C, Chua ECP. Artificial intelligence education in medical imaging: A scoping review. J Med Imaging Radiat Sci 2024; 56:101798. [PMID: 39718290 DOI: 10.1016/j.jmir.2024.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND The rise of Artificial intelligence (AI) is reshaping healthcare, particularly in medical imaging. In this emerging field, clinical imaging personnel need proper training. However, formal AI education is lacking in medical curricula, coupled with a shortage of studies synthesising the availability of AI curricula tailored for clinical imaging personnel. This study therefore addresses the question "what are the current AI training programs or curricula for clinical imaging personnel?" METHODS This review follows Arksey & O'Malley's framework and the PRISMA Extension for Scoping Reviews checklist. Six electronic databases were searched between June and September 2023 and the screening process comprised two stages. Data extraction was performed using a standardised charting form. Data was summarised in table format and thematically. RESULTS Twenty-two studies were included in this review. The goals of the curriculum include enhancing AI knowledge through the delivery of educational content and encouraging practical application and skills development in AI. The learning objectives comprise technical proficiency and model development, foundational knowledge and understanding, literature review and information utilisation, and practical application and problem-solving skills. Course content spanned nine areas, from fundamentals of AI to imaging informatics. Most curricula adopted an online mode of delivery, and the program duration varied significantly. All programs utilised didactic presentations, with several incorporating additional teaching methods and activities to fulfil curriculum goals. The target audiences and participants primarily involved radiology residents, while the creators and instructors comprised a multidisciplinary team of radiology and AI personnel. Various tools and resources were utilised, encompassing online courses and cloud-based notebooks. The curricula were well-received by participants, and time constraint emerged as a major challenge. CONCLUSION This scoping review provides an overview of the AI educational programs from existing literature to guide future developments in AI educational curricula. Future education efforts should prioritise evidence-based curriculum design, expand training offerings to radiographers, increase content offerings in imaging informatics, and effectively utilise different teaching strategies and training tools and resources in the curriculum.
Collapse
Affiliation(s)
- Su Jean Loi
- Singapore Institute of Technology, 10 Dover Drive, 138683, Singapore.
| | - Wenhui Ng
- Singapore Institute of Technology, 10 Dover Drive, 138683, Singapore
| | - Christopher Lai
- Singapore Institute of Technology, 10 Dover Drive, 138683, Singapore
| | | |
Collapse
|
3
|
Lopez-Rippe J, Reddy M, Velez-Florez MC, Amiruddin R, Lerebo W, Gokli A, Francavilla M, Reid J. RADHawk-an AI-based knowledge recommender to support precision education, improve reporting productivity, and reduce cognitive load. Pediatr Radiol 2024:10.1007/s00247-024-06116-y. [PMID: 39644355 DOI: 10.1007/s00247-024-06116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Using artificial intelligence (AI) to augment knowledge is key to establishing precision education in modern radiology training. Our department has developed a novel AI-derived knowledge recommender, the first reported precision education program in radiology, RADHawk (RH), that augments the training of radiology residents and fellows by pushing personalized and relevant educational content in real-time and in context with the case being interpreted. PURPOSE To assess the impact on trainees of an AI-based knowledge recommender compared to traditional knowledge sourcing for radiology reporting through reporting time, quality, cognitive load, and learning experiences. MATERIALS AND METHODS A mixed methods prospective study allocated trainees to intervention and control groups, working with and without access to RH, respectively. Validated questionnaires and observed and graded simulated picture archiving and communication system (PACS)-based reporting at the start and end of a month's rotation assessed technology acceptance, case report quality, case report time and sourcing time, cognitive load, and attitudes toward modified learning strategies. Non-parametric regression analyses and Mann-Whitney tests were used to compare outcomes between groups, with significance set at P<0.05. RESULTS The intervention group (n=28) demonstrated a statistically significant reduction in the case report time by -162 s per case (95%CI -275.76 s to -52.40 s) (P-value = 0.002) and an increase of 14% (95%CI 8.1-19.8%) (P-value <0.001) in accuracy scores compared to the control group (n=29) at the end of the rotation. The intervention group also showed lower levels of mental demand (P=0.030) and experienced less effort (P=0.030) and frustration (P=0.030) while reporting. Additionally, >78% of the intervention group gave positive ratings on RH's effectiveness, increase in productivity, job usefulness, and ease of use. Eighty-nine percent of participants in the intervention group requested access to RH for their next rotation. CONCLUSION This study demonstrates that RH, as the first reported AI-derived knowledge recommender for radiology education, significantly reduces reporting time and improves reporting accuracy while reducing overall workload and mental demand for radiology trainees. The high acceptance among trainees suggests its potential for supporting self-directed learning. Further testing of a larger external cohort will support more widespread implementation of RH for precision education.
Collapse
Affiliation(s)
| | - Manasa Reddy
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | - Ami Gokli
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Staten Island University Hospital, New York, NY, USA
| | - Michael Francavilla
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
- University of South Alabama, Mobile, AL, USA
| | - Janet Reid
- Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Mdletshe S, Wang A. Enhancing medical imaging education: integrating computing technologies, digital image processing and artificial intelligence. J Med Radiat Sci 2024. [PMID: 39508409 DOI: 10.1002/jmrs.837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
The rapid advancement of technology has brought significant changes to various fields, including medical imaging (MI). This discussion paper explores the integration of computing technologies (e.g. Python and MATLAB), digital image processing (e.g. image enhancement, segmentation and three-dimensional reconstruction) and artificial intelligence (AI) into the undergraduate MI curriculum. By examining current educational practices, gaps and limitations that hinder the development of future-ready MI professionals are identified. A comprehensive curriculum framework is proposed, incorporating essential computational skills, advanced image processing techniques and state-of-the-art AI tools, such as large language models like ChatGPT. The proposed curriculum framework aims to improve the quality of MI education significantly and better equip students for future professional practice and challenges while enhancing diagnostic accuracy, improving workflow efficiency and preparing students for the evolving demands of the MI field.
Collapse
Affiliation(s)
- Sibusiso Mdletshe
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Alan Wang
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Medical Imaging Research centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Co-Created Ageing Research, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Tao X, Reed WM, Li T, Brennan PC, Gandomkar Z. Optimizing mammography interpretation education: leveraging deep learning for cohort-specific error detection to enhance radiologist training. J Med Imaging (Bellingham) 2024; 11:055502. [PMID: 39372519 PMCID: PMC11447382 DOI: 10.1117/1.jmi.11.5.055502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/31/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Accurate interpretation of mammograms presents challenges. Tailoring mammography training to reader profiles holds the promise of an effective strategy to reduce these errors. This proof-of-concept study investigated the feasibility of employing convolutional neural networks (CNNs) with transfer learning to categorize regions associated with false-positive (FP) errors within screening mammograms into categories of "low" or "high" likelihood of being a false-positive detection for radiologists sharing similar geographic characteristics. Approach Mammography test sets assessed by two geographically distant cohorts of radiologists (cohorts A and B) were collected. FP patches within these mammograms were segmented and categorized as "difficult" or "easy" based on the number of readers committing FP errors. Patches outside 1.5 times the interquartile range above the upper quartile were labeled as difficult, whereas the remaining patches were labeled as easy. Using transfer learning, a patch-wise CNN model for binary patch classification was developed utilizing ResNet as the feature extractor, with modified fully connected layers for the target task. Model performance was assessed using 10-fold cross-validation. Results Compared with other architectures, the transferred ResNet-50 achieved the highest performance, obtaining receiver operating characteristics area under the curve values of 0.933 ( ± 0.012 ) and 0.975 ( ± 0.011 ) on the validation sets for cohorts A and B, respectively. Conclusions The findings highlight the feasibility of employing CNN-based transfer learning to predict the difficulty levels of local FP patches in screening mammograms for specific radiologist cohort with similar geographic characteristics.
Collapse
Affiliation(s)
- Xuetong Tao
- The University of Sydney, Faculty of Health Sciences, Discipline of Medical Imaging Science, Sydney, New South Wales, Australia
| | - Warren M. Reed
- The University of Sydney, Faculty of Health Sciences, Discipline of Medical Imaging Science, Sydney, New South Wales, Australia
| | - Tong Li
- The University of Sydney a joint venture with Cancer Council NSW, The Daffodil Centre, Woolloomooloo, New South Wales, Australia
- The University of Sydney, Sydney School of Public Health, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Patrick C. Brennan
- The University of Sydney, Faculty of Health Sciences, Discipline of Medical Imaging Science, Sydney, New South Wales, Australia
| | - Ziba Gandomkar
- The University of Sydney, Faculty of Health Sciences, Discipline of Medical Imaging Science, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Brady AP, Allen B, Chong J, Kotter E, Kottler N, Mongan J, Oakden-Rayner L, Pinto Dos Santos D, Tang A, Wald C, Slavotinek J. Developing, Purchasing, Implementing and Monitoring AI Tools in Radiology: Practical Considerations. A Multi-Society Statement From the ACR, CAR, ESR, RANZCR & RSNA. J Am Coll Radiol 2024; 21:1292-1310. [PMID: 38276923 DOI: 10.1016/j.jacr.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Artificial intelligence (AI) carries the potential for unprecedented disruption in radiology, with possible positive and negative consequences. The integration of AI in radiology holds the potential to revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. Nevertheless, the ever-growing availability of AI tools in radiology highlights an increasing need to critically evaluate claims for its utility and to differentiate safe product offerings from potentially harmful, or fundamentally unhelpful ones. This multi-society paper, presenting the views of Radiology Societies in the USA, Canada, Europe, Australia, and New Zealand, defines the potential practical problems and ethical issues surrounding the incorporation of AI into radiological practice. In addition to delineating the main points of concern that developers, regulators, and purchasers of AI tools should consider prior to their introduction into clinical practice, this statement also suggests methods to monitor their stability and safety in clinical use, and their suitability for possible autonomous function. This statement is intended to serve as a useful summary of the practical issues which should be considered by all parties involved in the development of radiology AI resources, and their implementation as clinical tools. KEY POINTS.
Collapse
Affiliation(s)
| | - Bibb Allen
- Department of Radiology, Grandview Medical Center, Birmingham, Alabama; American College of Radiology Data Science Institute, Reston, Virginia
| | - Jaron Chong
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Elmar Kotter
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kottler
- Radiology Partners, El Segundo, California; Stanford Center for Artificial Intelligence in Medicine & Imaging, Palo Alto, California
| | - John Mongan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Lauren Oakden-Rayner
- Australian Institute for Machine Learning, University of Adelaide, Adelaide, Australia
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany; Department of Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - An Tang
- Department of Radiology, Radiation Oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Christoph Wald
- Department of Radiology, Lahey Hospital & Medical Center, Burlington, Massachusetts; Tufts University Medical School, Boston, Massachusetts; Commision on Informatics, and Member, Board of Chancellors, American College of Radiology, Virginia
| | - John Slavotinek
- South Australia Medical Imaging, Flinders Medical Centre Adelaide, Adelaide, Australia; College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
7
|
Rouzrokh P, Clarke JE, Hosseiny M, Nikpanah M, Mokkarala M. Preparing Radiologists for an Artificial Intelligence-enhanced Future: Tips for Trainees. Radiographics 2024; 44:e240042. [PMID: 39024174 PMCID: PMC11310759 DOI: 10.1148/rg.240042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 07/20/2024]
Affiliation(s)
- Pouria Rouzrokh
- From the Department of Radiology, Radiology Informatics Laboratory,
Mayo Clinic, Rochester, Minn (P.R.); Department of Radiology, University of
California Los Angeles, Los Angeles, Calif (J.E.C.); Department of Radiology,
University of California San Diego, San Diego, Calif (M.H.); Department of
Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.N.); and
Department of Radiology, Mallinckrodt Institute of Radiology, St. Louis, Mo
(M.M.)
| | - Jamie E. Clarke
- From the Department of Radiology, Radiology Informatics Laboratory,
Mayo Clinic, Rochester, Minn (P.R.); Department of Radiology, University of
California Los Angeles, Los Angeles, Calif (J.E.C.); Department of Radiology,
University of California San Diego, San Diego, Calif (M.H.); Department of
Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.N.); and
Department of Radiology, Mallinckrodt Institute of Radiology, St. Louis, Mo
(M.M.)
| | - Melina Hosseiny
- From the Department of Radiology, Radiology Informatics Laboratory,
Mayo Clinic, Rochester, Minn (P.R.); Department of Radiology, University of
California Los Angeles, Los Angeles, Calif (J.E.C.); Department of Radiology,
University of California San Diego, San Diego, Calif (M.H.); Department of
Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.N.); and
Department of Radiology, Mallinckrodt Institute of Radiology, St. Louis, Mo
(M.M.)
| | - Moozhan Nikpanah
- From the Department of Radiology, Radiology Informatics Laboratory,
Mayo Clinic, Rochester, Minn (P.R.); Department of Radiology, University of
California Los Angeles, Los Angeles, Calif (J.E.C.); Department of Radiology,
University of California San Diego, San Diego, Calif (M.H.); Department of
Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.N.); and
Department of Radiology, Mallinckrodt Institute of Radiology, St. Louis, Mo
(M.M.)
| | - Mahati Mokkarala
- From the Department of Radiology, Radiology Informatics Laboratory,
Mayo Clinic, Rochester, Minn (P.R.); Department of Radiology, University of
California Los Angeles, Los Angeles, Calif (J.E.C.); Department of Radiology,
University of California San Diego, San Diego, Calif (M.H.); Department of
Radiology, University of Alabama at Birmingham, Birmingham, Ala (M.N.); and
Department of Radiology, Mallinckrodt Institute of Radiology, St. Louis, Mo
(M.M.)
| |
Collapse
|
8
|
Linguraru MG, Bakas S, Aboian M, Chang PD, Flanders AE, Kalpathy-Cramer J, Kitamura FC, Lungren MP, Mongan J, Prevedello LM, Summers RM, Wu CC, Adewole M, Kahn CE. Clinical, Cultural, Computational, and Regulatory Considerations to Deploy AI in Radiology: Perspectives of RSNA and MICCAI Experts. Radiol Artif Intell 2024; 6:e240225. [PMID: 38984986 PMCID: PMC11294958 DOI: 10.1148/ryai.240225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/13/2024] [Accepted: 04/25/2024] [Indexed: 07/11/2024]
Abstract
The Radiological Society of North of America (RSNA) and the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society have led a series of joint panels and seminars focused on the present impact and future directions of artificial intelligence (AI) in radiology. These conversations have collected viewpoints from multidisciplinary experts in radiology, medical imaging, and machine learning on the current clinical penetration of AI technology in radiology and how it is impacted by trust, reproducibility, explainability, and accountability. The collective points-both practical and philosophical-define the cultural changes for radiologists and AI scientists working together and describe the challenges ahead for AI technologies to meet broad approval. This article presents the perspectives of experts from MICCAI and RSNA on the clinical, cultural, computational, and regulatory considerations-coupled with recommended reading materials-essential to adopt AI technology successfully in radiology and, more generally, in clinical practice. The report emphasizes the importance of collaboration to improve clinical deployment, highlights the need to integrate clinical and medical imaging data, and introduces strategies to ensure smooth and incentivized integration. Keywords: Adults and Pediatrics, Computer Applications-General (Informatics), Diagnosis, Prognosis © RSNA, 2024.
Collapse
Affiliation(s)
- Marius George Linguraru
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Spyridon Bakas
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Mariam Aboian
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Peter D. Chang
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Adam E. Flanders
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Jayashree Kalpathy-Cramer
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Felipe C. Kitamura
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Matthew P. Lungren
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - John Mongan
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Luciano M. Prevedello
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Ronald M. Summers
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Carol C. Wu
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Maruf Adewole
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Charles E. Kahn
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| |
Collapse
|
9
|
Lim B, Cevik J, Seth I, Sofiadellis F, Ross RJ, Rozen WM, Cuomo R. Evaluating Artificial Intelligence's Role in Teaching the Reporting and Interpretation of Computed Tomographic Angiography for Preoperative Planning of the Deep Inferior Epigastric Artery Perforator Flap. JPRAS Open 2024; 40:273-285. [PMID: 38708385 PMCID: PMC11067004 DOI: 10.1016/j.jpra.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/30/2024] [Indexed: 05/07/2024] Open
Abstract
Background Artificial intelligence (AI) has the potential to transform preoperative planning for breast reconstruction by enhancing the efficiency, accuracy, and reliability of radiology reporting through automatic interpretation and perforator identification. Large language models (LLMs) have recently advanced significantly in medicine. This study aimed to evaluate the proficiency of contemporary LLMs in interpreting computed tomography angiography (CTA) scans for deep inferior epigastric perforator (DIEP) flap preoperative planning. Methods Four prominent LLMs, ChatGPT-4, BARD, Perplexity, and BingAI, answered six questions on CTA scan reporting. A panel of expert plastic surgeons with extensive experience in breast reconstruction assessed the responses using a Likert scale. In contrast, the responses' readability was evaluated using the Flesch Reading Ease score, the Flesch-Kincaid Grade level, and the Coleman-Liau Index. The DISCERN score was utilized to determine the responses' suitability. Statistical significance was identified through a t-test, and P-values < 0.05 were considered significant. Results BingAI provided the most accurate and useful responses to prompts, followed by Perplexity, ChatGPT, and then BARD. BingAI had the greatest Flesh Reading Ease (34.7±5.5) and DISCERN (60.5±3.9) scores. Perplexity had higher Flesch-Kincaid Grade level (20.5±2.7) and Coleman-Liau Index (17.8±1.6) scores than other LLMs. Conclusion LLMs exhibit limitations in their capabilities of reporting CTA for preoperative planning of breast reconstruction, yet the rapid advancements in technology hint at a promising future. AI stands poised to enhance the education of CTA reporting and aid preoperative planning. In the future, AI technology could provide automatic CTA interpretation, enhancing the efficiency, accuracy, and reliability of CTA reports.
Collapse
Affiliation(s)
- Bryan Lim
- Department of Plastic Surgery, Peninsula Health, Melbourne, Victoria, 3199, Australia
- Faculty of Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Jevan Cevik
- Department of Plastic Surgery, Peninsula Health, Melbourne, Victoria, 3199, Australia
- Faculty of Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Ishith Seth
- Department of Plastic Surgery, Peninsula Health, Melbourne, Victoria, 3199, Australia
- Faculty of Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Foti Sofiadellis
- Department of Plastic Surgery, Peninsula Health, Melbourne, Victoria, 3199, Australia
| | - Richard J. Ross
- Department of Plastic Surgery, Peninsula Health, Melbourne, Victoria, 3199, Australia
| | - Warren M. Rozen
- Department of Plastic Surgery, Peninsula Health, Melbourne, Victoria, 3199, Australia
- Faculty of Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Roberto Cuomo
- Plastic Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100, Italy
| |
Collapse
|
10
|
Brady AP, Allen B, Chong J, Kotter E, Kottler N, Mongan J, Oakden-Rayner L, Dos Santos DP, Tang A, Wald C, Slavotinek J. Developing, Purchasing, Implementing and Monitoring AI Tools in Radiology: Practical Considerations. A Multi-Society Statement From the ACR, CAR, ESR, RANZCR & RSNA. Can Assoc Radiol J 2024; 75:226-244. [PMID: 38251882 DOI: 10.1177/08465371231222229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Artificial Intelligence (AI) carries the potential for unprecedented disruption in radiology, with possible positive and negative consequences. The integration of AI in radiology holds the potential to revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. Nevertheless, the ever‑growing availability of AI tools in radiology highlights an increasing need to critically evaluate claims for its utility and to differentiate safe product offerings from potentially harmful, or fundamentally unhelpful ones. This multi‑society paper, presenting the views of Radiology Societies in the USA, Canada, Europe, Australia, and New Zealand, defines the potential practical problems and ethical issues surrounding the incorporation of AI into radiological practice. In addition to delineating the main points of concern that developers, regulators, and purchasers of AI tools should consider prior to their introduction into clinical practice, this statement also suggests methods to monitor their stability and safety in clinical use, and their suitability for possible autonomous function. This statement is intended to serve as a useful summary of the practical issues which should be considered by all parties involved in the development of radiology AI resources, and their implementation as clinical tools.
Collapse
Affiliation(s)
| | - Bibb Allen
- Department of Radiology, Grandview Medical Center, Birmingham, AL, USA
- Data Science Institute, American College of Radiology, Reston, VA, USA
| | - Jaron Chong
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Elmar Kotter
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kottler
- Radiology Partners, El Segundo, CA, USA
- Stanford Center for Artificial Intelligence in Medicine & Imaging, Palo Alto, CA, USA
| | - John Mongan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Lauren Oakden-Rayner
- Australian Institute for Machine Learning, University of Adelaide, Adelaide, SA, Australia
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Department of Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - An Tang
- Department of Radiology, Radiation Oncology, and Nuclear Medicine, Université de Montréal, Montréal, QC, Canada
| | - Christoph Wald
- Department of Radiology, Lahey Hospital & Medical Center, Burlington, MA, USA
- Tufts University Medical School, Boston, MA, USA
- American College of Radiology, Reston, VA, USA
| | - John Slavotinek
- South Australia Medical Imaging, Flinders Medical Centre Adelaide, SA, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
11
|
Gordon M, Daniel M, Ajiboye A, Uraiby H, Xu NY, Bartlett R, Hanson J, Haas M, Spadafore M, Grafton-Clarke C, Gasiea RY, Michie C, Corral J, Kwan B, Dolmans D, Thammasitboon S. A scoping review of artificial intelligence in medical education: BEME Guide No. 84. MEDICAL TEACHER 2024; 46:446-470. [PMID: 38423127 DOI: 10.1080/0142159x.2024.2314198] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Artificial Intelligence (AI) is rapidly transforming healthcare, and there is a critical need for a nuanced understanding of how AI is reshaping teaching, learning, and educational practice in medical education. This review aimed to map the literature regarding AI applications in medical education, core areas of findings, potential candidates for formal systematic review and gaps for future research. METHODS This rapid scoping review, conducted over 16 weeks, employed Arksey and O'Malley's framework and adhered to STORIES and BEME guidelines. A systematic and comprehensive search across PubMed/MEDLINE, EMBASE, and MedEdPublish was conducted without date or language restrictions. Publications included in the review spanned undergraduate, graduate, and continuing medical education, encompassing both original studies and perspective pieces. Data were charted by multiple author pairs and synthesized into various thematic maps and charts, ensuring a broad and detailed representation of the current landscape. RESULTS The review synthesized 278 publications, with a majority (68%) from North American and European regions. The studies covered diverse AI applications in medical education, such as AI for admissions, teaching, assessment, and clinical reasoning. The review highlighted AI's varied roles, from augmenting traditional educational methods to introducing innovative practices, and underscores the urgent need for ethical guidelines in AI's application in medical education. CONCLUSION The current literature has been charted. The findings underscore the need for ongoing research to explore uncharted areas and address potential risks associated with AI use in medical education. This work serves as a foundational resource for educators, policymakers, and researchers in navigating AI's evolving role in medical education. A framework to support future high utility reporting is proposed, the FACETS framework.
Collapse
Affiliation(s)
- Morris Gordon
- School of Medicine and Dentistry, University of Central Lancashire, Preston, UK
- Blackpool Hospitals NHS Foundation Trust, Blackpool, UK
| | - Michelle Daniel
- School of Medicine, University of California, San Diego, SanDiego, CA, USA
| | - Aderonke Ajiboye
- School of Medicine and Dentistry, University of Central Lancashire, Preston, UK
| | - Hussein Uraiby
- Department of Cellular Pathology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Nicole Y Xu
- School of Medicine, University of California, San Diego, SanDiego, CA, USA
| | - Rangana Bartlett
- Department of Cognitive Science, University of California, San Diego, CA, USA
| | - Janice Hanson
- Department of Medicine and Office of Education, School of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Mary Haas
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maxwell Spadafore
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | - Colin Michie
- School of Medicine and Dentistry, University of Central Lancashire, Preston, UK
| | - Janet Corral
- Department of Medicine, University of Nevada Reno, School of Medicine, Reno, NV, USA
| | - Brian Kwan
- School of Medicine, University of California, San Diego, SanDiego, CA, USA
| | - Diana Dolmans
- School of Health Professions Education, Faculty of Health, Maastricht University, Maastricht, NL, USA
| | - Satid Thammasitboon
- Center for Research, Innovation and Scholarship in Health Professions Education, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Brady AP, Allen B, Chong J, Kotter E, Kottler N, Mongan J, Oakden-Rayner L, Pinto Dos Santos D, Tang A, Wald C, Slavotinek J. Developing, purchasing, implementing and monitoring AI tools in radiology: Practical considerations. A multi-society statement from the ACR, CAR, ESR, RANZCR & RSNA. J Med Imaging Radiat Oncol 2024; 68:7-26. [PMID: 38259140 DOI: 10.1111/1754-9485.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 01/24/2024]
Abstract
Artificial Intelligence (AI) carries the potential for unprecedented disruption in radiology, with possible positive and negative consequences. The integration of AI in radiology holds the potential to revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. Nevertheless, the ever-growing availability of AI tools in radiology highlights an increasing need to critically evaluate claims for its utility and to differentiate safe product offerings from potentially harmful, or fundamentally unhelpful ones. This multi-society paper, presenting the views of Radiology Societies in the USA, Canada, Europe, Australia, and New Zealand, defines the potential practical problems and ethical issues surrounding the incorporation of AI into radiological practice. In addition to delineating the main points of concern that developers, regulators, and purchasers of AI tools should consider prior to their introduction into clinical practice, this statement also suggests methods to monitor their stability and safety in clinical use, and their suitability for possible autonomous function. This statement is intended to serve as a useful summary of the practical issues which should be considered by all parties involved in the development of radiology AI resources, and their implementation as clinical tools.
Collapse
Affiliation(s)
| | - Bibb Allen
- Department of Radiology, Grandview Medical Center, Birmingham, Alabama, USA
- American College of Radiology Data Science Institute, Reston, Virginia, USA
| | - Jaron Chong
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Elmar Kotter
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kottler
- Radiology Partners, El Segundo, California, USA
- Stanford Center for Artificial Intelligence in Medicine & Imaging, Palo Alto, California, USA
| | - John Mongan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Lauren Oakden-Rayner
- Australian Institute for Machine Learning, University of Adelaide, Adelaide, South Australia, Australia
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Department of Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - An Tang
- Department of Radiology, Radiation Oncology, and Nuclear Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Christoph Wald
- Department of Radiology, Lahey Hospital & Medical Center, Burlington, Massachusetts, USA
- Tufts University Medical School, Boston, Massachusetts, USA
- Commision On Informatics, and Member, Board of Chancellors, American College of Radiology, Reston, Virginia, USA
| | - John Slavotinek
- South Australia Medical Imaging, Flinders Medical Centre Adelaide, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Brady AP, Allen B, Chong J, Kotter E, Kottler N, Mongan J, Oakden-Rayner L, Dos Santos DP, Tang A, Wald C, Slavotinek J. Developing, purchasing, implementing and monitoring AI tools in radiology: practical considerations. A multi-society statement from the ACR, CAR, ESR, RANZCR & RSNA. Insights Imaging 2024; 15:16. [PMID: 38246898 PMCID: PMC10800328 DOI: 10.1186/s13244-023-01541-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Artificial Intelligence (AI) carries the potential for unprecedented disruption in radiology, with possible positive and negative consequences. The integration of AI in radiology holds the potential to revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. Nevertheless, the ever-growing availability of AI tools in radiology highlights an increasing need to critically evaluate claims for its utility and to differentiate safe product offerings from potentially harmful, or fundamentally unhelpful ones.This multi-society paper, presenting the views of Radiology Societies in the USA, Canada, Europe, Australia, and New Zealand, defines the potential practical problems and ethical issues surrounding the incorporation of AI into radiological practice. In addition to delineating the main points of concern that developers, regulators, and purchasers of AI tools should consider prior to their introduction into clinical practice, this statement also suggests methods to monitor their stability and safety in clinical use, and their suitability for possible autonomous function. This statement is intended to serve as a useful summary of the practical issues which should be considered by all parties involved in the development of radiology AI resources, and their implementation as clinical tools.Key points • The incorporation of artificial intelligence (AI) in radiological practice demands increased monitoring of its utility and safety.• Cooperation between developers, clinicians, and regulators will allow all involved to address ethical issues and monitor AI performance.• AI can fulfil its promise to advance patient well-being if all steps from development to integration in healthcare are rigorously evaluated.
Collapse
Affiliation(s)
| | - Bibb Allen
- Department of Radiology, Grandview Medical Center, Birmingham, AL, USA
- American College of Radiology Data Science Institute, Reston, VA, USA
| | - Jaron Chong
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Elmar Kotter
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kottler
- Radiology Partners, El Segundo, CA, USA
- Stanford Center for Artificial Intelligence in Medicine & Imaging, Palo Alto, CA, USA
| | - John Mongan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Lauren Oakden-Rayner
- Australian Institute for Machine Learning, University of Adelaide, Adelaide, Australia
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
- Department of Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - An Tang
- Department of Radiology, Radiation Oncology, and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Christoph Wald
- Department of Radiology, Lahey Hospital & Medical Center, Burlington, MA, USA
- Tufts University Medical School, Boston, MA, USA
- Commision On Informatics, and Member, Board of Chancellors, American College of Radiology, Virginia, USA
| | - John Slavotinek
- South Australia Medical Imaging, Flinders Medical Centre Adelaide, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
14
|
Brady AP, Allen B, Chong J, Kotter E, Kottler N, Mongan J, Oakden-Rayner L, dos Santos DP, Tang A, Wald C, Slavotinek J. Developing, Purchasing, Implementing and Monitoring AI Tools in Radiology: Practical Considerations. A Multi-Society Statement from the ACR, CAR, ESR, RANZCR and RSNA. Radiol Artif Intell 2024; 6:e230513. [PMID: 38251899 PMCID: PMC10831521 DOI: 10.1148/ryai.230513] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Artificial Intelligence (AI) carries the potential for unprecedented disruption in radiology, with possible positive and negative consequences. The integration of AI in radiology holds the potential to revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. Nevertheless, the ever-growing availability of AI tools in radiology highlights an increasing need to critically evaluate claims for its utility and to differentiate safe product offerings from potentially harmful, or fundamentally unhelpful ones. This multi-society paper, presenting the views of Radiology Societies in the USA, Canada, Europe, Australia, and New Zealand, defines the potential practical problems and ethical issues surrounding the incorporation of AI into radiological practice. In addition to delineating the main points of concern that developers, regulators, and purchasers of AI tools should consider prior to their introduction into clinical practice, this statement also suggests methods to monitor their stability and safety in clinical use, and their suitability for possible autonomous function. This statement is intended to serve as a useful summary of the practical issues which should be considered by all parties involved in the development of radiology AI resources, and their implementation as clinical tools. This article is simultaneously published in Insights into Imaging (DOI 10.1186/s13244-023-01541-3), Journal of Medical Imaging and Radiation Oncology (DOI 10.1111/1754-9485.13612), Canadian Association of Radiologists Journal (DOI 10.1177/08465371231222229), Journal of the American College of Radiology (DOI 10.1016/j.jacr.2023.12.005), and Radiology: Artificial Intelligence (DOI 10.1148/ryai.230513). Keywords: Artificial Intelligence, Radiology, Automation, Machine Learning Published under a CC BY 4.0 license. ©The Author(s) 2024. Editor's Note: The RSNA Board of Directors has endorsed this article. It has not undergone review or editing by this journal.
Collapse
Affiliation(s)
| | - Bibb Allen
- Department of Radiology, Grandview Medical
Center, Birmingham, AL, USA
- American College of Radiology Data Science
Institute, Reston, VA, USA
| | - Jaron Chong
- Department of Medical Imaging, Schulich
School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Elmar Kotter
- Department of Diagnostic and
Interventional Radiology, Medical Center, Faculty of Medicine, University of
Freiburg, Freiburg, Germany
| | - Nina Kottler
- Radiology Partners, El Segundo, CA,
USA
- Stanford Center for Artificial
Intelligence in Medicine & Imaging, Palo Alto, CA, USA
| | - John Mongan
- Department of Radiology and Biomedical
Imaging, University of California, San Francisco, USA
| | - Lauren Oakden-Rayner
- Australian Institute for Machine Learning,
University of Adelaide, Adelaide, Australia
| | - Daniel Pinto dos Santos
- Department of Radiology, University
Hospital of Cologne, Cologne, Germany
- Department of Radiology, University
Hospital of Frankfurt, Frankfurt, Germany
| | - An Tang
- Department of Radiology, Radiation
Oncology, and Nuclear Medicine, Université de Montréal,
Montréal, Québec, Canada
| | - Christoph Wald
- Department of Radiology, Lahey Hospital
& Medical Center, Burlington, MA, USA
- Tufts University Medical School, Boston,
MA, USA
- Commission On Informatics, and Member,
Board of Chancellors, American College of Radiology, Virginia, USA
| | - John Slavotinek
- South Australia Medical Imaging,
Flinders Medical Centre Adelaide, Adelaide, Australia
- College of Medicine and Public Health,
Flinders University, Adelaide, Australia
| |
Collapse
|
15
|
Walsh G, Stogiannos N, van de Venter R, Rainey C, Tam W, McFadden S, McNulty JP, Mekis N, Lewis S, O'Regan T, Kumar A, Huisman M, Bisdas S, Kotter E, Pinto dos Santos D, Sá dos Reis C, van Ooijen P, Brady AP, Malamateniou C. Responsible AI practice and AI education are central to AI implementation: a rapid review for all medical imaging professionals in Europe. BJR Open 2023; 5:20230033. [PMID: 37953871 PMCID: PMC10636340 DOI: 10.1259/bjro.20230033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 11/14/2023] Open
Abstract
Artificial intelligence (AI) has transitioned from the lab to the bedside, and it is increasingly being used in healthcare. Radiology and Radiography are on the frontline of AI implementation, because of the use of big data for medical imaging and diagnosis for different patient groups. Safe and effective AI implementation requires that responsible and ethical practices are upheld by all key stakeholders, that there is harmonious collaboration between different professional groups, and customised educational provisions for all involved. This paper outlines key principles of ethical and responsible AI, highlights recent educational initiatives for clinical practitioners and discusses the synergies between all medical imaging professionals as they prepare for the digital future in Europe. Responsible and ethical AI is vital to enhance a culture of safety and trust for healthcare professionals and patients alike. Educational and training provisions for medical imaging professionals on AI is central to the understanding of basic AI principles and applications and there are many offerings currently in Europe. Education can facilitate the transparency of AI tools, but more formalised, university-led training is needed to ensure the academic scrutiny, appropriate pedagogy, multidisciplinarity and customisation to the learners' unique needs are being adhered to. As radiographers and radiologists work together and with other professionals to understand and harness the benefits of AI in medical imaging, it becomes clear that they are faced with the same challenges and that they have the same needs. The digital future belongs to multidisciplinary teams that work seamlessly together, learn together, manage risk collectively and collaborate for the benefit of the patients they serve.
Collapse
Affiliation(s)
- Gemma Walsh
- Division of Midwifery & Radiography, City University of London, London, United Kingdom
| | | | | | - Clare Rainey
- School of Health Sciences, Ulster University, Derry~Londonderry, Northern Ireland
| | - Winnie Tam
- Division of Midwifery & Radiography, City University of London, London, United Kingdom
| | - Sonyia McFadden
- School of Health Sciences, Ulster University, Coleraine, United Kingdom
| | | | - Nejc Mekis
- Medical Imaging and Radiotherapy Department, University of Ljubljana, Faculty of Health Sciences, Ljubljana, Slovenia
| | - Sarah Lewis
- Discipline of Medical Imaging Science, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Tracy O'Regan
- The Society and College of Radiographers, London, United Kingdom
| | - Amrita Kumar
- Frimley Health NHS Foundation Trust, Frimley, United Kingdom
| | - Merel Huisman
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | | | - Cláudia Sá dos Reis
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, Switzerland
| | | | | | | |
Collapse
|